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Abstract

Let X be any Tychonoff space and /3X the Stone-Cech compactification of X. Let F(/3X) be
the Graev free group of PX and let ©' be the subspace topology on the Graev group F(X). Our
results demonstrate that this topology is useful and behaves extremely well; the behavior of the
free topology still remains enigmatic.

There are various applications, some of which clarify the free topology on F(X), while others
improve various results recently published.

Let X be any Tychonoff space and )3X the Stone-Cech compactification
of X. Let F((1X) be the Graev free group of /3X and let ©' be the subgroup
topology on the Graev group F(X). Our results demonstrate that this
topology is useful and behaves extremely well (see Lemma 2.2 and Theorem
Z.3); the behavior of the free topology still remains enigmatic.

There are various applications, some of which clarify the free topology
on F(X) (see Theorem 2.4), while others improve various results recently
published by B. V. S. Thomas (see Propositions 3.1, 3.2 and 3.3).

1. Terminology and preliminaries

For the sake of completeness, we will recall some of Graev's terminology
. nd introduce some of our own. We deal only with Graev's non-abelian free
:opological groups, inasmuch that it is easily seen that our methods also apply
to the abelian case and to Markov's free topological groups, and to discuss
Ihese minor details would only detract from the task at hand.

DEFINITION 1.1. Let X be a Tychonoff space. We distinguish in X an
arbitrary point 6. A free topological group of the space X is a topological group H
with the following properties:

(1) X is a closed subspace of H,
(2) X generates H topologically (i.e., no proper closed subgroup of H

contains X),
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[2] Free topological groups 361

(3) //1/» is any continuous function from X to any topological group G,
which carries 0 to the unit element of G, then there exists a continuous
homomorphism <$>: H—> G such that <t>|X = t[/.

By Theorems 1 and 2 of Graev (1962), for each Tychonoff space (X, T)
there exists a unique (up to isomorphism) free Graev topological group, which
we will denote by (F(X), @). F(X) denotes the free algebraic group FY (of
reduced words) generated by Y = X -{0}, with 6 and the unit element of FY

identified; & denotes the Graev free group topology on F(X).
Throughout, we will adhere to the following terminology:
(a) Let Fi(X) = X U X"1, where X"1 is the set of all symbols x"1 with

x G Y; for n § 2, let Fn(X) be the set of those elements of the group F(X)
which have reduced length (with respect to the basis Y) not greater than n.
Whenever feasible, we let Fn(X) = Fn for n = 1,2, • • •.

(b) For any space X and positive integer n, let X" be the cartesian
product of n copies of X with the product topology.

(c) For any family {X,}aGA of spaces, let VaXa be the disjoint topological
union of the spaces Xa with a G A.

(d) Given a sequence {(X,, rn)}"_, of spaces such that each X, is a
closed subspace of Xn+t, let SnXn be X = U"=iXn with the weak topology.
(i.e., A CX is open if and only if A fl Xn £ rn, for each n.) Throughout, the
equality X = SnXn will mean that each Xn is a subspace of X and that X has
the topology of 2nXn.

(e) For any space X, we let px: Vn(F,(X))n -> F(X) and
qx: VnFn(X)^F(X) be the natural maps

( i . e . , p x ( x u •• - , x m ) = x , x 2 - - - x m , q x ( a , a 2 • • • am) = a l a 2 - • • a m ) .

Whenever feasible, we let px = p and qx = q. Throughout, whenever we refer
to the maps p and q we automatically assume that each Fn(X) inherits the
topology of F(X). For k = 1,2, • • •, we let pk =p|(F1(X))lt and Kk(X) =
Pk*(Fk - Fk-t). We also let rp and T, denote the quotient topologies on F(X)
with respect to the maps p and q, respectively.

According to Michael (1968), a space X is called a k^-space provided
that X = SnXn, with each Xn compact. Part (a) of the following result is
essentially proved by Mack, Morris and Ordman (1973). (To be precise, they
proved that T, = @; however, it is easily seen that similar techniques will
prove that © = TP.) Part (b) is obvious, but very useful.

PROPOSITION 1.2. (a) for any Hausdorff K-space (X, T), © = TP = T,.

(b) // (X, T) is compact Hausdorff, the maps pk are closed continuous
functions.

https://doi.org/10.1017/S1446788700018991 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700018991


362 C. R. Borges [3]

2. Other topologies on free groups

Throughout this section, let X be any Tychonoff space and /8X the
Stone-Cech compactification of X. Give F(X) the subspace topology &' it
inherits from (F(/3X), &). The following results exhibit the simplicity and
usefulness of this topology.

LEMMA 2.1. The natural map q: VnFn(/3X)-^(F(/3X),©) is a hereditar-
ily quotient map.

PROOF. By Lemma 5.2(c) of Michael (1972 ,̂ it suffices to prove that, tor
each A CF(/3X),

y£A~ implies q~\y)n q'\A)~/0:

Say not. Say zEA~ with q'\z)H q~\Ay = 0 . Also, say z G F . - F . . , .
Keeping in mind that each Fn is both a subspace of F(/3X) and of VnFn(/3X),
let us now construct sets Nm,Nm+1, • • • such that

(i) each Nm+j is an open subset of Fm+i CF(/3X)D VnFn(/3X),
(ii) each Nm+i+l n Fm+, = Nm+/,
(Hi) z G JVm+/ and iVm+/fl ^" '(A)" = 0 , for / = 0,1, • • •.

Let Nm be some open subset of Fm - Fm^ with z e. Nm and Nm
] n ^"'(A)" =

0 (note that Fm is normal, by Proposition 1.2(b); also z £ Fm_, and Fm-, is a
closed subspace of Fm). Clearly Nm satisfies (i) and (iii).

Assuming we already have sets Nm, • • -,Nm+k which satisfy (i), (ii) and
(iii), let us construct a set Nm+k+1 which satisfies (i), (ii) and (iii). Let U be an
open subset of Fm+k+l such that U H Fm+k = Nm+l. Since Fm+k+1 is normal, also
let W be an open subset of Fm+k+l such that

Nm+kCW, W~ n q-\A)~ = 0.

It is immediately seen that the set Nm+k+i = U D W satisfies conditions (i), (ii)
and (iii). This completes the induction.

Finally, letting

it is easily seen that JV = q'q(N) is open and q1(z)CN (note that
q-\z)C\Fm+j={z}, for / = 0,1,---) and iVna~ ' (A) = 0 . It follows that
q(N) is an open neighborhood of z with q(N) DA = 0 , a contradiction. This
completes the proof.

LEMMA 2.2. (F(X), ©') is a topological group suth that
(a) X and each Fn(X) are c/oscd subspaces of (F(X), ©')•
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(b) Each pn \Kn is a homeomorphism.
(c) The natural map q: VnF,,(X)-»(F(X),©') is compact-covering.

PROOF. TO prove (a) simply observe that X = /3X D F(X) and Fn(X) =
Fn(/3X)nF(X).

Part (b). From Proposition 1.2 (b), it is immediate that pn\Kn{flX) is a
one-to-one quotient map; therefore it is a homeomorphism. It follows that
pn\Kn(X) is also a homeomorphism.

Part (c). Obviously, q is continuous. Let K be a compact subspace of
F(X). Then K is a compact subspace of F(/3X) and, by Proposition 2.7 of
Hyman (1968), AT Csome Fn(/3X). Therefore K Csome Fn(X) =
Fn (/3X) D F(X), which implies that K is a compact subset of VnFn(X), and
therefore that q is compact-covering.

THEOREM 2.3. (F(X), ©') is a topological group, such that
(a) (F(X), ©') = SnFn(X), wi/fc eac/i Fn(X) a subspace of (F(X), ©').
(b) // iA (s any continuous function from X to any compact topological

group G, which carries 9 to the unit element of G, then there exists a continuous
homomorphism <J>: (F(X),©')^> G such that <&|X= <p.

PROOF. Part (a). From Lemma 2.1, the natural map
qx: VnFn(X)->(F(X),©') is a quotient map, since VnFn(X) = q^{F(X)) and
qx = q?x | VnFn(X). From Proposition 2.5 of Hyman (1968) we then get that

Part (b). This is a straightforward application of the Stone-Cech com-
pactification.

Following the techniques of Markov (1962), Lemma 2.2 yields some new
and useful facts about free topological groups of Tychonoff spaces.

THEOREM 2.4. (F(X), @) is a topological group such that _
(a) the natural map q: VnFn(X)—»(F(X),©) is compact covering.
(b) // (F(X),@) is a k-space then © = rq.
(c) Each pn | Kn is a homeomorphism. (Stated, without proof, in

ArhangeVskii (1968).)

PROOF. Recall that @ is the supremum of all group topologies T for F(X)
such that X is a subspace of (F(X), T). Part (a) is now a straightforward
consequence of Lemma 2.2 (c), inasmuch that q is obviously continuous and
(F(X), ©) has no more compact subspaces than (F(X), ©').

To prove (b), note that from Lemma 11.2 of Michael (1966) and part (a),
it follows that the map q is a quotient map; that is, © = rq.

Part (c). Let T1 (resp. T2) be the subspace topology on Fn - Fn_, with
respect to © (resp. ©') on F(X). Clearly pn \Kn: Kn -^(Fn - Fn_,, T,) is
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continuous (see Lemma 7.1 of Graev (1962)). But (pn \ Kn)~
l is also continuous

because of Lemma 2.2 (b) and T2CTI. This does the trick.

3. Applications

The first application extends Proposition 3.9 of Thomas (1974) to all free
groups. The second extends his main theorem to the non-abelian free groups,
with a much simpler proof which does not apply to the abelian case (an
elementary proof of both the abelian and non-abelian cases appears in Hardy,
Morris, Thompson (to appear)). The third is Joiner's Fundamental Lemma
(see also the previous paper). The last discusses some separation properties of
the topologies & and ©'.

PROPOSITION 3.1. Let / : X—» Y be a quotient onto map. Then the natural
extension f: F(X)—> F(Y) is also a quotient map, whenever both groups have
either the toplogy @ or ©'. (This remains valid for the abelian case, whenever
both groups have the topology ©.)

PROOF. (We will consider only the case &. The case ©' is similar because
of the functorial properties of /3X). Let T,- be the quotient topology on F(Y)
with respect to /. Clearly @ C i?. From the following diagram

(Y,@|Y)

where / is the identity function, one easily sees that / is a homeomorphism (/~'
is clearly continuous since TJ\ Y D@| Y; / is continuous because / is quotient
and f\X is continuous). Therefore, the identity homomorphism

is continuous; that is, TJ C®, which completes the proof. (For the abelian case
recall that, by 4.B of Graev (1962), the abelian free group A (X) is a quotient
image of F(X), with respect to ©.)

PROPOSITION 3.2. For each n = 1,2, •• -,X" is a subspace of Fn(X), with
respect to © or ©'.

PROOF. Clearly X" CKn(X), for each n. Because of Lemma 2.2 (b) and
Theorem 2.4 (c), we are done.
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PROPOSITION 3.3 (Joiner's Fundamental Lemma). Let X be any Tychonoff
space and xe,'-- -xir be any reduced word of (F(X),&) or (F(X),&') with
x , £ X and e, = ±1 . Then the family of all subsets of Fn(X) of the form
U\l • • • U'n

n, where each Ut is a neighborhood of x, in X, is a neighborhood base
for x\l • • • x'n- in the subspace Fn(X) of either group. (This remains valid for the
abelian Graev group (A (X), @).)

PROOF. Immediate from Lemma 2.2 (b) and Theorem 2.4 (c). (The
abelian case follows from 4.B of Graev (1962).)

PROPOSITION 3.4. The following implications are valid.
(a) If X is a k^n-space (i.e., X = SnXn with each Xn compact metriza-

ble), then (F(X),®) is a kMm-space (hence, (F(X), &) is stratifiable). (False
for &', because of the last § of Hardy, Morris and Thompson (to appear).)

(b) If X is a Tychonoff cosmic (i.e., the continuous image of a separable
metrizable space) space then (F(X), ©') and (F(X), ©) are cosmic spaces.

PROOF. Part (a). Immediate from the proof of Theorem 1 of Mack,
Morris and Ordman (1973); because the continuous image of a compact
metrizable space is compact metrizable. The stratifiability follows from Borges
(1966).

Part (b). Straightforward, since the natural map p: Vn(F])" —»F(X) is
continuous.
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