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SOME EXAMPLES OF ONE DIMENSIONAL
GORENSTEIN DOMAINS

KEIICHI WATANABE

Introduction.
In this paper, I will prove the following theorems;

THEOREM 1. For given integers n and m such that m = 2%, there
exist 1-dimensional local domains which are complete intersections and
have embedding dimension n 4+ 1 and multiplicity m.

THEOREM 2. For given integers n and m such that 4 <n<m — 1,
there exist 1-dimensional local domains which are Gorenstein with
multiplicity m and embedding dimension n and which are not complete
intersections.

To give these examples I heavily use the theory of the value-semi-
groups of 1-dimensional local domains by Kunz and Herzog ([11, [3]).

§1. Review of the theory of value-semigroups of 1-dimensional local
domains ([1], [3)).

In the following, a ‘semigroup’ always means an additive subsemi-
group of N, the additive semigroup of non-negative integers.

1) A ‘numerical semigroup’ is a semigroup H which satisfies two
conditions;

1. 0eH

2. There exists an integer ¢ such that any integer » = ¢ is in H.

(2) The conductor of a numerical semigroup H, denoted by c(H),
is the smallest integer ¢ such that all integers n satisfying n = ¢ belong
to H.

(8) We denote by <{n,, ---,n,> the semigroup generated by =, -,
Ny My 0o Ny = {(>2¢%1am;|a; e NY.
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(4 We say that {n,, ---,n;} is the minimal generator system of a
semigroup H if H = {n,, ---,n;> and any proper subset of {nm, ---,n;}
does not generate H. If we suppose that n, <n, < .--- < n,, this is
equivalent to say that n,e (n,, ---,n,_,> for 2<i< k.

When we write H = (n,, - --,n;», we agree that {n,, --.,n;} is the
minimal generator system. Minimal generator system of an arbitrary
subsemigroup of N uniquely exists.

(5) A numerical semigroup H is symmetric if for any integer =,
neHS e —1—negH(c= cH)).

(6) K[H] = K[T"; he HIC KI[T] (K is a field and T is an indeter-
minant). K[H],, the localization of K[H] ‘at the origin’. If H is a
numerical semigroup, the integral closure of K[H] in the quotient field
of K[H] is KI[T].

If H=<n, - --,n;>, then K[H] = K[T™, ..., T™].

(7) We say that a numerical semigroup H is a complete intersec-
tion if the ring K[H] is a complete intersection. When H = {n, - - -, n;),
and if we consider the homomorphism &,: K[X,,.-.,X,] — K[H],
04(X,) = T, H is a complete intersection if and only if Ker (@) is
generated by & — 1 elements.

(8) The multiplicity of H, denoted by m(H) is the least positive
integer in H. If H=<n, --,ny with n, <mn,<--.- <mn, then
m(H) = n,.

(9) The embedding dimension of H, denoted by emb (H), is the
number of the minimal generators of H. If H ={n,--.,n), then
emb(H) = k (recall that {n,, ---,n,} is the minimal generator system).

(10) Let H={n,---,n,»y and he H. If h has different expressions
as linear combinations of n,’s, then we say that & is a relation of H.
For example, if H =(3,4,5), 8=2-4=3+4+5and 9=3-3=4+ 5 are
relations of H.

(11) For a relation 2 in H =<n,  --,n;>, Wwe associate to k a
vector v, € Z* in the following way. If A =>7% amn;, = > %, bm,; then
v, = (@, — b, a, — by, - -+, a; — b,). In the example in (10), v, = (— 1,2,
— 1), and v, =3, — 1, —1). Of course v, is not determined uniquely
by v,. But as it is not important in our following arguments, we
agree to fix one such v,.

(12) For H =<{n,, ---, My, we define;
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Ry, - -+, hy_, are relations in H and
MH) = min {h, + hy 4+ -+ + hy_y|Vp,, -, Vp,_, are linearly
independent in Z*.

For example, if H =<{3,4,5), M(H) =8 + 9 = 117.

Let R be an analytically irreducible 1-dimensional Noetherian local
domain. Then the integral closure V of R in the quotient field of R is
a discrete valuation ring. We assume that B and V has the same
residue class field. (Which is true if R = K[H],,.) If we denote by v
the valuation attached to V, then H, = v(R) is a numerical semigroup
and we have the following propositions.

PrOPOSITION 1. (1) Multiplicity of R = m(Hp).

(2) Embedding dimension of K[H],,, = emb(H),

(B) R is Gorenstein if and only if Hy is symmetric.

(4) If Hy is a complete intersection, then R is a complete inter-
section.

&) If R = K[H],,, then the converse of (4) holds.

ProposITION 2. ([1], Satz 5.10) If H =<n,, ---,n;», then we have
that M(H) — > % .n; + 1 = ¢(H), and the equality holds if and only if
H is a complete intersection.

§2. Examples of 1-dimensional local domains which are complete inter-
sections and have given embedding dimension and multiplicity.

LEMMA 1. Let H, = {n, ---, M, & and b be positive integers such
that ;

(i) acH, and a£=n,(G=1,..--,k).

(i) a and b are relatively prime.
Then, if we put H = <{a,bn,, ---, bn,> (which we will denote by H =
{a,bH)>), we have;

(1) H is a complete intersection if and only if H, is a complete
intersection.

(2 H 1is symmetric if and only if H, is symmetric.

Proof. We consider the canonical homomorphisms @,: K[Y,, - -+, Y,]
— K[H,] and 9: K[Y,, .--,Y,,X] — K[H] defined by &Y, = T",d(X) =
T°,0(Y) =Tt =1,2,---,k). We put Ker(®,) = A4, and A = (4,, X?
— YaY¢. .. Y%) where e, ---,e, are defined by a = >k e;n; (we fix one
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such expression). We claim Ker (@) = A. Ker (@) D A is obvious. Con-
versely, if f(X,Y,---,Y,)eKer(®), we can find f(Y), --,f,_.(Y)e
K[Y,,---,Y;] such that f=f + Xf, + .-+ + X°7'f,_, (mod 4). Hence
O(f) e K[T?]. As (XY = T* and (a,b) =1, it follows from &(f) = 0,
that @(f,) =0, ie. feKer (@) =4, ¢=1,.-.-,b —1).

Now, we have K[H] = K[H,1{X]/(g), where 9(X,Y) = X* — Y¢... Y%,
Thus we have; K[H] is a complete intersection (resp. Gorenstein)
& K[H|1[X] is a complete intersection (resp. Gorenstein) & K[H,] is a
complete intersection (resp. Gorenstein). By Proposition 1 we are done.

By Lemma 1, we have semigroups which are complete intersections
and have arbitrarily high embedding dimensions. When embedding
dimension is < 8, the converse holds.

ProposITION 3. If H is a semigroup which is a complete intersec-
tion and if emb(H) = 3, then H = {a,bH,> where H, is a semigroup of
emb(H,)) = 2 (which s necessarily o complete intersection) and a and b
are integers satisfying the conditions of Lemma 1.

(This proposition is proved by Herzog [2]. But as his proof is con-
siderably long, I give a shorter proof.)
To prove the proposition, we need a lemma.

LEMMA 2. Let H =<{n, ---,n,> be a semigroup which is a complete
intersection, @y: K[X,, ---,X;] — K[H] be the canonical homomorphism
and (fy, «++, fr_) the gemerators of Ker (@y). If we denote by J, the
ideal generated by p variables X, ---,X;, then there exists at most
p» — 1 f’s which belong to J,.

COROLLARY. For every variable X; (1 £ j £ k), one of the f's in-
cludes a monomial of the type X5.

Proof of Lemma 2. We consider the ideal A = (J,, fi, -+, fx-1). If
Jie s fp €dp (for simplicity, we renumber f;’s), then A = (J,, fpi1s+**s Jr-1)
and A is generated by & — 1 elements and A#t(4) must be < k — 1. But
on the other hand, dim (K[H]) =1 and &4(J,) # 0. So, we must have
ht(A) = k. Contradiction!

The corollary is a special case of the lemma when p =k — 1.

Proof of Proposition 8. Let H = {(n,, n,, ny, 95 K[X,, X,, X,] — K[H],
Ker () = (f,f). By the definition of @y, each f; is of the form
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(monomial)-(monomial). Then, by the corollary of Lemma 2, after
renumbering X,’s and f;’s, we may assume, f, = X? — Xp,f, = X? —
X;X{. As (f1,f) is a prime ideal of height 2, f, and f, must be irre-
ducible and we have (m,n) = 1,n-n, = m-n,, bn, = en, + fn,., We put
H =<{m,ny, n, =a, n,=dm, n,=dn. Then ab = d(em + fn). From
(n, ny,yny) =1, we have (a,d) =1 and b = db’. We claim that d = b and
a=-em + fn. Let us assume d = b,b’ = 1. If as H,, take an integer
s such that sa € H, and s is not a multiple of b’. Then, writing sa =
em + f'n, g = Xi® — X¢ X" cKer (@5). But it is easy to assure that
9 & (f1, /). This contradicts the fact that (fi,f,) = Ker (@,). If acH,,
o =éem+ f'n, then X{ — X¢' X/ ¢ Ker (@5). From Ker (95) = (i, f,), we
get d = D.

Remark 1. Proposition 3 is not true if emb(H) = 4. For example,
If we put H = {14,21,15,20», H is a complete intersection with ¢(H) =
68, Ker (95) = (X8 — X2, X, X, — X.X,, X% — X?) and clearly H can not be
written in the form H = {a,bH,).

Remark 2. By Proposition 3, we can determine the types of H’s
which are complete intersections and emb(H) < 3. For example, if
emb(H) =3 and m(H) = 5 and if H is a complete intersection, (this is
equivalent to say that H is symmetric, in this case) then H = {5, 2p, 3p>,
p=3, (p,5 =1

LEMMA 8. Let a be an odd integer. Then the semigroup H =
a2m, 2" + a,2" + 2a, - - -, 2" 4+ 2%, - -+, 2" + 2" 'a) s @ complete intersection
for n = 1.

Proof. Easy by induction and applying Lemma 1.

THEOREM 1. Let m and n be given positive integers such that
m = 2*. Then there exists a 1-dimensional local domain R which is a
complete intersection with embedding dimension n + 1 and multiplicity m.

Proof. We find a semigroup H which is a complete intersection and
m(H) = m, emb(H) = n + 1.

(i) If m is odd, we put m = 2" + a. Then, by Lemma 3, H, =
2r-y 2nt + @, ---, 2770 4 27725 is a complete intersection and m e H,.
If we take an integer b, such that (b,m) =1 and 2*"'b = m, then H =
{m,bH,) is the desired semigroup.
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(ii) If m is even, using induction on », we may assume that there
exists a semigroup H, which is a complete intersection and m(H,) = m/2,
emb(H,) = n. Then, if we take an odd integer a € H, such that a > m
and ¢ is not a generator of H,,H = <{a,2H,» is the desired semigroup

by Lemma 1.

Remark. If (R,M) is a regular local ring and if (x,---,2,) is a
regular sequence of R contained in M? then the multiplicity of
R/(x,, ---,2,) is at least 2. So the condition m = 2" is necessary.

§3. Examples of 1-dimensional Gorenstein local domains which are not
complete intersections.

LEMMA 4. Let m and n be positive integers such that m —1=n
> 4. If there exist integers a,b, e such that

(i) a,b =0 and e > 0,

(ii) if b > 0, then e is even,

(i) ea + (e/2)b + 2=m (f e is odd, then b = 0),

(iv) n=a+ b+ 1.
Then there exists a symmetric semigroup H with m(H) = m and emb(H)
=mn and H is not a complete intersection. Actually,

H=mm+1,---,m+a,2m —5b,2m —b+1,.--,2m — 1> .

Proof. We have c(H) = e(m + a) + 2. It is easy to see that H is
symmetric. To prove that H is not a complete intersection, we restrict
ourselves to the case @ > 0. (The case a =0 can be proved similarly.
But as the case a = 0 is not used later, we omit the proof.) We give
two different proofs, the first one using Proposition 2 and the second
one using Lemma 2,

First proof. We compute M(H). In the notation of §1, (12), we
have;

h=2m+2=m+ (m+2)=2m+ 1)

hy=2m+3=m+(m+3)=m+1) + (m+ 2

hoy=2m+a=m+m+a)=m+1) +@m+a—1)

he=83m —-b+1l=m+Cm—->b+1)=m+1)+ 2m —0>)

hoyy=8m —b+2=m+Cm—-b+2)=m+1D+Cm—>b+1

.....................................

https://doi.org/10.1017/50027763000015312 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000015312

GORENSTEIN DOMAINS 107

Rorpoy=3m=(m+1) + @2m — 1)
hoo =cH) +m —b=(e/2 + D(@2m — b) .

MH) — > 1 +1—cH) =mb+ m@—2) =m-—3m>0. By Prop-
osition 2, H is not a complete intersection.

Second proof. We consider the canonical homomorphism &, : K[X,,
Xy ooy Xy Xorts 05 Xoyy] — K[H], defined by 90,(X,) = T (0 <1 < a),
OyXy) =Tm o0 ig+1<j7<a+b). We assume that Ker (@) is
generated by a + b elements and lead to a contradiction. By the defini-
tion of @y, it is clear that f, = X, X, — X3, f, = X X, — X X,, -+, fur =
XoXa. - X1Xa_1rfa = XoXa+2 - XlXa+1’ o ':fa+b-1 = X1X4+b - Xg are a + b
— 1 members of minimal generators of Ker (@). As Ker (@) is generated
by fi, -+, fars-1 and one more polynomial g, and as ¢ can include at
most 2 monomials of the form X:, we have ¢« + b + 1 < 4. It remains
to show that @ + & + 1 = 4 does not ocecur. If ¢ =1,b =2, then f, =
XX, — XX, and f, = X, X; — X}. So it is impossible to find f, satisfying
the condition of the corollary of Lemma 2. If a =2, b =1, then f, =
XX, — X} and f, = X, X, — X3. But in this case, f,, f, e (X,, X)) and this
contradicts Lemma 2 (p =2). If ¢« =3,06=0,f, = XX, — X? and f, =
XX, — XX, and it is impossible to find f, satisfying the condition of
the corollary of Lemma 2. This concludes the proof of Lemma 4.

LEMMA 5. If m —1=n=m/2, there exist a,b and e satisfying
the conditions of Lemma 4. Furthermore, we can take o > 0.

Proof. Pute=2,b=2n—m,a=m —n—1if n+m —1. When
n=m-—1, wepute=1,b=0,a=n—1=m — 2,

LEMMA 6. If m = 5, there exists a symmetric semigroup H, which
18 not a complete intersection and with m(H) = m, emb(H) = 4.

Proof. Case I m =1 (mod4). Writing m = 4m’ + 1, we put
H=m,m+1,m+ 2,m'(m + 2) +1>.
Then H is symmetric with;
c¢(H) =2m'm , MH) =h, + h, + hy ,
where

h=2m+2=2m+1D)=m+ (m+ 2)
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hy=m(m+2)+1) +m=m(m+2) +(m+1)
hy=cH) +m=0Cm +1Dm=m'(m + 2) + 1) + m'(m + 2) .

MH) —m—-m+1D)—-—m+2) —(mm+2)+1)+1—cH =m >0,
H is not a complete intersection.

Case II m =2 (mod4). In the Lemma 4, put a =1, b =2, ¢ =
{m — 2)/2.

Case III m =3 (mod4). We put

H={m,m+ 1,2m + 3,2m + 4) .
Then H is symmetric with;

o(H) =ﬂ”‘2ﬂ, M@H) = hy + hy + by
where

h=3m+3=3m+1)=m+ @2m + 3)
h,=3m+4=(m+1+@m+3)=m+ 2m + 9

hy = o(H) + m = (2m + 3) + m4_3(2m+4)= m;3m.

MH —m—-—m+1) —2m+3)—Cm+4) +1—c(H)=m>0. Hence
H is not a complete intersection.
Case IV m =0 (mod4). We put
_(m —Hm + 1) _(m—2)(m + 1)

H=<m,m+1,n3_ A +1,m, = ; +2>.

'Then H is symmetric with;
c(H) = m(m — 3), MH)=h,+ h, + h,,
where

h1=m+n3=(m+1)m_2

hy=m+n,=2(m + 1) + n,
hy=cH) + m=m(m —2) =n, + n, .

MH) —m—-—m+1) —n,—n,+1—cH) =m>0. Hence H is not a
complete intersection.
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THEOREM 2. For given positive integers m and n, such that m —
1=n =4, there exists 1-dimensional local domain R which is Gorenstein
with emb(R) = n,m(R) = m and which is not a complete intersection.

Proof. It suffices to find a symmetric semigroup H with emb(H)
=mn and m(H) = m and which is not a complete intersection.

(i) It is done for n = 4 by Lemma 6.

(ii) If n = m/2, this is true by Lemma 5.

i If m/2znz=4, let H,=<{n,n+1,---,2n — 2>. By Lemma
4, H, is symmetric with c¢(H,) = 2n and emb(H,) = n — 1 which is not
a complete intersection and m e H,. If we choose an integer b so that
(b,m) =1 and bn > m, then H = (m,bH,> is the desired example by
Lemma 1.

Remark. The condition m — 1 = n = 4 is necessary. If n = m, we
can choose re R such that m = m(R) = length (R/xR). But as length
(R/xR) =z emb(R) = n, the only possibility is the case when m =
length (R/zR) = emb(R). But in this case the principal ideal xR can not
be irreducible and R is not Gorenstein.

If n = 3, then it is known by Serre that if R is Gorenstein, then
R is a complete intersection.
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