
Canad. Math. Bull. Vol. 40 (2), 1997 pp. 231–243

ASYMPTOTIC THEORY AND
THE FOUNDATIONS OF STATISTICS

N. REID

ABSTRACT. Statistics in the 20th century has been enlivened by a passionate, occa-
sionally bitter, and still vibrant debate on the foundations of statistics and in particular
on Bayesian vs. frequentist approaches to inference. In 1975 D. V. Lindley predicted a
Bayesian 21st century for statistics. This prediction has often been discussed since, but
there is still no consensus on the probability of its correctness. Recent developments in
the asymptotic theory of statistics are, surprisingly, shedding new light on this debate,
and may have the potential to provide a common middle ground.

1. Introduction. I am very honoured to have been awarded this prize lectureship,
and very humbled, in view of the many highly deserving candidates among our col-
leagues. I would like to thank the Research Committee, the Committee on Women in
Mathematics and the CMS for their courage and leadership in establishing this prize lec-
tureship. I also hope I will see the day when there are so many women in mathematics
that such awards are viewed as quaint relics of an earlier time.

I was asked to present a lecture on my research for a general mathematical audience,
and not having been faced with such a tall order before, I found it a little difficult to know
where to start. The type of research that I’ve been involved in over the past ten or fifteen
years would probably be broadly described by my statistical colleagues as “theoretical
statistics”. The particular area of theoretical statistics that I study is parametric inference.
At the risk of boring you with some background material, I will describe this briefly, as
an introduction and to fix some notation.

We will start from the assumption that a random variable y takes values on (some sub-
set of) the real line according to a probability density function f (y). The probability that y
takes values in the interval [a, b] is given by

Rb
a f (y) dy. The function f is non-negative and

integrates to 1. In statistics probability density functions are typically defined relative to
Lebesgue measure (as I have done here) or counting measure: the former for describing
variables that take values on R or some sub-interval of R, and the latter for variables
taking values on a lattice such as Z+. In the lattice case we would write

P
y2Z+ f (y) ≥ 1.

A much more general treatment using Lebesgue-Stieltjes integrals is of course available.
A straightforward extension to vector-valued random variables is also possible, but not
needed here.

The first Krieger-Nelson Prize Lectureship, given at the summer meeting of the Canadian Mathematical
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The density function will be further indexed by a parameter í, taking values in a
parameter space Θ which is most often (an interval of) R or a connected region of Rk.
Thus the probability model is really a family of densities ff (y; í) : í 2 Θg, assumed to
be non-negative and normed for every í 2 Θ.

Parametric inference is the study of the ‘inverse problem’1 of reasoning from the
random variable y to the parameter í. Since we can only describe the behaviour of the
system probabilistically, we are interested in the general or average case and thus typi-
cally assume that we have available a series of observations y1, . . . , yn each taking values
according the the family of densities ff (y; í)g. In the simplest case, and the only one I
will discuss here, we assume that the observations y ≥ (y1, . . . yn) are taken indepen-
dently, so that the model for the complete set of observations is, with a slight abuse of
notation,

f (y; í) ≥
nY
1

f (yi; í).

Examples of the types of inferences that statisticians make and study are
ž “The value í ≥ í0 is not consistent with y, at level 0.03.”
ž “A 95% confidence interval for í is

�
íL(y), íU(y)

�
.”

ž “The probability is 0.90 that í 2
�
íLB(y), íUB(y)

�
.”

There is also an important body of work in nonparametric inference, in which the
density function f is not parameterized, but assumed only to belong to a suitable class of
smooth functions. As well, inference in models allowing dependence among the yis is an
important aspect of several areas in statistics, including time series analysis, multivariate
analysis, and inference in stochastic processes.

To emphasize the goal of the inverse problem, working from (y1, . . . , yn) back to í,
we often write the density function f (y; í) as a function of í, and give it a new name, the
likelihood function:

L(í) ≥ L(í; y) ≥ f (y; í)c(y).

In fact the likelihood function is an equivalence class of functions proportional to the
joint density, since observation of a one-to-one function of y, for example, should give
us the same inference statement about í. This means in particular that values of L(í) can
only be assessed relative to each other.

The likelihood function, like most other concepts in modern statistics, was introduced
into mathematical statistics by Sir Ronald Fisher [9,10,11]. He showed that the likelihood
function contains all the information in the observations y about the parameter í, and
described the likelihood function as providing a “measure of the degree of our rational
belief in a conclusion [about í]”. The problem of parametric inference is then to find
ways to calibrate the likelihood function, in order to draw inferential conclusions like
the ones quoted above.

1 I am indebted to Bradley Efron for this description of inference.

https://doi.org/10.4153/CMB-1997-028-x Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1997-028-x


ASYMPTOTICS AND STATISTICS 233

2. Examples.
2.1. Example 1: ulcer data. To give a flavour of the uses to which parametric inference
might be put, we illustrate with three fairly simple examples. The first, taken from Efron
[6,8], concerns investigation of a new treatment for stomach ulcers. Table 1 shows the
data from an experiment conducted to evaluate the new treatment relative to the standard
treatment.

success failure
new treatment 2 36
old treatment 12 20

TABLE 1: A 2ð 2 table comparing two treat-
ments for stomach ulcers. From Efron [8].

A reasonable and simple starting point for modelling the data (given the details of
the experimental protocol, which are omitted here), is to assume that y1, the number of
successes on the new treatment, follows a Binomial (38, p1) density: i.e.

f (y1; p1) ≥
 

38
y1

!
py1

1 (1 � p1)38�y1 y1 ≥ 0, . . . , 38; p1 2 [0, 1],

and that y2, the number of successes on the standard treatment, follows a Binomial (32,
p2) density, independently of y1. The likelihood function for (p1, p2) is

L(p1, p2; y1, y2) / py1
1 (1 � p1)38�y1 py2

2 (1 � p2)32�y2 p1, p2 2 [0, 1]2.

To evaluate the new treatment relative to the standard means assessing the magnitude
of the difference between p1 and p2. For various reasons it is convenient to measure this
difference on the log-odds scale, so we define

í1 ≥ log[fp1Û(1 � p1)gÛfp2Û(1 � p2)g]

í2 ≥ logfp2Û(1 � p2)g.

Then we can write

L(í1, í2; y1, y2) / expfí1y1 + í2(y1 + y2) � k(í1, í2)g
which is in a mathematically more attractive form, even if the parametrization is a little
more difficult to interpret. This likelihood function is an example of a likelihood function
for an exponential family model: these models play a special role in parametric inference,
because of their nice mathematical properties. They also provide a reasonably broad class
of models for use in applications.

In fact Efron [8] concerns a set of 41 such tables of data from 41 different published
studies of the new ulcer treatment. This “study of studies” is becoming very important in
medical statistics, where it is variously called “outcomes research” or “meta-analysis”.

Note that í1 measures directly how beneficial the new treatment is, relative to the
standard. The parameter í2 measures the success rate of the standard treatment, and is
not of direct interest in evaluating the new treatment. This splitting of a model’s vector
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parameter into a parameter of interest and a nuisance parameter is a characteristic feature
of most recent work in parametric inference.

2.2. Example 2: Shakespeare. A similar model seemed appropriate for a recent prob-
lem that our statistical consulting service tackled this spring. In this case the data were
obtained from a study of spelling variants in early published volumes of Shakespeare’s
sonnets. After some distillation, we summarized one piece of the data as shown in Ta-
ble 2.

page 1 page 2 page 3 page 4
far 0 4 1 2

farre 2 0 3 1

TABLE 2: Two spelling variants of far used on different
pages in a volume of Shakespeare’s sonnets

Of particular interest in this case was whether the two spelling variants were essen-
tially segregated by page, which would in turn suggest that two different typesetters were
involved in the printing. The model used was an extension from two independent bino-
mials to k(≥ 4), and the question of interest is whether or not the observed data support
the hypothesis p1 ≥ Ð Ð Ð ≥ pk. There were approximately 100 such tables, one for each
pair of spelling variants on about 100 different words. A special feature of this data is
the presence of large numbers of zeroes in the cells of the table.

2.3. Example 3: salaries. The third example is of some (notionally continuous) data
on faculty salaries, carried out as one part of a large university’s pay equity exercise a
few years ago. Figure 1 shows a typical plot of salary vs. years of experience for males
and females, across the university. A possible model for this data is the linear regression
model

yi ≥ ã + å(yearsi) + ç(genderi) + õei, i ≥ 1, . . . n

where yi is the salary of the i-th employee, and ei is a random variable with a density
f0(e) centered at 0. The likelihood function is thus of the form

L(ã,å, ç,õ; y) /
nY

i≥1
õ�1f0

n�
yi � ã � å(yearsi) � ç(genderi)

�õ�1
o
.

Of particular interest is inference about the ‘gender effect’, ç, although this is a substan-
tial abstraction of the real applied problem. In fact the original analysis was carried out
department by department. As well, there are clearly questions about the suitability of a
model linear in years, and the assumption of constant variance.

3. Inference from likelihood. I will now abstract from the previous examples, and
assume that our starting point is a vector of observations y ≥ (y1, . . . yn), a family of
densities ff (y; í); í 2 Θg, and a likelihood function L(í) ≥ L(í; y) / Q

f (yi; í). Much of
parametric inference is devoted to the study of how L(í) can be used to provide ‘good’
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FIGURE 1. Salary plotted against years of experience, by gender. (+: female, .: male)

The two curves are locally determined average salaries as a function of years,

and are not entirely consistent with the linear model suggested in the text.

inference for í, where ‘good’ is an operational concept that needs to be decided on first.
When í takes values on the real line, or even in R2, it is possible to plot L(í) for the
observed data y. Figure 2 shows such a plot for Efron’s ulcer data example, and Figure 3
shows a more informative ‘profile’ curve for the parameter í1 (incorporating an adjust-
ment for the nuisance parameter described at (10)) that measures the improvement of
the new treatment. In fact what is plotted is the log of the (adjusted) profile likelihood
‡(í1) ≥ log L(í1), which is more convenient to analyse theoretically.

There are, broadly speaking, two approaches to inference for í1 from Figure 3: the
frequentist and the Bayesian. The frequentist approach considers the probability distri-
bution of ‡(í) ≥ ‡(í; y) ≥ log L(í), and of summary quantities computed from ‡(í),
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FIGURE 2. A plot of the likelihood function vs. í1 and í2 for the ulcer example.

30

31

32

33

�5 �4 �3 �2 �1

‡a(í1)

í1
FIGURE 3. A plot of the profile log-likelihood function against í1.

under the model f (y; í). For example, defining

í̂ ≥ arg sup
í

‡(í; y), õ̂2 ≥ f�‡00(í̂)g�1

it can be shown as an application of the central limit theorem that

(1) (í̂ � í)Ûõ̂ d! N(0, 1)
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i.e. converges in distribution to a standard normal random variable as n ! 1. This
means, for example, that Prfj(í̂ � íjÛõ̂ � 1. 96g .≥ 0. 95. In our example í̂ ≥ �2. 38
and õ̂ ≥ 0. 75, so the approximate 95% confidence limits for í (i.e. the limits implied by
(1)) are (-3.85, -0.91), corresponding to an interval for the odds ratio of (0.02, 0.40).

An asymptotically equivalent result is that

(2) sign(í̂ � í)[2f‡(í̂)� ‡(í)g]1Û2 d! N(0, 1).

For the ulcer example, an approximate 95% confidence interval based on this result is
(-4.20, -1.22). The two statistics are illustrated graphically in Figure 4. Note that the con-
fidence interval based on (2) can capture the asymmetry of the log-likelihood function,
which suggests that the approximation suggested by (2) is better than is that suggested
by (1), which is indeed the case.

‡(í̂)� ‡(í)

x???????

??????y

 jí̂ � íj !

FIGURE 4. Two summary statistics derived from the log-likelihood function.

The Bayesian approach to inference treats í as a random variable with a density ô(í)
called a “prior” density, as it is assumed to be available before the random variable y is
observed. An application of Bayes theorem2 then gives

(3)
ô(íjy) / L(í; y)ô(í)

≥ L(í; y)ô(í)R
L(í; y)ô(í) dí

and all inference statements are constructed from ô(íjy), which is called the posterior
density for í. Inference statements of the type given third in Section 1 can then be con-
structed from the posterior density. For example, a maximum posterior density interval
can be identified that satisfies

R íUB
íLB

ô(íjy) dí ≥ 0. 90.

2 Pr(BjA) ≥ Pr(AjB) Pr(B)ÛPr(A)
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Which type of inference is better? Statisticians are still not agreed, and the debate be-
tween the two approaches has enlivened our subject for more than 50 years3. Frequentists
take the view that in most applications, particularly in science, í is a fixed but unknown
constant, and not a random variable. Even if it is agreed to model í as a random variable,
there is a substantial question in how to choose a prior density for í that in my view is
not yet solved. The problem is especially acute when í is a high-dimensional parameter.

In the ulcer example, í2 measures the success rate of the standard treatment, and there
might be available sufficient past experience to provide a reasonable assessment of its
distribution, before the experiment in question was carried out. It seems less likely that
it would be feasible to construct a prior distribution for the improvement represented
by the new surgery4. Considerable effort has been expended on constructing priors that
convey ‘ignorance’ or ‘lack of information’ about a parameter. We might for example
assume that p1, the probability of success on the new treatment, followed a uniform
distribution on (0,1), which would seem to favour no particular value of p1 over any
other. This is a highly non-uniform distribution for logfp1Û(1 � p1)g, so any theory of
non-informative priors has to consider issues of parametrization: in particular whether or
not it is a good idea for a prior to be parametrization invariant, and if so how such priors
might be constructed. Sir Harold Jeffreys was a strong proponent of Bayesian inference
with non-informative priors, and his book [15] states this position quite clearly5.

Fisher was adamant in his rejection of the Bayesian method of inference, writing, for
example in 1930:

I know only one case in mathematics of a doctrine which has been accepted and
developed by the most eminent men of their time, and is now perhaps accepted
by men now living, which at the same time has appeared to a succession of sound
writers to be fundamentally false and devoid of foundation.

A discussion of the published exchanges of Fisher and Jeffreys on the topic of Bayesian
vs. non-Bayesian inference is given in Lane [16].

The Bayesian approach provides an axiomatic foundation for statistical inference, and
non-Bayesian attempts to put the theory of statistics on a coherent mathematical foun-
dation have not been very successful. A key foundational result is deFinetti’s theorem,
which in statistical terms states that any exchangeable distribution is obtained from a
mixture, over a probability distribution on the parameter, of a family of parametric mod-
els. A helpful introduction to the Bayesian interpretation of deFinetti’s theorem is Smith
[23]. The so-called subjective Bayesian viewpoint of the foundations of inference has
perhaps its clearest statement in Savage [22]. Subjective Bayesians hold that correct in-
ference proceeds from a prior distribution which is obtained as the investigator’s opinion

3 An excellent introductory account is given in Efron [4].
4 Efron [8] discusses combining the information from the other 40 published studies to estimate the prior for
í1, í2, using a methodology called empirical Bayes.
5 In the case that í is a scalar parameter, and there are no nuisance parameters in the problem, Jeffreys

proposed a parametrization invariant prior that is generally accepted as providing a suitable non-informative
prior. It is ô(í) / i1Û2(í), where i(í) ≥ R �‡00(í; y)f (y; í) dy is called the expected Fisher information.
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about the plausible values of í, which can in theory be obtained by a series of betting
arguments. The fact that two different investigators will have two different inferences
about í is not considered a drawback of the approach, but a natural consequence of the
uncertainty in the problem.

Lindley has been a tireless proponent of (subjective) Bayesian inference throughout
his career. In Lindley [17], from which I took the title of this paper, he wrote

. . . the only good statistics is Bayesian statistics. Bayesian statistics is not just an-
other technique to be added to our repertoire alongside, for example, multivariate
analysis: it is the only method that can produce sound inferences and decisions in
multivariate, or any other branch of, statistics. It is not just another chapter to add
to that elementary text you are writing: it is that text.

Both Fisher’s and Lindley’s remarks are extremely mild expressions of their opinions,
relative to some of the surprisingly acrimonious debate that has been published on this
debate.

In 1986, Efron stated [4] that the “high ground of objectivity has been seized by the
frequentists”: he also commented vis-a-vis objectivity:

“Scientific objectivity” is more than a catch-phrase. Strict objectivity is one of
the crucial factors separating scientific thinking from wishful thinking. Complete
objectivity about one’s own work is a little much to expect from a human being,
even a scientist, but it is not too much to expect from one’s colleagues.

Lindley’s discussion of Efron [7] concluded with the words “Every statistician would
be a Bayesian if he took the trouble to read the literature thoroughly and was honest
enough to admit that he might have been wrong.”

In recent years, I think the high ground of practicality is being seized by the
Bayesians6. As we will see in the next section, the Bayesian approach to inference can
apply with equal ease to problems with or without nuisance parameters. Frequentist the-
ory has more difficulty in deciding how to eliminate nuisance parameters in constructing
an inference statement about a parameter of interest. A fairly usual Bayesian approach in
practice is to use Lebesgue measure priors on at least a large subset of nuisance param-
eters and to assume (or sometimes check) that such a prior does not have a large effect
on the inference.

4. Asymptotic theory. Recent developments in asymptotic theory have provided
some hints on where the frequentist and Bayesian approaches diverge quantitatively, if
not philosophically. Recall from Section 3 that a (relatively crude) approximation to the
distribution of í̂, the maximum likelihood estimator, is that of a normal distribution with
mean í and variance õ̂2, where õ̂2 ≥ j�1(í̂) ≥ f�‡00(í̂)g�1. (In regular problems the
log-likelihood is concave, and has negative second derivative at the maximum, as in
Figures 2 and 3.) This gives the inference statement “í̂ š zãÛ2õ̂ is an approximate 1�ã
6 This is partly due to advances in computing power, a development emphasized in Efron’s [7] predictions

for the next century.
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confidence interval for í”, where zãÛ2 is the upperãÛ2 percentile of the standard normal
distribution. We can also write

(4) f (í̂; í) .≥ 1p
2ôõ̂e�

1
2õ̂2 (í̂�í)2

.

An approximation to the Bayesian posterior given by (3) can be obtained by expanding
‡(í) in a Taylor series about í̂:

(5) L(í) ≥ expf‡(í̂) +
1
2

(í � í̂)2‡00(í̂) + Ð Ð Ðg,

leading to the approximation

(6) ô(íjy)
.≥ 1p

2ôõ̂e�
1

2õ̂2 (í�í̂)2

which has the same form as the approximation derived from the frequentist argument,
and does not depend on the prior. This gives the inference statement “a 1� ã posterior
probability interval for í is í̂ š zãÛ2õ̂”, and this is the same interval as the confidence
interval described above.

Although this asymptotic coincidence may seem reassuring, it is a fairly crude result,
both in order of accuracy (the relative errors in (4) and (6) are O(n�1Û2)) and inferen-
tially. As we have seen, neither interval makes any provision for asymmetry in the log
likelihood function (or the posterior density), which is the most unsatisfactory aspect
from a practical point of view. In addition, (6) in not depending on the prior would not
be considered by Bayesians to be a very satisfying use of the Bayesian methodology.

If we go to the next order of asymptotic theory, the difference between the two ap-
proaches starts to emerge. A second order approximation to the posterior density is avail-
able by using the Taylor series expansion in (3) to approximate the denominator, but
not the numerator. (Approximating the integral using (5) is an application of Laplace’s
method.) The result is

(7) ô(íjy) .≥ 1p
2ôjj(í̂)j1Û2 L(í)

L(í̂)

ô(í)
ô(í̂)

.

A very similar result is available in exponential family distributions by using the sad-
dlepoint approximation to the density of a sample mean. The result is

(8) f (í̂; í) .≥ 1p
2ôjj(í̂)j1Û2 L(í)

L(í̂)
.

The same approximations hold for vector parameters (í1, . . . ík), with the factor
p

2ô
replaced by

p
2ôk

. Both approximations (7) and (8) have relative error O(n�1). The effect
of the prior is clearly isolated in the final factor in (7). If the prior for í is flat near the
maximum value í̂, then the two formulae are the same, although their interpretations are
quite different.
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Asymptotic arguments are even more useful in the case of several nuisance param-
eters. We write the parameter vector as (í,ï), where now í is a vector of parameters
of particular interest (in many applications scalar), and ï is a (possibly large) vector
of nuisance parameters. As mentioned above, the Bayesian method of eliminating nui-
sance parameters is quite straightforward: they are integrated out. From the joint posterior
ô(í,ïjy) ≥ L(í,ï)ô(í,ï)ÛR L(í,ï)ô(í,ï) dí, we compute

ô(íjy) ≥ Z ô(í,ïjy) dï,

which is the ratio of two, possibly high-dimensional, integrals. Another application of
Laplace approximation, this time to the numerator integral over ï, leads to the approxi-
mation

(9)
ô(íjy) ≥ c L(í, ï̂í)

þþþþ�∂2‡(í, ï̂í)
∂ï∂ï0

þþþþ�1Û2
ô(í, ï̂í)

≥ c exp
²
‡(í, ï̂í) � 1

2
log

þþþþ∂
2‡(í, ï̂í)
∂ï∂ï0

þþþþ
¦
ô(í, ï̂í).

As it turns out, frequentist theory, using entirely different arguments related to elimi-
nating nuisance parameters in exponential families by conditioning, leads to an adjusted
log-likelihood for the parameter of interest given by

(10) ‡a(í) ≥ ‡(í, ï̂í) � 1
2

log
þþþþ�∂2‡(í, ï̂í)

∂ï∂ï0
þþþþ

which is exactly the ‘likelihood’ function appearing in (9) for the marginal posterior
density of í. Again the effect of the prior is isolated from the effect of the parameter, and
it is in principle possible to compare inference statements from results (9) and (10) for
various types of priors, particularly flat priors along the curve (í, ï̂í).

The approximation (8) for the density of the maximum likelihood estimator holds
in models more general than the exponential family models, although some additional
concepts need to be added. It is known in the statistical literature as “Barndorff-Nielsen’s
formula” or the “pŁ approximation”, and is reviewed in Reid [20]7.

Expression (10) for the adjusted log-likelihood also can be used in more generally, as
discussed in Cox and Reid [2]. The correspondence between the Bayesian and frequentist
results outlined here are discussed in more detail in Reid [21].

5. Further common ground. The similarities of the expressions in the previous
section are intriguing, but are difficult to translate into a statement about quantitative
or analytical similarities between the inferences8. A different approach to comparing
Bayesian and frequentist inferences from an asymptotic point of view is the theory of

7 In fact the approximation can be improved to relative error O(n�3Û2) by the simple technique of renormal-
izing the approximation so that it integrates to 1 (with respect to í̂).
8 Some progress is made in DiCiccio and Martin [3].
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‘matching priors’. Matching priors are priors for which the resulting posterior probability
intervals have the correct sampling behaviour under the model f (y; í), at least to O(n�1).
In the case that í is a scalar and there are no nuisance parameters, Welch and Peers
[26] showed that the matching prior is given by Jeffreys’ prior described in Section 4.
Matching priors could be argued to be non-informative, in the sense that a frequentist
would presumably be satisfied with the resulting inference statement, even though it was
obtained by Bayesian arguments. On the other hand, many Bayesians do not believe that
this is a compelling argument for using matching priors, and argue that the prior should
reflect all available knowledge about the parameter. Most Bayesians do agree though that
matching priors could be used as a reference point for discussion.

In the case that we have nuisance parameters as well, development of matching pri-
ors is considered by Peers [19], Stein [24] and Tibshirani [25]. Unfortunately in general
matching priors are only determined up to arbitrary functions of the nuisance parameter,
and thus do not provide a guideline for constructing an objective prior for the full param-
eter (í,ï). Recent work has concentrated on adding some reasonable conditions to make
the parameter well-defined, but these conditions are more than ‘matching’, of course.

Another point of contact developed from asymptotics is the use of a shrinking argu-
ment sketched in Stein [24] and in more detail in Bickel and Ghosh [1] and Ghosh [14].
Asymptotic results are established under the joint probability distribution of y and í; for
fixed y this gives the Bayesian asymptotic result, and by letting the prior shrink to a point
mass the frequentist result is obtained from the same argument. This is used to establish
an elegant result related to the distribution of (2) in Bickel and Ghosh [1].

6. Conclusion. The Bayesian/frequentist asymptotic connection is fairly recent,
and although it might lead to a theory of non-informative priors, it might not: the jury is
still out.

The arguments between Bayesians and frequentists have shifted ground somewhat,
from philosophical issues to practical ones. In particular the recent development of tech-
niques of integration in high-dimensional spaces and in particular Markov chain Monte
Carlo methods, have given new impetus to the use of Bayesian methods in complex ap-
plied problems.

More importantly, statistical modelling and inference can be applied in either version
in a very wide variety of applications, and discussions of theoretical statistics help us
to find the common threads in a variety of techniques, and provide a framework for
comparing them.
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