
     

Some implications of chaos theory for the genetic analysis
of human development and variation
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Non-linear epigenetic processes are a potential underlying source of phenotypic differences in
development. Simulation studies of twin pairs using simple non-linear development models
characterised by chaotic or near-chaotic behavior are presented. The effect of chaotic processes on
correlations is to lower them from their initial values, but high initial correlations are affected
much less by chaotic and near-chaotic processes than intermediate correlations. Therefore, we
would predict that traits affected by chaotic processes would have high MZ and low DZ twin
correlations and this is reminiscent of certain traits such as EEG spectra. However the much more
frequent observation of MZ correlations close to twice their DZ counterparts would suggest that
the role of chaos in development is quite limited.
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Introduction

Molenaar et al1 have drawn attention to the possibil-
ity that chaos theory might provide a framework for
describing the epigenetic processes which generate
the ‘environmental’ differences within pairs of iden-
tical twins (E1), and the variation between duplicate
structures in the same individual (eg between num-
bers of sternopleural chaetae on different sides of the
same fly, or melanocytic naevi (moles) on left and
right sides of the human body). This important
insight suggests that the inherent implications of
certain non-linear processes may offer an entirely
‘deterministic’ account in terms of endogenous
developmental processes of findings that psycholo-
gists and others might seek to explain by reference to
external environmental factors.

This paper presents the results of simulation
studies which allow us to:

1) develop some implications of chaos theory for
the analysis of human behavioral development
when this is conducted within the framework
of current linear structural models;

2) point out some further consequences for
genetic modeling that were not discussed by
Molenaar et al;

3) evaluate how far chaos theory might be appli-
cable to the types of trait currently studied by
behavioral geneticists.

Logistic equation – a simple developmental
model capable of producing chaos

Wildman and Russell2 consider the behavior of the
discrete logistic equation

xn+1 = kxn(1 – xn)

on the unit interval [0,1]. The equation represents
xn+1 (the n + 1 th state of variable x) as a non-linear
function of the value of x in the previous (nth) state,
xn. Hence, the value of x at any time n can be
iteratively determined from the starting value, x0,
and the sequence of values taken by x is known as its
orbit. The behavior of the logistic equation varies
greatly, depending on the value of the constant k, but
the iterated sequence of x values remains within the
unit interval for k ≤ 4. For values of k < 3, the limit
value or equilibrium state of x is a constant,
irrespective of the starting value x0. For k ≤ 1 the
limiting value of x is always zero, whilst for
1 < k ≤ 3 the process converges to a non-zero value
which depends only on k. A value towards which x
converges is known as an attracting point, and if it
remains unchanged by iteration (ie xn+1 = xn for a
given k after a certain number of iterations) it is
known as a fixed attracting point. All attracting
points are fixed attracting points for k < 3.

As k becomes greater than 3, the logistic equation
enters a region of period doubling, and no longer

Correspondence: Dr KM Kirk, Queensland Institute of Medical
Research, Post Office, Royal Brisbane Hospital, Brisbane QLD
4029, Australia. Tel: + 61 7 3362 0272; Fax: + 61 7 3362 0101;
E-mail: kathE@qimr.edu.au
Received 10 December 1998; accepted 11 January 1999

Twin Research (1999) 2, 43–48
© 1999 Stockton Press All rights reserved 1369–0523/99 $12.00

http://www.stockton-press.co.uk/tr

https://doi.org/10.1375/twin.2.1.43 Published online by Cambridge University Press

https://doi.org/10.1375/twin.2.1.43


converges to a single limit. Instead, the sequence of
values for x splits or bifurcates, oscillating between
convergence towards more than one distinct attract-
ing point. At first there are only two distinct limits
but as k increases, the number of attracting points
continues to double. These attracting points are
known as periodic points, as they are transformed
into themselves by the logistic equation after an
exact number of iterations known as a limit cycle.
For the first time, the initial starting value x0 has
some impact on the value of x at time n, determining
the order in which x approaches the various periodic
attracting points. It is important to note that this
region of periodic doubling is not chaotic, but forms
a transitional boundary between linear and chaotic
behavior.3

True chaotic behavior of the logistic equation
begins at a value of k approx 3.5699 = kcrit, the
accumulation point. In this region, characterised by
a mixture of stable periodic and chaotic behavior,
both the starting condition x0 and the value of k are
important in determining the value of x at time n. As
discussed by Wildman and Russell,2 for a fixed value
of k, even slight variations in initial conditions are
sufficient to cause extremely different iterated
sequences. For k = kcrit, the orbit of x is confined to
narrow bands located between ‘constraints’. As k
increases above kcrit, these bands widen until orbits
for k = 4 cover the entire unit interval. Beyond, the
chaotic behavior of the logistic equation is more
complex, and for many values of x0 the result of
iteration is a value outside the unit interval [0,1].

Modeling differences between twins

The parameter k, and the form of the logistic
equation, may be considered as defining the ‘epige-
netic rules’ which govern the trajectory of the
phenotype x over time. Thus, they are the rules
governing the development of trait x. Since the
initial state of the logistic equation has no bearing on
the final limit of convergence for k ≤ 3, a value of k
in this range would result in individuals’ pheno-
types converging to the same value over time. A
value of k greater than 4 in many cases results in the
orbit of x departing from the unit interval of [0,1] and
accelerating towards infinity.2 Since the range of
possible phenotypes occurring in humans does not
extend to infinite values, interest in the behavior of
the logistic equation from the standpoint of the study
of individual differences is only for 3 < k ≤ 4.

Modeling of the correlation between members of a
twin pair via the logistic equation has been under-
taken using FORTRAN, with the inclusion of NAG
subroutines G05CBF and G05DDF for generation of
pseudo-random real numbers with a normal dis-

tribution.4 The model specifies the phenotypic mean
µ, the within-pair variance σ2

w, the between-pair
variance σ2

b, constant k (3 < k ≤ 4), the number of
twin pairs over which results are averaged (500), and
the number of iterations (50). The total variance
(σ2

w + σ2
b) is standardised to 1. Phenotypic ‘starting

values’ for each twin are generated using the NAG
subroutines with µ, σ2

w and σ2
b as input parameters.

The logistic equation is then iterated to obtain the
final phenotypic values at time n. Since results are
simulated for a large number of twin pairs, the
overall correlation between twins at time n for those
starting conditions can then be estimated.

Results

Figure 1 illustrates the phenotypic correlation
between members of twin pairs for k = 3.4, a value
within the bifurcation regime 3 < k < kcrit. For each
combination of within-pair and between-pair vari-
ance, the correlation at time n of the simulated twin
pairs has been plotted, with relatively smooth
convergence to the final correlation value in each
case. For very small within-pair variance (0.01), the
correlation between twins remains high (approx
0.85), whereas for even a within-pair variance of 0.2
the correlation between twins is less than 0.4.

Behavior of the logistic equation for values of k
just above the accumulation point is demonstrated
in Figure 2, for k = 3.57. As in Figure 1, a very high
initial correlation between twins is maintained as
iteration proceeds, but even a slightly lower initial
correlation of about 0.8 is rapidly degraded to less
than half its original value. However, with a limited
number of values that the logistic equation may take
for a given set of initial conditions due to banding,
some correlation between the twins’ phenotypes is
preserved despite the chaotic nature of the logistic
equation. The principal difference between Figures 1
and 2 does not occur in the values towards which the
twin correlations converge, but the manner in which
they do so. In this case, the correlation values
obtained for given within-pair and between-pair
variances oscillate around the limiting value, rather
than approaching it smoothly.

The final figure, Figure 3, demonstrates the behav-
ior of the logistic equation as k increases to a value of
3.84. In this case, the ‘observed’ twin correlations are
much lower than the corresponding values for
k = 3.57 and the same initial conditions. This is due
to the fact that the logistic equation values are not
constrained to such narrow bands. At these higher
values of k, iteration of the logistic equation causes
the phenotypic correlation between twins to
decrease rapidly, regardless of its initial value.
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Discussion

We note that Molenaar et al1 attribute to the
epigenetic consequences of ‘chaos’, a status which is
additional to, and independent of, the traditional
two-fold categorisation of the primary causes of
variation into ‘genetic’ and ‘environmental’ factors.
This distinction is likely to cause confusion. ‘Chaos’
is not an alternative to ‘environment’ but, as the
authors imply elsewhere, a source of environmental
variation which more naive investigators might seek
to ‘explain’ in terms of other more conventional
environmental factors such as differences in the
treatment of MZ twins. What the ‘chaos model’ does,
however, is alert behavioral geneticists to the fact
that the search for specific ‘environmental’ variables
might be unrequited.

Our simulations, however, allow us to be more
specific in a number of directions. Firstly, when we
characterise development by a simple non-linear
model which is behaving chaotically or near-chaot-
ically, we find that small variations in initial condi-
tions (eg small quantitative differences between MZ
twins at the molecular level such as the degree of
methylation of a particular gene in a particular
tissue) will have consequences at the phenotypic
level which look like occasion-specific environ-
mental effects. Put another way, what linear models
identify as short term environmental influences
(‘unreliability’ etc) and others may seek to explain in
terms of changes in the actual environment over
time, may be nothing more than the inherent and
virtually unpredictable specific behavioral fluctu-
ations of uniquely different individuals under a non-
linear epigenetic process. Thus, early environmental

Figure 1 Logistic equation modeling of twin correlations, k = 3.40
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differences may, under a ‘chaos’ model, be sufficient
to explain a series of very short-term environmental
differences which others might be tempted to
explain by specific correlated short-term changes in
exogenous variables. The ‘chaotic’ model thus leads
to an alternative research paradigm to that pre-
supposed by the attempt to explain short-term
behavioral fluctuations in terms of external factors.

Secondly, the epigenetic process implied by our
simple non-linear model can also capitalise on
genetic differences in the initial conditions to give
rise to what, under a linear genetic model, might be
treated as ‘occasion specific’ genetic effects. Uncrit-
ical application of the linear model might tempt
investigators to search for specific loci which were
‘switched on’ in a particular developmental ‘win-
dow’ when, in fact, there are no particular loci
responsible for a particular age-specific genetic
effect.

Finally, the precise consequences of a chaotic or
near-chaotic process for the correlation between
relatives (eg MZ and DZ twins) at any specific point
in development will depend on the correlation
between relatives for the initial conditions. Gen-
erally, twin correlations less than about 0.5 in the
initial conditions very quickly produce correlations
around zero between twins in subsequent cross-
sectional measures, as observed in the simulations
presented here. On the other hand, high initial
correlations (upwards of 0.9) can yield superficially
stable (though minutely fluctuating) non-zero corre-
lations between twins on later measures (see Figure 1
and 2). One important indication that a given system
is nonlinear, therefore, would be the demonstration
that DZ correlations are close to zero when the MZ
correlations are still far too high. Explanations in
terms of dominance, epistasis5 or ‘emergenesis’,6 do
not get right to the heart of the matter because they

Figure 2 Logistic equation modeling of twin correlations, k = 3.57
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are still modeling the process in terms of interactions
between individual components of a complex sys-
tem. The ‘chaos’ model may generate exactly the
kinds of correlations sometimes reported (very low
DZ correlations) without recourse to complex para-
meterisations even when variation in the initial
correlations are almost entirely explained by addi-
tive genetic factors.

How far models of this kind will turn out to be
important in behavior genetics will depend on a
number of factors. There are so few well-explored
models of human behavioral development that it is
impossible to determine general principles of devel-
opment, if any. It is apparently the case that a large
fraction of within family environmental variation is
relatively short-lived. This would favor an explana-
tion in chaotic terms. However, the correlations for
behavioral outcomes tend not to be grouped gen-
erally into very high MZ correlations (greater than
0.8, say) and very small DZ correlations (say less

than 0.1). Although there are examples of such in the
literature (see, for example, some published twin
correlations for EEG measures), we find the whole
range of MZ and DZ correlations, with many MZ
correlations for personality and attitudes stabilising
in the 0.4–0.6 range rather than higher, and many DZ
correlations for cognitive variables finishing up in
the same range rather than lower. Thus, although
‘chaos’ may be an important element in develop-
ment, its effects may not be universal, otherwise the
developmental data would appear differently. It may
be that some parameters of the EEG will be the best
place to start looking for chaotic effects, as Molenaar
et al1 imply, but if our simulations offer a legitimate
guide to what they might find, we should not expect,
as they also suggest, to find the ‘chaotic’ element
confined purely to estimates of the within family
environmental variation. Rather, we may anticipate
non-additive genetic effects of a magnitude that
cannot easily be encompassed by reasonable values

Figure 3 Logistic equation modeling of twin correlations, k = 3.84
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of dominance and epistatic components of variance
under the ‘linear’ genetic model.

We cannot say how far, or under what circum-
stances, natural selection would ‘abhor chaos’ and
under what conditions natural selection would
‘favor’ a chaotic epigenetic system over alternatives.
Molenaar et al rightly direct our attention to the
literature on the genetic control of sensitivity to the
environment as the best source to begin answering
this important question. Citing Mather,7 they con-
clude that dominant genetic control of stability/
instability appears to be in the direction of increas-
ing stability (heterosis being in the direction of
stability and inbreeding depression tending to lead
to instability). If such a finding is widespread, we
should probably conclude that chaos is the excep-
tion rather than the rule as a viable evolutionary
strategy.
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