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A BRICK VERSION OF A THEOREM OF AUSLANDER

FRANCESCO SENTIERI

Abstract. We prove that a finite-dimensional algebra Λ is τ -tilting finite if

and only if all the bricks over Λ are finitely generated. This is obtained as

a consequence of the existence of proper locally maximal torsion classes for

τ -tilting infinite algebras.

§1. Introduction

The representation theory of a finite-dimensional algebra Λ aims to understand the

category of finitely generated Λ-modules. A fundamental step in achieving a complete

understanding is the investigation of the indecomposable finite-dimensional modules:

these are the building blocks of the category.

Some algebras have only a finite number of indecomposables, up to isomorphism. These

representation-finite algebras are the best understood: powerful techniques were developed

to distinguish representation-finite algebras from representation-infinite ones and several

equivalent characterizations of this property were obtained.

On the other hand, representation-infinite algebras exhibit in most cases a wild behavior,

to the point where an explicit classification of all the indecomposables seems out of reach.

Nonetheless, these more complex module categories have many interesting characteristics

and there are many valid approaches to their study.

A useful tool is the idea of torsion pairs, introduced by Dickson in 1966 as a generalization

of torsion abelian groups to arbitrary abelian categories. Torsion pairs give a way to break

a complex category into two smaller pieces, a torsion and a torsion-free class, from which

the whole can be recovered.

Therefore, understanding the set of torsion pairs in the category of finite-dimensional

modules would be an important step toward a more complete understanding of

representation-infinite algebras.

Among the torsion pairs in the category of finite-dimensional modules, we find the

functorially finite pairs, which are generated, in a suitable sense, by a single module, known

as a support τ -tilting module.

The concept of τ -tilting module was introduced by Adachi, Iyama, and Reiten [1] to

complete, with respect to mutation, the classical theory of tilting modules.

In their foundational work, they established a bijection between functorially finite torsion

classes and support τ -tilting modules.

Demonet, Iyama, and Jasso introduced in [14] τ -tilting finite algebras: these are finite-

dimensional algebras which admit a finite number of basic τ -tilting modules up to

isomorphism.
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In the cited work, they obtained a connection between bricks, that is, modules whose

endomorphism ring is a division ring, torsion classes, and τ -tilting modules.

In particular, they proved that a finite-dimensional algebra is τ -tilting finite if and only

if it has a finite number of finitely generated bricks up to isomorphism.

This result suggested a strong analogy between representation-finite algebras and

τ -tilting finite algebras, leading to new versions of classical results, where the role of

indecomposable modules in the representation-finite case is now played by bricks.

As an example, in [27], Schroll and Treffinger prove the analogue of the first Brauer–

Thrall conjecture in this brick setting: for every τ -tilting infinite algebra, we can find a

succession of bricks {Bn}n∈N such that dimBN ≥ n.

The analogue of the second Brauer–Thrall conjecture claiming the existence of an infinite

collection of Hom-orthogonal bricks for every τ -tilting infinite algebras is still wide open.

Following this line, the aim of this paper is to prove a brick version of the following

classical result of Auslander.

Theorem 1.1 [7]. An Artin algebra Λ is representation-finite if and only if every

indecomposable module is finitely generated.

To obtain this, we exploit the concept of torsion-free, almost torsion module, introduced

by Herzog in [19] and recently reintroduced by Barnard, Carrol, and Zhu [8] in the finite-

dimensional setting.

These modules play an important role within the study of the lattice structure of the

set of torsion classes in the category of finitely generated modules over a finite-dimensional

algebra. In [15], we find a detailed study of this lattice theoretical properties.

We start in §2 with a quick reminder about τ -tilting theory, silting theory, and

definable classes. We also recall a bijection, essentially due to Crawley–Boevey, between

torsion-free classes in the category of finitely generated modules over a Noetherian ring and

definable torsion-free classes in the large module category.

Section 3 contains a discussion of the concept of torsion-free, almost torsion module,

with the new result that torsion-free, almost torsion modules determine definable torsion-

free classes.

In §4, we observe that, for a non-τ -tilting finite algebra, we can always find a non-

functorially finite torsion class which is locally maximal (i.e., without any element covering

it in the lattice of torsion classes).

We use this last observation to give the proof of the following brick version of the theorem

of Auslander.

Theorem 1.2. A finite-dimensional algebra Λ is τ -tilting finite if and only if every

brick over Λ is finitely generated.

1.1 Notation

All the subcategories we consider are assumed to be full. We do not distinguish a

collection of objects in a category from the corresponding full subcategory.

R denotes an arbitrary ring (with unit), Λ a finite-dimensional algebra over some field k.

We denote by R-Mod (resp. R-mod) the category of (finitely presented) left R modules.

For a Grothendieck category G, we denote by D(G) the derived category of G. We also

write D(R) instead of D(R-Mod).
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90 F. SENTIERI

For a subclass C ⊆ R-Mod, the symbol T(C) (resp. F(C)) denotes the smallest torsion

(resp. torsion-free) class in R-Mod containing C.
If C = {M}, we write simply T(M) and F(M).

We use T̃ (resp. F̃) in the same way when referring to torsion pairs in R-mod.

Tors(R) (resp. tors(R)) is the class of torsion classes in R-Mod (resp. R-mod).

For a class S ⊆ R-Mod, Gen(S) is the subcategory of modules isomorphic to quotients

of arbitrary (set-indexed) direct sums of objects in S.
Let I ⊂ N denote by M⊥I the class of modules N with Exti(M,N) = 0, for all i ∈ I. In

case the set I = {i}, we write M⊥i .

§2. Preliminaries

We assume that the reader is familiar with the concept of torsion pair. A comprehensive

account can be found in many textbooks, for instance, [9].

2.1 τ -tilting finite algebras

We recall in this section the definition of a τ -tilting module by Adachi, Iyama, and

Reiten [1] and the related concept of τ -tilting finiteness, together with some characteriza-

tions given in [5], [14].

Definition 2.1. Let Λ be a finite-dimensional algebra over a field k. Denote by τ the

Auslander–Reiten translation.

M ∈ Λ-mod is τ -tilting if:

(τ1) Hom(M,τM) = 0;

(τ2) The number of nonisomorphic indecomposable summands ofM is equal to the number

of isoclasses of simple Λ-modules.

Given two τ -tilting modulesM1 andM2, we say that M1 is equivalent toM2 if their additive

closures in Λ-mod coincide, add(M1) = add(M2).

A module M is support τ -tilting if there exists some idempotent e ∈ Λ, such that M is a

τ -tilting Λ/〈e〉-module.

Definition 2.2. A finite-dimensional algebra Λ is τ -tilting finite if there are only

finitely many basic τ -tilting Λ-modules up to isomorphism.

Definition 2.3. A Λ-module B is a brick if its endomorphism ring is a skew field.

Definition 2.4. Let s be a subcategory of Λ-mod, M ∈Λ-mod. A morphism r : S →M

is a right s-approximation if S ∈ s and for every f : S′ →M with S′ ∈ s there exists a map

f̄ : S′ → S such that f = r ◦ f̄ . Dually, we can define a left s-approximation.

A subcategory s of Λ-mod is functorially finite if every module admits a left and right

s-approximation.

Theorem 2.5 ([14, Ths. 3.8 and 4.2]). The following conditions are equivalent for a

finite-dimensional algebra Λ:

(TF1) Λ is τ -tilting finite.

(TF2) tors(Λ) is finite.

(TF3) All torsion classes in Λ-mod are functorially finite.

(TF4) There are only finitely many isoclasses of bricks in Λ-mod.
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For the next characterization, we recall the concept of silting module, introduced in [4].

Definition 2.6. Let R be a ring.

Let σ be a homomorphism in Proj(R), the subcategory of R-Mod whose objects are the

projective modules. We define the class

Dσ := {M ∈ Λ-Mod | Hom(σ, M) is surjective}.

A module M ∈ R-Mod is called silting if there exists a projective presentation P
σ−→ Q→

M → 0 such that Gen(M) =Dσ. Notice that in this case Dσ is a torsion class in R-Mod.

Two silting modules are said to be equivalent if they generate the same torsion class.

Proposition 2.7 [4, Prop. 3.16]. A module M over a finite-dimensional algebra is

support τ -tilting if and only if it is a finite-dimensional silting module.

Theorem 2.8 [5, Th. 4.8]. Let Λ be a finite-dimensional algebra. TFAE:

(i) Λ is τ -tilting finite.

(ii) For every T ∈ Tors(Λ), there is a finite-dimensional silting module S, with

T =Gen(S).

(iii) Every silting module is finite-dimensional up to equivalence.

There are dual notions of cosilting and τ−-tilting modules, with dual properties linked

to torsion-free classes. See [3] for details and additional results about cosilting modules.

2.2 Definable torsion and torsion-free classes

We collect some well-known facts about definable classes and purity. A comprehensive

reference can be found in [24].

Definition 2.9. A short exact sequence 0→ L→M →N → 0 in R-Mod is pure if for

every U ∈R-mod the sequence

0 Hom(U,L) Hom(U,M) Hom(U,N) 0

is an exact sequence of abelian groups. In this case, we say that L is a pure submodule of M .

Definition 2.10. Let D ⊆ R-Mod. We say that D is definable if it is closed under

products, pure submodules, and direct limits.

Remark 2.11. Notice that a torsion-free class in R-Mod is definable if and only if it is

closed under direct limits, as closure under products and (pure) submodules is granted.

For finite-dimensional algebras, we have the following.

Proposition 2.12 [12, Sec. 2.2]. A short exact sequence 0 → L → M → N → 0 in

Λ-Mod is pure if for every U ∈ Λ-mod the sequence

0 Hom(N,U) Hom(M,U) Hom(L,U) 0

is an exact sequence of abelian groups.

Examples 2.13. (1) Let M ∈ R-mod. Then the torsion-free class M⊥0 is a definable

subcategory of R-Mod.

(1’) Let M ∈Λ-mod. Then, as shown in [13, Exam. 2.3], the torsion class ⊥0M is a definable

subcategory of Λ-Mod.
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(2) Given a set-indexed family of definable classes {Di}i∈I , the intersection D =
⋂

i∈IDi

is a definable class.

We are concerned with definable torsion classes and definable torsion-free classes.

For definable torsion-free classes, we have a result valid for any Noetherian ring, using

[11, Sec. 4.4]:

Theorem 2.14. Let R be a Noetherian ring. There is a bijection between torsion pairs

in R-mod and torsion pairs in R-Mod with definable torsion-free class.

This bijection associates to a torsion pair (t, f) in R-mod the limit closure (T :=

lim−→t, F := lim−→ f). In this setting, T can also be described as Gen(t) and F as the

perpendicular class t⊥0.

The inverse of this map sends a torsion pair (T ,F) to its restriction (T ∩R-mod,

F ∩R-mod).

A dual version of this bijection holds true in the setting of finite-dimensional algebras as

a direct consequence of the following observation [12, Sec. 2.2].

Lemma 2.15. Let M ∈Λ-Mod. Then M is a pure submodule of the product of its finite-

dimensional quotients.

Proof. Let S be a chosen set of representatives of all the isomorphism classes of

finite-dimensional Λ-modules. Let M :=
∏

S∈S
∏

f∈Hom(M,S) Im(f) and consider the map

f : M → M obtained through the universal property of products. Then, by construction,

every map from M to a finite-dimensional module must factor through f .

In particular, the map f is injective: we have some set I such that there exists an

embedding g :M → (DΛ)I ; therefore, if f(m) = 0 for some m ∈M , then gi(m) = 0 for all

i ∈ I, which means m= 0.

Using Proposition 2.12, we can conclude that f is a pure monomorphism.

Theorem 2.16. Let Λ be a finite-dimensional algebra over a field k. There is a bijection

between torsion pairs in Λ-mod and torsion pairs in Λ-Mod with definable torsion class.

This bijection associates to a torsion pair (t, f) in Λ-mod the torsion pair cogenerated

by f(T := ⊥0f , F := (⊥0f)⊥0). In this setting, T can also be described as PureCogen(t), the

class of modules obtained as pure submodules of arbitrary direct products of modules in t.

The inverse of this map sends a torsion pair (T ,F) to its restriction (T ∩ Λ-mod,

F ∩Λ-mod).

Proof. We prove that the restriction map is bijective, with inverse as above.

Let (T ,F) be a torsion pair in Λ-Mod with definable torsion class. Let (t, f) be the

corresponding restriction.

We want to show that T = ⊥0f . The inclusion T ⊆ ⊥0f is immediate.

For the opposite one, letM ∈⊥0f . By Lemma 2.15,M can be obtained as a pure subobject

of a direct product of finitely generated objects in ⊥0f which are exactly the modules in t.

Whence M is a pure submodule of a product of objects in T , so that by definability it

follows that M ∈ T .

This proves the injectivity of the restriction map. Surjectivity follows form the fact that

for any torsion pair (t, f) in Λ-mod, the torsion pair (⊥0f ,F(f)) is an extension to Λ-Mod

with definable torsion class.
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Since we have a continuous interplay between torsion pairs in the small and in the large

module categories, we fix the following terminology, for a left Noetherian ring R.

Definition 2.17. Let (T ,F) be a torsion pair in R-Mod, and let (t, f) be a torsion

pair in R-mod. Then (T ,F) extends (t, f) if t = T ∩R-mod and f = F ∩R-mod. We also

say that (T ,F) restricts to (t, f).

Example 2.18. For any torsion pair (t, f) in R-mod, we have the following two, not

necessarily distinct, extensions to R-Mod:

(S) The extension with the largest torsion class (⊥0f ,F(f)).

(C) The extension with the largest torsion-free class (T(t),t⊥0).

Over a left Noetherian ring R, definable torsion classes in R-Mod are parametrized by

silting modules [3, Cor. 3.8].

Moreover, definable torsion-free classes over an arbitrary ring are parametrized by

cosilting modules (see [10], [30]).

In the following sections, we always work with left Noetherian rings; therefore, we write

T ∈ Silt(R) (resp. F ∈Cosilt(R)) to indicate that T is a definable torsion class (resp. F
is a definable torsion-free class) in R-Mod.

§3. Torsion-free, almost torsion modules

The concept of torsion-free, almost torsion modules was already being used by Herzog

in 2009, as a tool for studying critical summands of cotilting modules.

More recently, Barnard, Carroll, and Zhu introduced the related concept of minimal

extending modules in their work on the lattice of torsion classes of the category Λ-mod.

In this section, R is a left Noetherian ring.

Definition 3.1 [8], [19]. Let (T ,F) be a torsion pair in R-Mod (resp. in R-mod). Let

B �= 0 be a (finitely generated) R-module. We say that B is torsion-free, almost torsion

(resp. minimal extending) if:

(1) B ∈ F .

(2) Every proper quotient of B is contained in T .

(3) For every short exact sequence 0→B → F →M → 0, if F ∈ F , then M ∈ F .

Condition (2) is equivalent to:

(2’) For any F ∈ F , any nonzero morphism B → F is a monomorphism

Moreover, assuming conditions (1) and (2), we have the following reformulation of (3):

(3’) For every nonsplit short exact sequence 0→B →M → T → 0, if T ∈ T , then M ∈ T .

Dually, we can define torsion, almost torsion-free (and minimal co-extending) modules.

Remark 3.2. Modules satisfying conditions (1) and (2) in the definition above are

precisely the simple torsion-free objects used in Enomoto’s study of torsion-free classes [16].

Lemma 3.3. For a module satisfying (1) and (2), condition (3) is equivalent to

condition (3’).

Proof. Fix a module B �= 0 satisfying (1) and (2) with respect to some torsion pair

(T ,F).
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94 F. SENTIERI

“(3) =⇒ (3′)” : Assume that B satisfies condition (3). Consider a short exact sequence

0→B →M → T → 0, with T torsion.

Take the canonical short exact sequence given by the torsion pair

0→ tM →M →M/tM → 0

with tM torsion, M/tM torsion-free.

Since B satisfies (2), the map g : B →M →M/tM is zero or injective. Assume that it

is zero. Then we have the following commutative diagram, by the snake lemma and the

universal property of the kernel:

0 B tM tM/B 0

0 B M T 0

0 M/tM M ′ 0∼

Since T is torsion, the map T →M ′ must be zero; therefore, M/tM = 0 and M is torsion.

Assume now that g is injective. Consider the following commutative diagram:

0 0 tM T ′ 0

0 B M T 0

0 B M/tM M ′ 0

∼

By (3), the module M ′ is both torsion and torsion-free; therefore, M ′ = 0 and the sequence

0→B →M → T → 0 is split. In conclusion, B satisfies (3’).

“(3′) =⇒ (3)” : Assume now that B satisfies (3’). Take a short exact sequence 0→B →
F →M → 0, with F torsion-free. Consider the torsion, torsion-free sequence for M as above

and take the pullback to obtain the commutative diagram:

0 B M ′ tM 0

0 B F M 0

Since M ′ is a submodule of F , it is torsion-free. Now, applying the contrapositive of (3’), it

follows that the sequence 0→B →M ′ → tM → 0 splits, whence tM = 0 and M is torsion-

free.

3.1 Simples in the heart

Torsion-free, almost torsion modules for any torsion pair (T ,F) enjoy several orthogo-

nality properties: these follow at once from their characterization as simple objects in a

suitable abelian subcategory of D(R).

This subcategory is the heart of the t-structure obtained from (T ,F) by the Happel–

Reiten–Smalø construction [18, I.2], which we recall below.
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For a classical reference on derived categories and t-structures, see [17].

Definition 3.4. Let T be a triangulated category with shift functor Σ. A t-structure

in T consists of a pair (U ,V) of full subcategories closed under isomorphism such that:

(i) HomT (U,V ) = 0 for all U ∈ U , V ∈ V .
(ii) ΣU ⊆ U .
(iii) For every object T ∈ T , there exists a triangle:

U → T → V → ΣU

with U ∈ U and V ∈ V .

Proposition 3.5 [18, I.2]. Let t= (T ,F) be a torsion pair in a Grothendieck category G.
The classes

D≤−1
t =

{
X• ∈ D(G) | H0(X•) ∈ T , Hi(X•) = 0, for all i > 0

}
,

D≥0
t =

{
X• ∈ D(G) | H0(X•) ∈ F , Hi(X•) = 0, for all i < 0

}
form a t-structure (D≤−1

t ,D≥0
t ) in D(G). We denote the corresponding heart by

Ht =D≤−1
t [−1]∩D≥0

t .

The t-structure obtained by choosing the trivial torsion pair (0,G) is the standard

t-structure (D≤−1,D≥0) with heart G.

Remark 3.6. Recall that the heart of a t-structure is always an abelian category.

(An accessible proof can be found in [20, Sec. 1.2].)

Moreover, the torsion pair t = (T ,F) in the category R-Mod induces a torsion pair

(F ,T [−1]) in the corresponding heart Ht.

In fact, Hom(F ,T [−1]) = 0, as modules do not have any extension in negative degrees,

and for every object H of the heart, we can construct an approximation triangle in D(R)

with respect to the standard t-structure (D≤−1,D≥0). This induces a short exact sequence

0→H0(H)→H →H1(H)[−1]→ 0

with H0(H) ∈ F and H1(H) ∈ T as required.

Theorem 3.7 [2]. Let t= (T ,F) be a torsion pair in R-Mod. The simple objects in the

HRS-heart Ht are precisely the objects S of the form S = F with F torsion-free, almost

torsion, or S = T [−1] with T torsion, almost torsion-free.

For a proof of the result above, see [25, Th. 2.3.6].

Corollary 3.8. The collection of torsion-free, almost torsion objects for any torsion

pair in R-Mod is a semibrick, that is, a set of pairwise orthogonal modules whose

endomorphism ring is a division ring. The same holds for torsion, almost torsion-free

modules.

We may also obtain some further orthogonality properties of torsion-free, almost torsion

and torsion, almost torsion-free modules.

Corollary 3.9. Let (T ,F) be a torsion pair in R-Mod. Let S be the collection of all

the torsion, almost torsion-free modules with respect to this pair.

Then any torsion-free, almost torsion module is contained in S⊥1 ∩F .
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We end this section by recalling the following result of Parra and Saoŕın [21], [22] which

we will use later.

Theorem 3.10. Let G be a Grothendieck category, and let (T ,F) be a torsion pair in G.
Then the heart associated with the HRS-tilt at (T ,F) is Grothendieck if and only if F is

definable.

3.2 The small and the large ones

Since the definition of minimal extending modules for a torsion pair in R-mod is identical

to the definition of torsion-free, almost torsion modules for torsion pairs in R-Mod, we

rightfully expect to have a relation between the two notions.

This is indeed the case:

Proposition 3.11. Let R be a left Noetherian ring. Let (t, f) be a torsion pair in R-

mod, and let (T = lim−→t,F = lim−→ f) be the corresponding torsion pair in R-Mod with definable

torsion-free class (with respect to the bijection in Theorem 2.14).

Then the minimal extending modules with respect to (t, f) are precisely the finitely

generated torsion-free, almost torsion modules for (T ,F).

Moreover, all torsion, almost torsion-free modules for (T ,F) are finitely generated and

coincide with the minimal co-extending modules for (t, f).

We need the following lemma in the proof.

Lemma 3.12. Let (T ,F) be a torsion pair with F ∈ Cosilt(R). Then all the torsion,

almost torsion-free modules are finitely generated.

Over a finite-dimensional algebra Λ, we can say dually that for a torsion class in Silt(Λ)

all torsion-free, almost torsion modules are finite-dimensional.

Proof. By Theorem 2.14, the torsion pair can be written as (Gen(t),t⊥0) with t torsion

class in R-mod.

Assume that T is torsion, almost torsion-free and T �∈R-mod. By assumption, all proper

submodules of T , in particular all possible images of morphisms from a finitely generated

module, must be torsion-free, whence T ∈ t⊥0 . This yields a contradiction.

For the second case, proceed dually using Theorem 2.16.

Now, we can prove the proposition.

Proof. It is clear that the finitely generated torsion-free, almost torsion modules for

(T ,F) are minimal extending for (t, f) .

So suppose that S is minimal extending. We have immediately S ∈ F and that all its

proper quotients are in t, so in particular in T .

The only condition that we have to check is the last one: consider a short exact sequence

0 S F M 0
f
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with F ∈ F . Recall that F = t⊥0 . Hence, suppose that we have a map T →M with T ∈ t

which we may assume, without loss of generality, to be injective; taking the pullback, we

obtain the commutative diagram:

0 S P T 0

0 S F M 0
f

whose first row is in R-mod. Applying the minimal extending property (3’) of S to 0 →
S → P → T → 0, we obtain that either P is torsion or the sequence splits. Since P is a

submodule of F , it must be torsion-free, so the sequence splits, and T = 0, proving that

M ∈ t⊥0 .

The proof of the second statement is more involved, as the available description of T is

less practical to work with.

We need to check that every minimal co-extending module is torsion, almost torsion-free.

Let S be minimal co-extending. By definition, S ∈ t⊆ T .

The second property is immediately verified, as every proper submodule of S is an element

of f ⊆F .

For the third property, consider a short exact sequence

0 K T S 0
f

with T ∈ T . By Theorem 2.14, we can find a family {Ui}i∈I of objects of t, with an

epimorphism h :
∐

I Ui → T .

Since S is finitely generated, we can find a finite subset I0 ⊆ I such that f̃ = f ◦h◦ ιI0 is

surjective (where ιI0 :
∐

I0
Ui →

∐
I Ui).

By definition,
∐

I0
Ui ∈ t, whence K ′ = ker f̃ is a torsion module, as S is minimal co-

extending.

Consider the following pullback diagram:

0 0

0 K T S 0

0 K P
∐

I0
Ui 0

0 0 K ′ K ′ 0

0 0

f

f̃

Notice that P ∈ T since T and K ′ are torsion modules.
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Then consider the map h◦ ιI0 :
∐

I0
Ui → T . Using the universal property of the pullback,

we obtain the following commutative diagram:

T S

P
∐

I0
Ui

∐
I0
Ui

f

f̃

h◦ιI0

Thus, the middle horizontal short exact sequence in the first diagram splits, and hence

K ∈ T .

3.3 Torsion-free, almost torsion, and functorially finite classes

Starting from this section, we always work over a finite-dimensional algebra Λ.

For a torsion pair (t, f) in Λ-mod, we know by work of Smalø [28] that t is functorially

finite if and only if f is functorially finite (see Definition 2.4).

Functorially finite torsion pairs are parametrized by support τ -tilting modules.

Theorem 3.13 [1, Th. 2.7]. There is a bijection between functorially finite torsion

classes in Λ-mod and equivalence classes of support τ -tilting Λ-modules, which associates

to any representative T the torsion class T̃(T ) = gen(T ).

Such classes admit a unique extension to Λ-Mod as was already observed in [29]. We give

a proof for completeness.

Proposition 3.14 [29, Prop. 5.3]. Let (t, f) be a torsion pair in Λ-mod. Then the

following statements are equivalent:

(1) t is functorially finite.

(2) There exists a torsion pair (T ,F) in Λ-Mod extending (t, f), such that both the torsion

and the torsion-free classes are definable.

(3) There is a unique torsion pair extending (t, f) to Λ-Mod.

Proof. “(1) =⇒ (2)”: By Theorem 3.13, we find a support τ -tilting module T generating

t. The torsion pair (T(T ),T⊥0) in Λ-Mod extends the original torsion pair and it is definable

on both sides: T(T ) = Gen(gen(T )) = Gen(T ) = lim−→(gen(T )) by Theorem 2.14. To obtain

definability of the last torsion class, we can apply a result of Lenzing (see [24, Cor. 3.4.37]),

since gen(T ) is functorially finite.

“(2) =⇒ (1)”: By assumption, we have a torsion pair (T ,F) extending (t, f) to Λ-Mod,

such that both the torsion and the torsion-free classes are definable. Using Theorem 2.14,

we obtain that T = lim−→(t).

Then we can apply [24, Cor. 3.4.37], ensuring that the torsion class t has left

approximations, and hence it is functorially finite. (Every torsion class provides right

approximations.)

“(2) =⇒ (3)”: Using Theorems 2.14 and 2.16, it follows that T = ⊥0f and F = t⊥0 .

Let (U ,V) be a torsion pair in Λ-Mod extending (t, f). Then we have V = U⊥0 ⊆ t⊥0 and

U =⊥0V ⊆⊥0f . From this, we deduce that V =U⊥0 = (⊥0V)⊥0 ⊇ (⊥0f)⊥0 =F . In conclusion,

V = F , proving that there is a unique extension.
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“(3) =⇒ (2)”: Immediate, using the fact that the extension with definable torsion class

and the one with definable torsion-free class must coincide.

Corollary 3.15. Let (t, f) be a functorially finite torsion pair in Λ-mod.

Then, for its unique extension (T ,F) to Λ-Mod, all the torsion-free, almost torsion and

torsion, almost torsion-free modules are finite-dimensional.

Proof. F ∈ Cosilt(Λ) and T ∈ Silt(Λ) by Proposition 3.14. This yields the result by

means of Lemma 3.12.

3.4 Torsion-free, almost torsion modules determine torsion pairs

We want to prove that a definable torsion-free class F in Λ-Mod is uniquely determined

by its torsion-free, almost torsion modules.

This is a consequence of the following lemma, ensuring the existence of finitely generated,

even finitely presented, objects in the heart associated with F and of the characterization

of torsion-free, almost torsion modules as simple objects in the heart.

Lemma 3.16 [23, Cor. 4.3]. Any finite-dimensional module in F is finitely presented

when seen as an object in the heart H of the associated HRS t-structure.

Remark 3.17. The original result in [23] is much stronger and gives a complete

description of finitely presented objects in the torsion class F in H in terms of properties

of the corresponding modules.

At this point, we can prove the following corollary.

Corollary 3.18. Consider a definable torsion-free class 0 �=F ∈Cosilt(Λ), then there

exists some (not necessarily finite-dimensional) torsion-free, almost torsion module.

Proof. Since 0 �= F , by Theorem 2.14, there exists some nonzero finite-dimensional

module F ∈ F . F is a nonzero finitely generated object in H , which is a Grothendieck

category by Theorem 3.10, whence F has a maximal subobject, giving rise to a simple

quotient S which is an element of F , as this is a torsion class in the heart (see Remark 3.6).

By Theorem 3.7, this simple object S corresponds to a torsion-free, almost torsion module

for F .

Remark 3.19. A different proof for the existence of torsion-free, almost torsion modules

can be obtained using model-theoretic arguments, related to the link with critical summands

of cotilting modules. More details on these appear in [2].

Recall that a finite-dimensional module S �= 0 is simple with respect to a torsion-free

class (see [16]), if it satisfies conditions (1) and (2) in Definition 3.1.

Notice that a simple module for some torsion-free class f in Λ-mod automatically satisfies

conditions (1) and (2) for any extension of f to Λ-Mod.

Proposition 3.20. Let F and F ′ be definable torsion-free classes in Λ-Mod such that

the torsion-free, almost torsion modules for F and F ′ coincide. Then F = F ′.

Moreover, every finite-dimensional simple object for F embeds in some torsion-free,

almost torsion module.

Proof. Since the torsion-free classes are definable, by Theorem 2.14, it is enough to prove

that F ∩ Λ-mod = F ′∩Λ-mod.
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By [16, Th. 3.15], we know that torsion-free classes in Λ-mod are determined by their

simple objects.

Assume without loss of generality that F �= 0. Let B ∈ F ∩Λ-mod be a simple object in

the torsion-free class.

Then, by Lemma 3.16, B is a finitely generated object in the heart associated with

F , whence it admits a simple quotient S. In the heart, B is an object of the torsion

class F , and therefore S ∈ F .

It follows, by Theorem 3.7, that there is a torsion-free, almost torsion module S for F ,

together with a nonzero homomorphism f :B → S.

Since B is simple in the torsion-free class, f must be a monomorphism, whence B is a

submodule of S which is by assumption an element of F ′.

This procedure shows that all the simple objects in F ∩ Λ-mod are contained in

F ′∩Λ-mod.

Whence F ∩ Λ-mod ⊆ F ′ ∩ Λ-mod. The same argument works for the opposite

inclusion.

Remark 3.21. Minimal extending modules (i.e., finite-dimensional torsion-free, almost

torsion modules) do not provide enough information to determine a torsion-free class in

Λ-mod as already observed in [6], [16].

This shows that the role of infinite-dimensional torsion-free, almost torsion modules is

not negligible in the study of torsion pairs of Λ-mod.

§4. The lattice of torsion classes

There is a natural partial order on the collection of torsion classes tors(Λ) of Λ-mod

given by inclusion.

As shown in [15], the resulting poset has the structure of a complete lattice and enjoys

several nice lattice-theoretic properties.

More explicitly, we have the following description of the meet and join of a set indexed

family {ti}i∈I of torsion classes:∧
I

ti :=
⋂
I

ti ,
∨

ti := T̃
(⋃

I

ti

)
.

We recall also some basic lattice theoretic terminology.

Definition 4.1. Let (L,≤) be a poset, x,y ∈ L:

(1) The interval [x,y] is the poset supported by those z ∈ L with x≤ z ≤ y. Notice that if

L is a (complete) lattice, any nonempty interval in L is a (complete) sublattice of L.

(2) We say that y covers x if x < y and for any z ∈ L such that x≤ z ≤ y, either z = x or

z = y.

(3) Let L be a lattice. An element x is meet irreducible if whenever x= y∧z we must have

x= y or x= z. If L is complete, an element x is completely meet irreducible if whenever

x=
∧

I yi, with yi ∈ L, we must have x= yj for some j ∈ I.

This condition can be restated as follows: there is a unique element x� covering x,

and for every y > x we have y ≥ x�.

(3’) Let L be a lattice. An element x is join irreducible if whenever x= y∨z we must have

x= y or x= z. If L is complete, an element x is completely join irreducible if whenever

x=
∨

I yi, with yi ∈ L, we must have x= yj for some j ∈ I.
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This condition can be restated as follows: there is a unique element x� covered by x,

and for every y < x we have y ≤ x�.

(4) A poset L has finite length if every chain in L stabilizes.

We recall a result proved in [8], relating minimal extending modules with the covering

relation in tors(Λ).

Theorem 4.2 [8, Th. 1.0.2]. Let t∈ tors(Λ), and let S be a collection of representatives

of the isoclasses of minimal extending modules for (t,t⊥0).

Then the elements of S are in bijection with torsion classes covering t.

A typical phenomenon for the lattice of torsion pairs in the τ -tilting infinite case is the

presence of nontrivial locally maximal elements.

Definition 4.3. Let t ∈ tors(Λ). We say that t is locally maximal if there are no

elements of tors(Λ) covering t.

Remark 4.4. Any locally maximal torsion class is obtained as the meet of all the strictly

larger torsion classes. In particular, such classes are never completely meet irreducible.

Furthermore, notice that there is a unique functorially finite locally maximal element,

namely the torsion class Λ-mod, which is by definition the meet of the empty set.

In fact, for any functorially finite torsion class t properly contained in some other class

u, it is possible, by means of mutation, to find a class t� covering t such that t� ≤ u. See

[14, Th. 3.1].

Lemma 4.5. Let t ∈ tors(Λ) be a meet irreducible, but not completely meet irreducible

element, then t is locally maximal.

Proof. Assume by contradiction that t has some covering class. By meet irreducibility,

it has precisely one, say t�.

As t is not completely meet-irreducible, but it has just one covering class, there must be

some torsion class u� t such that u �⊇ t�.

However, this is absurd, since u∧ t� = t. So t is locally maximal.

Example 4.6. We discuss the most common example of a torsion pair without minimal

extending modules. Let k be an algebraically closed field.

Let Λ = kK2 be the Kronecker algebra, obtained as the path algebra of the quiver

0 1 .

This is a finite-dimensional tame hereditary algebra, and as such, we have that any

indecomposable in Λ-mod is contained in the preprojective p, regular r, or preinjective q

component of the AR-quiver.

Recall that the additive closure of the regular component r is a wide subcategory of

Λ-mod whose simple objects are called simple regular modules.

The torsion class generated by the modules in the regular component T̃(r) contains all

the regular and preinjective modules, but no preprojective module.

The preprojective component contains a countable collection of bricks Pi, such that

T̃(Pi)⊃ T̃(Pi+1). Moreover,
⋂
T̃(Pi) = T̃(r).

Any torsion class larger than T̃(r) is of the form T̃(Pi) for some Pi, so it follows that

T̃(r) is locally maximal.
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Figure 1.

Torsion pairs in kK2-mod.

Consider now the corresponding cosilting torsion pair (T(r),r⊥0) in Λ-Mod (see

Figure 1). By Corollary 3.18, we know that there must be some torsion-free, almost torsion

module for this torsion pair, which is necessarily infinite-dimensional as the corresponding

torsion pair in Λ-mod has no minimal extending modules.

It is easy to compute the torsion, almost torsion-free modules for this torsion pair: they

are precisely the simple regular modules {Sl}L.
By Corollary 3.9, it follows that the torsion-free, almost torsion modules must lie in the

orthogonal category ({Sl}L)⊥0,1 which is known to be equivalent to the module category

k(X)-Mod.

Such a subcategory contains a unique brick, up to isomorphism, since k(X) is a field,

and this brick is the generic module G described by Ringel [26, Sec. 5.7, Th. 5.3].

Since a torsion-free, almost torsion module must exist, we conclude that G is the unique

torsion-free, almost torsion module for the extended torsion pair.

4.1 Locally maximal torsion classes for τ -tilting infinite algebras

We need some preparations to show the existence of non-functorially finite locally

maximal torsion classes.

Definition 4.7. Let L be a complete lattice. An element x ∈ L is compact if for every

set-indexed family {yi}i∈I such that x≤
∨

i∈I yi there exists a finite subset J ⊆ I such that

x≤
∨

i∈J yi. Dually, we have the notion of a co-compact element.

We use the following observation (the contrapositive of [14, Lemma 3.10]).

Lemma 4.8. Let t ∈ tors(Λ) be a functorially finite torsion class. Let {ti} be a chain

of torsion classes indexed by some ordinal.

If t=
∨

i ti, then there exists some j such that tj = t.

Proof. Any functorially finite torsion class is both compact and co-compact [15, Prop.

3.2], in particular, there exists a finite subchain tin such that t =
∨

n tin . Whence, tj = t

for some j.
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Lemma 4.9. Let u1,u2 be functorially finite torsion classes in Λ-mod, and let

I = [u1,u2]⊆ tors(Λ) be the corresponding interval.

Then, if I has not finite length, it contains a maximal and a minimal non-functorially

finite torsion class tmax and tmin.

Moreover, tmax is meet irreducible in I but not completely meet irreducible, whereas tmin

is join irreducible in I but not completely join irreducible.

Proof. We denote by nftors(Λ) ⊂ tors(Λ) the poset of non-functorially finite torsion

classes.

By assumption, I must contain either an infinite strictly ascending chain or an infinite

strictly descending chain.

Since I is a complete sublattice, the join of the first chain, or the meet of the second one

yields a non-functorially finite class lying in I (using compactness, or co-compactness of

functorially finite torsion classes), proving that the poset nI = I ∩nftors(Λ) is not empty.

This poset and its dual satisfy the hypotheses of Zorn’s lemma; in fact, for any chain

in nI, the join, or meet, of the chain in I is again a non-functorially finite torsion class by

Lemma 4.8 and its dual, giving the required upper, or lower, bound.

So we conclude that nI has a maximal and a minimal element.

Now, if t is such a maximal element, then starting with the obvious inclusion t� u2 and

applying inductively [14, Th. 3.1], it is possible to construct an infinite descending chain of

functorially finite torsion classes t⊆ ·· ·� tn � · · ·� t1 � t0 = u2.

Now, by co-compactness, the meet of an infinite strictly descending chain is not

functorially finite, whence we can conclude by maximality that t=
∧

i∈N
ti, proving that it

is not completely meet irreducible.

Assume now that t= s1∧ s2, for some si ∈ I.

By the definition of meet, t ≤ si, so if any of the two is not functorially finite, we must

have equality, by maximality in nI.

So assume that they are both functorially finite. By the argument above, t =
∧

i∈N
ti,

but by co-compactness of si, there is some index j, such that tj ≤ s1,s2, but this is a

contradiction, since tj > t. So maximal non-functorially finite torsion classes are meet

irreducible in I.

Dual arguments yield the dual results.

Corollary 4.10. Let Λ be a τ -tilting infinite algebra, then there exists a maximal non-

functorially finite torsion class. Such torsion class is meet irreducible, but not completely

meet irreducible, hence locally maximal.

Proof. Apply the lemma above to the interval [0,Λ-mod], which has infinite length

(see [14, Prop. 3.9]), to obtain a maximal element t in nftors(Λ) with the required

properties.

4.2 The main theorem

We need a last lemma before proceeding into the proof of the main theorem. This

construction is already present in the literature (see [8]), and we give a proof for the

convenience of the reader.
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Lemma 4.11. Let B ∈Λ-Mod be a brick. Then B is the unique torsion, almost torsion-

free module for the torsion pair (T(B),B⊥0).

Proof. We check the three conditions dual to those in Definition 3.1:

(1) B ∈T(B) by definition.

(2) Since B is a brick, for every proper submodule M of B, we must have M ∈B⊥0 , that

is, M is torsion-free.

(3’) Consider a short exact sequence

0 F M B 0
f

with F ∈ B⊥0 . If M �∈ B⊥0 , let 0 �= g : B → M . Since F is torsion-free, g cannot factor

through F , in particular f ◦g �= 0.

Since B is a brick, this endomorphism must be invertible, which means that the sequence

splits. This proves that B is torsion, almost torsion-free.

Any other torsion, almost torsion-free module S, if not isomorphic to B, would be

orthogonal to it, in particular torsion-free. This is a contradiction, yielding uniqueness

(up to isomorphism).

Lemma 4.12. Let Λ be a τ -tilting finite algebra. Then every brick in Λ-Mod is finite-

dimensional.

Proof. Let B be a brick. By Lemma 4.11, the module B is torsion, almost torsion-free

with respect to (T(B),B⊥0).

The restriction of (T(B),B⊥0) to Λ-mod is necessarily functorially finite, as all torsion

classes in Λ-mod are functorially finite by hypothesis.

By Proposition 3.14, (T(B),B⊥0) is the unique extension of the functorially finite torsion

pair obtained above.

Whence, by Corollary 3.15, all the torsion, almost torsion-free and torsion-free, almost

torsion modules for (T(B),B⊥0) are finite-dimensional.

In particular, the brick B is finite-dimensional.

Lemma 4.13. Let Λ be a τ -tilting infinite algebra. Then there exists some infinite-

dimensional brick in Λ-Mod.

Proof. Apply Corollary 4.10 to obtain a locally maximal non-functorially finite torsion

class t in Λ-mod.

By Theorem 4.2, the corresponding torsion pair (t, f) has no minimal extending modules.

Consider now the corresponding torsion pair under the bijection in Theorem 2.14:

(T = lim−→t,F = lim−→ f).

By Corollary 3.18, there is some torsion-free, almost torsion module B for this torsion pair.

If B were finite-dimensional, by Proposition 3.11, it would be minimal extending for the

original torsion pair (t, f), which gives a contradiction.

Combining the two lemmas, we can finally obtain the following theorem.

Theorem 4.14. A finite-dimensional algebra Λ is τ -tilting finite if and only if every

brick over Λ is finitely generated.
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