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A RELATION BETWEEN BIHARMONIC GREEN'S FUNCTIONS

OF SIMPLY SUPPORTED AND CLAMPED BODIES

JAMES RALSTON AND LEO SARIO

The deflection, under a point load, of a thin elastic plate clamped
at the edges is the biharmonic Green's function β with the boundary
data β = dβ/dn = 0. If the boundary of the region is reasonably smooth,
the construction of β offers no difficulty. In contrast, nothing is known
about the existence of β in the general case. The purpose of our study
is to give a sufficient condition for the existence of β on a given
Riemannian manifold of arbitrary dimension and to construct β. Our
results will have, apart from their physical meaning in elasticity, con-
sequences in the biharmonic classification theory of Riemannian mani-
folds.

To understand the nature of the problem, we recall that the de-
flection, under a point load, of a simply supported thin elastic plate is
the biharmonic Green's function γ which satisfies the boundary conditions
γ = Δγ = 0. The function γ is always positive and increases with the
region. As a consequence, γ on an arbitrary plate or, more generally,
on an arbitrary Riemannian manifold R9 can be defined as the directed
limit, if it is finite, of the corresponding functions γΩ on regular sub-
regions Ω exhausting R (Sario [34]).

Hadamard conjectured in his 1908 prize memoir [14] that the de-
flection βy under a point load, of a clamped plate as well be always
positive. However, this conjecture was disproved by Duffin [8] for an
infinite strip, by Loewner [19] and Szego [52] for certain nonconvex
plane regions, and by Garabedian [10] for a sufficiently eccentric ellipse.
Interest in the problem was recently revived by the address of Duffin [9]
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60 JAMES RALSTON AND LEO SARIO

delivered before the 1974 Annual Meeting of the American Mathematical
Society in San Francisco. The possibility of a nonconstant sign of βQ

on regular subregions Ω of R causes difficulty in the convergence proof
as Ω-+R. This is where the problem lies in defining and constructing β.

To gain intuition from a concrete case we first consider the Euclidean
ΛΓ-space EN. On exhausting balls Ω = {r < p), p-*oo, the functions
ΪΩ>ββ with poles at the origin can be explicitly constructed. It turns
out that γΩ -*• oo and βΩ -> oo at every point if N < 4, whereas both γ
= lima TΩ &n(ϊ β = limi? βo exist on EN if N > 4. This simultaneous ex-
istence of f and β raises the question: is there some relationship
between the existence of γ and β in the general case (and, in particular,
on a plate of arbitrary shape)? That the answer is in the affirmative
is our main result: on an arbitrarily given Riemannian manifold, if γ
exists, so does β. The interesting problem whether or not the converse
is true is not a topic of the present study.

A necessary and sufficient condition is known for the existence of
γ: the harmonic measure ω of the ideal boundary of the manifold,
with values 1 on a compact set, has to be in U (Sario [34]). This test
now carries over as a sufficient condition for the existence of /?. As an
example, the above result on the existence of β on EN for N > 4 follows
immediately, and is independent of the pole and exhaustion. Similarly,
β is seen to exist on the Poincare N-ball BN = {r < 1} with the metric
ds = (1 - r2)a \dx\, a a constant, if a > -3/2 for N = 2, a e (-3,1) for
N = 3, and a < (N - 2)-1 for JV > 3.

A comprehensive bibliography, which includes recent work in the
field, is attached.

1. To construct the biharmonic Green's function γ on the Euclidean
2V-space EN, we exhaust EN by Λf-balls Ω = {r < p}, ρ~> oo. We recall
that the biharmonic fundamental singularity σ at r = 0 is r2 log r for
N = 2, r for N = 3, log r ίor JV = 4, and r~N+i for N > 4, the singu-
larity manifesting itself in that (?eC4 at the origin. We normalize σ to
vanish for r = p and then subtract a multiple of the regular biharmonic
function r2 — p2 such that the Laplace-Beltrami operator Δ = d<5 + 3d
acting on γΩ,

1 d ( ,— d
Vg dr V y dr
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BIHARMONIC GREEN'S FUNCTIONS 61

gives zero values for r = p. The resulting γΩ on Ω with pole 0 is for

N = 2,3,4, >4, respectively,

P

+ p + - p2) ,

We define f on £7^ as ^ = lim^̂ oo γΩ and conclude that γ with pole 0 does

not exist on EN for N = 2,3,4, whereas for Λf > 4 it is

-, _ . γ-N + 4

For ^^ on β the construction is the same except that now a multiple

of r2 — p2 is to be subtracted which makes dβΩ/dn — 0 for r = p. We

obtain for N = 2, 3,4, >4,

r 2 log— - A ( r 2 -
/° 2

- r

As p—>oo, we again deduce that /3 = lim^^jSa does not exist on £7^ for

JV < 4, whereas for N > 4 it is

That for the singularity y e EN, the existence of γ = f(#, ̂ /) and β = j8(α?, y)

for JV > 4 is independent of (x, y) and the exhaustion will be seen in

No. 9.

The biharmonic Green9 s functions γ and β exist on EN for precisely

the same dimensions: N > 4.

This observation suggests an inquiry into a possible relationship

between the existence of γ and β on every Riemannian manifold.
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62 JAMES RALSTON AND LEO SARIO

2. Given an arbitrary Riemannian manifold R, let Ω be a regular
subregion of R. Take a point ί/eί3 and a small geodesic ball By about
2/, αy = dβy, ay Π dβ = 0, and orient both α,, and dΩ positively with re-
spect to Bv and Ω, respectively. Let βΩ = βΩ(x, y), γΩ = γΩ(x, y) be the
biharmonic Green's functions on Ώ, with the biharmonic fundamental

singularity at y normalized by *dΔβΩ~ *dΔγΩ = — 1, and with
J Cty J ay

boundary data

β0 = - M L = γΩ = ΔγΩ = 0 on 9£ .

For / G C0°°(β), set

(βΩf)(χ) = f βo(χ,y)*f(y), (r*/)G») = f n>te,v)*Av) -

By general results on elliptic boundary value problems (e.g., Hδrmander
[16, Ch. X]), there are unique functions i^, ur e C°°(β) satisfying

= Δ2ur = / on fl,

For every ^ , ^ r with these properties,

In fact, by Stokes' formula

uβ * d ΔβΩ — ΔβΩ * duβ — βΩ * d J ^ + J^^ * dβΩ
J dΩ-ay

— — uβ*Δ2βΩ — ΔβΩ*Δuβ — βΩ*f + Δuβ*ΔβΩ .
J Ω—By

As the geodesic radius of av tends to 0, -^uβ(y), and we obtain
J -ay

Uβ = j8β/. Similarly, the equality

ur * dJ^β — ΔγQ * d^r — γΩ * ώJwr + Jw * dγΩ
J dΩ-ay

— — uγ*Δ2γΩ — ΔγQ*Δur — γΩ*f + Δu *ΔγΩ
J Ω-By

gives ur = /
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3. Let Ω, Ωr with Ω c Ωr be regular subregions of R, and set (/, g)

LEMMA 1. For / e C~GO),

Proof. On β, consider the Sobolev space

H2 (β) = fw| DβM e L2(β), \a\ < 2, w - — = 0 on
I dn

and the functional on H2ίβ(Ω),

j(u) = — zf̂ * J ^ — u*f .
JΩ 2

For ueH2iβ one has the elliptic estimate for |α| < 2,

(1) ||

where || \\Ω stands for the U norm over Ω. Thus J(u) is bounded below.
Let {un} be a sequence such that J(un) —> inf 2̂ ^ J(^). Then {zh }̂ is a
bounded sequence in L\Ω). Using (1) and the Rellich compactness
theorem, we may choose a subsequence {unj converging to u in L\Ω)
and converging weakly to ΰ in H2(Ω). Since H2β is a closed subspace
of H2(Ω), it follows that ΰeH2jβ. Now J(un) -*mίH2 βJ(u) implies
limifc_00 ||Jwnj.|| = \\Δΰ\\. Hence, {dunj} converges to Δΰ in L\Ω) and

inί J(u) =

Thus ΰ satisfies

0 = Δΰ*Δφ — φ*f
J Ω

for all ψeH2β. By direct computation, ^ also satisfies this equation.
A fortiori,

0 = Δ(ΰ — uβ) * Δψ
J Ω

for all φeH2,β. In particular, this holds for φ = ΰ — uβ and thus (1)
implies ΰ = uβ. As a consequence,

inf J(u) — J(uβ) = — J π ^ * Δ u β — uβ*Δ2uβ .
ueH2,β JΩ 2
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An integration by parts gives

J(uβ) = — — I Δuβ*Δuβ .
LΛ J Ω

Every u e H2fβ(Ω) can be extended to a function u e H2iβ(Ω') by setting
u = 0 on Ωf - Ω. Therefore,

min J(u) > min J(u) ,

that is,

ί Δ{βQf)*Δ(βΩf) < f Δ(βΩ,f)*Δ(βΰ,f) ,
Jo Jβ'

which gives

f Δ\βΩf)*βQf < f ffi(βQ.f)*βo.f .
J Ω J Ω

The Lemma follows.

4. We now compare βΛ and ^ on the same regular subregion
ΩcR.

L E M M A 2. For f e C0°°(β),

<J,βDf)<.<J,rof)

Proof. For the Sobolev spaces

H2iΐ(Ω) = {^|D^eL2(β), |α| < 2, ^|3i3 = 0} ,

H2(Ω) = {tt|D«M e L2(i3), | α | < 2} ,

we have ίf2>j5 c iί2)r c H2, and therefore,

min J(u) > min J(u) .
Hz,β(Ω) Hi,r(Ω)

An argument completely analogous to that in No. 3, with H2fiί and uβ

replaced by H2yr and ur9 gives

%r) = inf J(u) .

Then we have

— — Δuβ*ΔuB = J(Uo) > J(ur) = — — Δur*Δur .
2 J Λ 2 J a
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As a consequence,

Δuβ*Δuβ < Δu7*Δuγ .
J Ω J Ω

Here

Δur*Δu7 — —\ Δur*dur+ dΔur*dur

J Ω J dΩ J Ω

= u7*dΔu + ur*Δ2ur = u *f,
J dΩ JΩ JΩ

and we infer that

I ^ * / < I ur*f ,
Jfl J Ω

hence the Lemma.

5. Thus far Ω has been a fixed regular subregion of R. We now
let £? exhaust R, and indicate inner products taken over Ω by the sub-
script Ω. We know that either lim^.^ γΩ(x, y) = oo for every (#, 2/), or
else the biharmonic Green's function γ(x, y) = lim .̂,^ ̂ fl(αJ, 7/) on R exists
for every (x9 y), with the convergence uniform on compact sets of R
(Sario [34]). Let L2

0(R) be the space of U functions on R with compact
supports.

LEMMA 3. // γ exists on R, then as Ω —> R, (g, βΩf)Ω converges for
all f,geL&R).

Proof. Since C? is dense in L2, Lemmas 1 and 2 remain valid for
feLKR), supp / c i 2 , If γ exists, the uniform convergence γΩ—>γ on
compact sets entails the existence of a constant Mf such that

(f,γΩfr<Mf

for / e CZ(R) and hence for / e LfcR). By Lemmas 1 and 2 for / e L2

0(Ω),

iffβΩf)Ω converges. For f,geL2

0(β),

2(g, βΩf)Ω = (/ + flr, βoif + g))Ω - <J, βΩf)Ω - (g, βΩg)Ω

and therefore (g,βΩf)Ω converges.

6. To prove the convergence of β0 in every compact set K of an
R which carries γ, we may assume that y §K. In fact, if p(x, y) is the
geodesic distance between x and y, we may choose, for sufficiently small
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66 JAMES RALSTON AND LEO SARIO

constants p19 p2 > 0,

K = {x\Pl < p{x,y) < p2} .

The uniform convergence of βQ on K will imply that of the harmonic

function ΔβΩ on K and hence on Ko = {x\Q < p(x,y) < p2). A fortiori,

the potential part in the Riesz decomposition of βΩ converges uniformly

on Ko and so does, by the convergence of βQ on K, the harmonic part

on K and consequently on KQ.

Having chosen an arbitrary but then fixed compact set K of R,

y$K, we take a compact set Ky, y e Kv, K Π Ky = 0, and a function

9 e CQ(R), φ > 0, p|2£y = 1, ίΓ^ = supp 9 a regular region, ί p Π Z = pi,

and let Ω henceforth contain Kφ U K. We denote by βψ the biharmonic

Green's function β on Kp and set

βa = βa- ψβΨ , ^ f l = / ,

where / is independent of Ω. Since Δ\βΩ — /?fl/) = 0 and βQ — ^3β/ =

d(βo — βof)/dn = 0 on 3Ω, we have

Denote the U norm by || || and choose compact sets KlfK2 with

K c iiitK, c jffx c intX a c Z 2 and K2 Π ϊ f = 0, K2 c fl.

LEMMA 4. The U norm ||j8fl||^ is bounded in Ω.

Proof. For the functions geL2

0(R), the restrictions #|K 2 form a

Banach space B, on which /3β gives a bounded linear functional (#, βΩ)κ%

By the Uniform Boundedness Principle, either there exists a constant k

independent of Ω with

\(g,βa)\κ%<>h\\9\\κ%

for all g eB, or else

I to, & ) f -» 00

for some g (in fact for g in a dense set in B) as Ω->R. But we know

from Lemma 3 that (g, βΩ) = (#, / ĵO converges for every g. Therefore,

the first alternative occurs. In particular, for g = βΩ \ K29

(\\βΩ\\κ*y<k\\βΩ\\χ*,
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hence the Lemma.

7. We are ready to state our main result:

THEOREM. On an arbitrarily given Riemannian N-manifold R, N

> 2, if the biharmonic Green's function of the simply supported body,

γ(x, y) = lim γΩ(x, y)
Ω-*R

exists for some, and hence every, (x,y), then so does the biharmonic

Green's function of the clamped body,

β(x, y) = lim βΩ(x, y) ,

and the convergence is uniform on compact sets of R.

Proof. By virtue of the interior regularity estimate (cf. Agmon [1,

Sec. 5]) in Sobolev norms,

Lemma 4 implies that

\\DaβΩ\\Kί is bounded in Ω

for every m > 0, \a\<m. Therefore, by the Rellich compactness theo-

rem (cf. [1, Sec. 3]), there exists a sequence {βn = βΩn} such that, for

\a\ < m,

as n—> oo, p > 0. This in turn implies by Sobolev's Inequality (cf. [1,

Sec. 3]) that, for \a\ < m,

\D«(βn+p-βn)\-^0.

In particular, for a = 0 we have by βn \ K = βn \ K the desired uniform

convergence of βn on K. The uniqueness of the limiting function β on

R follows from

(g, βng) / sup (g, βΩg) ,

which implies

(g, βg) = sup (g, βΩg)

for all g e L\{R) with supp g c K.
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This completes the proof of the Theorem.

8. The criteria known for the existence of γ are now available, as

sufficient conditions, for the existence of β. In particular, for a fixed

regular subregion Ωo of # , 5 0 c Ω, let ωΩ be the harmonic measure on

Ώ — Ωo with ωΩ\dΩ0 = 1, ωΩ\dΩ — 0. The limiting function ω = l im^^ ωΩ

is the harmonic measure of the ideal boundary of R on R — Ωo. It is

known (e.g. Sario-Nakai [37]) that ω = 1 if and only if R belongs to

the class ΦG of parabolic Riemannian manifolds, characterized by the

nonexistence of the harmonic Green's function g(x, y) = limΩ_+E gΩ(x,y).

Moreover, γ exists on R if and only if R$ΘG and ω e L\R — Ωo) (Sario

[34]). The Theorem yields:

COROLLARY. // R $ ΘG and ω e L\R — ΩQ), then β exists on R.

For the sake of completeness we give a (slightly simplified) proof.

Choose x,y eR and then Ωo with x,y e Ωo. For Ω Z) Ώo we have by

virtue of γΩ = ΔγΩ = 0 on dΩ,

γΩ(χ,y) = I ga(χ,z)*go(z,y) = ί
JΩ JΩ

If R § ΘQ, then gΩ{z, x) —• 0(2, #)> gΩ(z, y) -> #(z, #) on R, and ωΛ —> ω Φ 1

on i? — Z?o. There exists a compact set C and constants 0 < m < M < oo

such that both gΩ(z, x) and gΩ(z, y) are between ra and M for all 2 e 3Ω0

and all Ω Z) C. Therefore they are between mωΩ and MωΩ on 5β0 U dΩ,

hence on fl- β0, and we have

m 2 I ωΩ*ωΩ < I go(x> z)*gΩ(z,y) < M2 I ωΩ*ωΩ .
J Ω-Ωo JΩ-ΩQ J Ω-ΩQ

If ω e L2(β — £?0), the integral in the middle converges and so does fβ(#, 3/).

Conversely, if γΩ(x,y) converges, so does the integral in the middle,

and ωeL\Ω — ΩQ). The Theorem then gives the Corollary.

9. As an immediate application of the Corollary, we have the

result of No. 1 that EN carries β if N > 4. Moreover, we now see that

this fact is independent of the pole y and the exhaustion {Ω} of EN.

Indeed, for N > 2, β0 = {r < 1}, p>l, Ω = {r < p}, ^ -> 00,

^ -ί _ 7W4-9
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For N > 4, we have ||ω|| < oo, hence β exists on EN.

For further illustration of the Corollary, consider the Poincare N-

ball

BN

a = {r < l\ds = (1 - τ2Y \dx\} ,

a a constant. A function h(r) on Bf is harmonic if and only if

that is,

= c Γ r^+ 1(
J α

This is bounded, hence Bξ 6 0σ, for every a if ΛΓ = 2, for α < (N — 2)"1

if iV > 2. The harmonic measure is

Γc log r for N = 2 ,

\c(X - r)" ( i V - 2 ) α + 1 for N > 2 .

For 0 < ô < p < 1,

and

t < r < r i 2 ίc(l

~ i c ( 1

carries β if-

— /°)

r α > 3

2

- 3 <a< 1

2V-2
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