Astrophysical Supercomputing Using Particles
TAU Symposium, Vol. 208, 2003
J. Makino and P. Hut, eds.

Heap-based algorithm and one-dimensional expanding
Universe

Duccio Fanelli!, Erik Aurell?, Alain Noullez3

! Dept. of Numerical Analysis and Computer Science, KTH, SE-100 44
Stockholm, Sweden

2 SICS, Box 1263, SE-164 29 Kista, Sweden
3 CNRS, Observatoire de la Céte d’Azur, F-06304 Nice Cedex 4, France

Abstract. A fast algorithm for studying one-dimensional systems that
are Lagrangian integrable between collisions is presented. The algorithm
is based on an event-driven scheme, and uses a heap ordered set of pre-
dicted future events. As an application, we discuss the case of an expand-
ing one-dimensional Universe.

We consider the non-linear evolution of a one-dimensional perturbation in a
three dimensional spherically symmetric Einstein-de Sitter Universe, under the
conditions where Newtonian mechanics applies. We focus our attention on a
small slice of the whole Universe, formally considering the mutual interaction
of N massive sheets (particles) in the expanding medium. By performing both
position and time rescaling (respectively, z; o t2/3; and dt tdr), one ends up
with the following equation of motion for the i-th sheet:
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where wjo = (47Gpg)'/? is the Jeans frequency. I, ., is proportional to the
net mass difference between the right and the left o? the given particle, and is
therefore constant between collisions. The model (1) was first derived by Rouet
and collaborators (Rouet,Feix & Navet 1990) and has been recently revisited
and improved in Aurell & Fanelli (2001). Numerical simulations are performed
by using a version of the heap-based algorithm presented in Noullez, Fanelli &
Aurell (2001). This event-driven scheme is based on the capability of computing
the next crossing time between two adjacent particles. The collision time of
each particle with its neighbor on the right is given by the smallest real positive
root of a cubic equation. The results are stored in an array of size N — 1,
that is then heap-ordered. The minimum value ty,, is then the first heap
element and is easily selected with a cost of O(1) operations. The particles j
and j + 1 experiencing this first collision are then evolved up to tmin and their
states re-arranged according to the prescriptions of the dynamics (momenta
simply exchanged). Further, their next crossing time is computed by solving a
quadratic equation, that results by factorizing out the trivial tpext = 0 solution
from the cubic. The two values of their crossing times with their respective
nearest neighbors j — 1 and j + 2 need also to be updated: this again implies
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Figure 1. Left plot: Velocity field vs. positions, starting form a
single speed Brownian motion initial conditions (upper inset). The
lower inset is a zoom of a massive agglomeration. Reflecting boundaries
are assumed. The unit of length is the box size. Here N = 16384
and 7 = 5.0wjy or (t = 1.9045 x 10%w3y). nght plot: MOF for
Brownian initial velocities at time 7 = 3. 3w (or t = 517.14w Jol)
Here N = 16384, and we did 1000 1ndependent reahzatlons

finding the roots of two cubic equations. The new predicted collision times
replace their old values in the heap, which is then rearranged with at most
O(log N) operations. The whole procedure can then be iterated. In conclusion,
the asymptotic complexity of the algorithm is in the worst case O(Z log N),
where Z is the total number of crossings.

As an example of the results of simulation, we show in Fig. 1 a late time
phase space portrait, if the initial velocity is chosen to be a single-speed Brownian
motion. Spiral structures are clearly displayed, as well as structured filaments
connecting the dense agglomerations. To investigate quantitatively the particles
distribution, we introduce the mass octave function (MOF), see Aurell & Fanelli
(2001). MOF measure the probability to find a non zero contribution to the mass
density, as function of the mass itself, coarse-grained in octaves. The right plot
of Figure 1 shows, in log-log scale, the MOF computed for an intermediate stage
of evolution. In a finite range of the mass support, the MOF decays as a power
law with exponent —0.5. This result is in agreement with She, Aurell & Frisch
(1992), where in the framework of the adhesion model (i.e. Burgers’ equation)
the number density per unit length of shock locations holding mass m is shown
to be distributed as a power law m™"~
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