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A RELATION BETWEEN BIHARMONIC GREEN’S FUNCTIONS
OF SIMPLY SUPPORTED AND CLAMPED BODIES

JAMES RALSTON AND LEO SARIO

The deflection, under a point load, of a thin elastic plate clamped
at the edges is the biharmonic Green’s function 8 with the boundary
data p = dp/on = 0. If the boundary of the region is reasonably smooth,
the construction of g offers no difficulty. In contrast, nothing is known
about the existence of g in the general case. The purpose of our study
is to give a sufficient condition for the existence of 5 on a given
Riemannian manifold of arbitrary dimension and to construct g. Our
results will have, apart from their physical meaning in elasticity, con-
sequences in the biharmonic classification theory of Riemannian mani-
folds.

To understand the nature of the problem, we recall that the de-
flection, under a point load, of a simply supported thin elastic plate is
the biharmonic Green’s function y which satisfies the boundary conditions
y = 4y = 0. The function y is always positive and increases with the
region. As a consequence, y on an arbitrary plate or, more generally,
on an arbitrary Riemannian manifold R, can be defined as the directed
limit, if it is finite, of the corresponding functions y, on regular sub-
regions 2 exhausting R (Sario [34]).

Hadamard conjectured in his 1908 prize memoir [14] that the de-
flection B, under a point load, of a clamped plate as well be always
positive. However, this conjecture was disproved by Duffin [8] for an
infinite strip, by Loewner [19] and Szegé [52] for certain nonconvex
plane regions, and by Garabedian [10] for a sufficiently eccentric ellipse.
Interest in the problem was recently revived by the address of Duffin [9]
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delivered before the 1974 Annual Meeting of the American Mathematical
Society in San Francisco. The possibility of a nonconstant sign of g,
on regular subregions 2 of R causes difficulty in the convergence proof
as Q—R. This is where the problem lies in defining and constructing g.

To gain intuition from a concrete case we first consider the Euclidean
N-space EV. On exhausting balls 2 = {r <p}, p— oo, the functions
7o» Bo With poles at the origin can be explicitly constructed. It turns
out that y, — oo and B, — o at every point if N <4, whereas both 7
= limgy 7, and 8 = lim, B, exist on E¥ if N > 4. This simultaneous ex-
istence of 7 and p raises the question: is there some relationship
between the existence of y and g in the general case (and, in particular,
on a plate of arbitrary shape)? That the answer is in the affirmative
is our main result: on an arbitrarily given Riemannion manifold, if y
exists, so does B. The interesting problem whether or not the converse
is true is not a topic of the present study.

A necessary and sufficient condition is known for the existence of
y: the harmonic measure w of the ideal boundary of the manifold,
with values 1 on a compact set, has to be in L? (Sario [34]). This test
now carries over as a sufficient condition for the existence of 3. Asan
example, the above result on the existence of g on E¥ for N > 4 follows
immediately, and is independent of the pole and exhaustion. Similarly,
B is seen to exist on the Poincaré N-ball BY = {r < 1} with the metric
ds = (1 — r»*|dx|, « a constant, if « > —3/2 for N =2, ac(—3,1) for
N=3 and a <N —2)! for N > 3.

A comprehengive bibliography, which includes recent work in the
field, is attached.

1. To construct the biharmonic Green’s function y on the Euclidean
N-space E¥, we exhaust E¥ by N-balls 2 = {r < p}, p— . We recall
that the biharmonic fundamental singularity ¢ at »r =0 is r?logr for
N=2, r for N=3, logr for N =4, and ¥+ for N > 4, the singu-
larity manifesting itself in that ¢ & C* at the origin. We normalize ¢ to
vanish for » = p and then subtract a multiple of the regular biharmonic
function 7 — p* such that the Laplace-Beltrami operator 4 = dé + od
acting on 7,,

1 o < — 0 )
drg = ——= — — ,
7o Vo or Vg or 7o
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gives zero values for » = p. The resulting y, on 2 with pole 0 is for
N = 2,38,4, >4, respectively,

rlog L — (2 — o,
0

—7 4 o+ o0 — )
To =1 3

—log L+ Lo — ),
0 4

S AT p—N+4 + N-Y(N — 4)P—N+2(1,.2 _ pZ) X

We define y on E¥ as y = lim,_..y, and conclude that y with pole 0 does
not exist on E¥ for N = 2,3,4, whereas for N > 4 it is

y =N

For B, on £ the construction is the same except that now a multiple
of r* — p* is to be subtracted which makes d8,/an = 0 for r =p. We
obtain for N = 2, 3,4, >4,
rlog L — Lo — ),

o 2

—7r+p+ %p*‘(r2 -0,

1

Ba = r
—log — + —p7'(r* — p%) ,
o 2

PN+ pN+4 + -;—(N _ 4)p-1v+2(,r2 . pZ) .

As p— oo, we again deduce that g = lim,_.. 8, does not exist on E¥ for
N < 4, whereas for N > 4 it is

ﬁ — T_N+4 .

That for the singularity y € E¥, the existence of y = y(x, ) and g = g, ¥)
for N > 4 is independent of (x,%) and the exhaustion will be seen in
No. 9.

The biharmonic Green’s functions y and B exist on EY for precisely
the same dimensions: N > 4.

This observation suggests an inquiry into a possible relationship
between the existence of y and g on every Riemannian manifold.

https://doi.org/10.1017/50027763000017293 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000017293

62 JAMES RALSTON AND LEO SARIO

2. Given an arbitrary Riemannian manifold R, let 2 be a regular
subregion of B. Take a point y e £ and a small geodesic ball B, about
Y, a, = 0B, a, N 92 =@, and orient both a, and 92 positively with re-
spect to B, and 2, respectively. Let B, = Bo(®, ¥), 70 = 1o(,y) be the
biharmonic Green’s functions on £, with the biharmonic fundamental

gingularity at ¥ normalized by J xd4Bg =I xddy, = —1, and with

boundary data

For feCy(Q), set
(Bo))(@) = j @@, Ga)@) = j RECEIIOR

By general results on elliptic boundary value problems (e.g., Hormander
[16, Ch. X]), there are unique functions u,,u, € C*(2) satisfying

Luy = Mu,=f on Q,

upz%i:u,:zlurzo on 92 .

For every u,,u, with these properties,

Uy = Bof > U, =71of .
In fact, by Stokes’ formula

f Uy dABy — AP dut, — Box A, + duyxdB,
0Q—ay

= —I ) Ugx BBy — AP+ Aduy — Bo* f + dug* 4B, .
2-By

As the geodesic radius of «, tends to 0, I — uy(y), and we obtain
—ay

u, = Bof. Similarly, the equality
I u ddyy — Aygwdu, — porddu, + du,+dy,
R—ay
= —-I U x Lyg — dygxdu, — yox f + du Ay,
2-By

gives u, = 7,f.
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3. Let 2,2 with 2 C 2’ be regular subregions of R, and set (f, g)
= _[ S*g.
2

LEMMA 1. For feCg(Q),
(f5Ba) < (S5 BaS) .
Proof. On £, consider the Sobolev space

H, (@) = {uwmeLZ(g), o] < 2, u = _gl — 0 on ag}
n

and the functional on H, ,(£2),
J(w) =f lAu*Au —uxf .
2 2

For ue H,, one has the elliptic estimate for |« < 2,
(1) |Dul® < C,||dul®,

where || - ||? stands for the L? norm over 2. Thus J(u) is bounded below.
Let {u.} be a sequence such that J(u,) — infg, ,J(u). Then {4u,} is a
bounded sequence in L*2). Using (1) and the Rellich compactness
theorem, we may choose a subsequence {u,/ converging to % in LX)
and converging weakly to % in H,(£). Since H,, is a closed subspace
of Hy)(%2), it follows that #eH,,. Now J(u,) — infy, , J(u) implies
lim,_., || dun,,|| = ||4%|. Hence, {du,} converges to 4% in L* L) and

infJ(u) =J@) .

Ha,p

Thus % satisfies
O:I duxdp — o+ f
2

for all pe H,,. By direct computation, u, also satisfies this equation.
A fortiori,

0 =I AT — uy) * dp
2

for all pe H,,. In particular, this holds for ¢ =% — %, and thus (1)
implies % = u,. As a consequence,

inf Ju) = J(u,) = I %Auﬁ*zmﬁ — uyw L .
Q2

u€Hs,p

https://doi.org/10.1017/50027763000017293 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000017293

64 JAMES RALSTON AND LEO SARIO
An integration by parts gives
Ju) = —L f dugs du, .
2 Ja
Every ue H, ,(2) can be extended to a function u € H, ,(2) by setting

#u =0 on Q' — 2. Therefore,

min J(u) > min J(u) ,
Hy,p(Q) Hag,p(2%)

that is,

[ 2Gar) ca@ar) < [ 46011 4B0p) ,

which gives

[, #Garyspat < [ #6ar)ar .
The Lemma follows.

4. We now compare B, and r, on the same regular subregion
RQCR.

LEMMA 2. For feCy(9),
(fs BoS) < (fs10f) -
Proof. For the Sobolev spaces
H, (2) = {u|D*u e L*(Q2), |a| < 2, |02 = 0} ,
H(Q) = {u|D*ue LX), |a| < 2},
we have H,,C H,, C H,, and therefore,

min J(u) > min J(u) ..
Hs,p(2) Ha, (@)

An argument completely analogous to that in No. 3, with H,, and %,
replaced by H,, and u, gives

Ju,) = inf J(u) .
Hy,r(0)

Then we have

—%L Bugs duy = J(up) > J(u,) = —%J'a du,« du, .

https://doi.org/10.1017/5S0027763000017293 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000017293

BIHARMONIC GREEN’s FUNCTIONS 65.
As a consequence,
I dugs du, < I A« du,, .
92 Q2
Here
f du % du, = ~j du,xdu, +f ddu, +du,
Q 9 Q
= LD ux ddu, + L u,x Ju, = Lu,*f )
and we infer that
I uﬁ*fgj u*f,
Q2 Q2

hence the Lemma.

5. Thus far 2 has been a fixed regular subregion of B. We now
let 2 exhaust R, and indicate inner products taken over 2 by the sub-
seript 2. We know that either lim,.z 70(x,¥) = oo for every (z,¥), or
else the biharmonic Green’s function y(x,y) = lim,_5 7,(z,¥) on R exists
for every (x,y), with the convergence uniform on compact sets of R
(Sario [34]). Let LiR) be the space of L? functions on R with compact
supports.

LEMMA 3. If y exists on R, then as 2 — R, (g, of)° converges for
all f,g9eLYR).

Proof. Since C7 is dense in L?, Lemmas 1 and 2 remain valid for
feL{R), supp f C 2. If y exists, the uniform convergence y, —y on
compact sets entails the existence of a constant M, such that

(fs120)* < M,

for feCy(R) and hence for fe Li(R). By Lemmas 1 and 2 for f e L),
(f, BaS)? converges. For f,ge L}(R),

2(9,B2)° = (f + 9,Bo(f + 9)? — (f, BaS)* — (9, Ba®)?
and therefore (g, 8,f)° converges.

6. To prove the convergence of 8, in every compact set K of an
R which carries y, we may assume that y ¢ K. In fact, if p(z, ) is the
geodesic distance between x and ¥, we may choose, for sufficiently small
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constants p,, p, > 0,
K = {z|p < p(2,9) < p;} -

The uniform convergence of g, on K will imply that of the harmonic
function 48, on K and hence on K, = {|0 < p(x,¥) < p,;}. A fortiori,
the potential part in the Riesz decomposition of f, converges uniformly
on K, and so does, by the convergence of g, on K, the harmonic part
on K and consequently on K,.

Having chosen an arbitrary but then fixed compact set K of R,
y& K, we take a compact set K,, yeK,, KN K, =0, and a function
peCyR), >0, ¢o|K, =1, K, =supp¢ a regular region, K, N K = §,
and let 2 henceforth contain K, U K. We denote by §, the biharmonic
Green’s function g on K, and set

ﬁa:ﬂn—SD,B‘O, A;ND:f’
where f is independent of 2. Since 4%, — Bof) =0 and B, — Bof =
8By — BoSf)/on = 0 on 92, we have
Ba = Bof .

Denote the L? norm by | -| and choose compact sets K,, K, with
KcintK, cK, cintK,CK, and K,NK,=0, K,C 2.

LEMMA 4. The L? norm ||fg|[** is bounded in 2.

Proof. For the functions ge LYR), the restrictions g|K, form a
Banach space B, on which j, gives a bounded linear functional (g, 5,)%,

19, B < Kallgl®*, ko = 1Bl

By the Uniform Boundedness Principle, either there exists a constant &
independent of £ with

1(9, Bo)I** < k|l g|*
for all ge B, or else
I(g, Ba)le — 0

for some ¢ (in fact for g in a dense set in B) as £ — R. But we know
from Lemma 8 that (g, 5,) = (9, Bof) converges for every g. Therefore,
the first alternative occurs. In particular, for g = f,|K,,

(1Ball®)? < Kl Boll®e
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hence the Lemma.
7. We are ready to state our main resqlt:

THEOREM. On an arbitrarily given Riemannian N-manifold R, N
> 2, if the biharmonic Green’s function of the simply supported body,

7@, y) = lim 7,(x, ¥)
2-R

exists for some, and hence every, (x,y), then so does the biharmonic
Green’s function of the clamped body,

Bz, y) = lim Bo(,v) ,
Q-R
and the convergence is uniform on compact sets of R.

Proof. By virtue of the interior regularity estimate (c¢f. Agmon [1,
Sec. 5]) in Sobolev norms,

1Balli < CUSIE + 1ol
Lemma 4 implies that
| DB, ||¥* is bounded in 2

for every m > 0, |a|] < m. Therefore, by the Rellich compactness theo-
rem (cf. [1, Sec. 3]), there exists a sequence {§, = fB,,} such that, for
la] < m,

“D"(B,HP - .én)”K1 -0

as n— oo, p > 0. This in turn implies by Sobolev’s Inequality (cf. [1,
Sec. 3]) that, for |a| < m,

|Da([§n+p - Bn)l —0.

In particular, for « = 0 we have by f,|K = 8,|K the desired uniform
convergence of 8, on K. The uniqueness of the limiting function S on
R follows from

(9,8.9) / S(g}) (9,829 »
which implies
(9,89 = sig}p (95 B29)

for all g ¢ LA(R) with supp g C K.
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This completes the proof of the Theorem.

8. The criteria known for the existence of y are now available, as
sufficient conditions, for the existence of 5. In particular, for a fixed
regular subregion 2, of R,2,C 2, let v, be the harmonic measure on
Q — Q, with w,|02, =1, ©,]992 = 0. The limiting function o = lim,_z w,
is the harmonic measure of the ideal boundary of R on R — 2,. It is
known (e.g. Sario-Nakai [37]) that w =1 if and only if R belongs to
the class 0y of parabolic Riemannian manifolds, characterized by the
nonexistence of the harmonic Green’s function g(x,¥y) = lim,_ 5 g,(z, v).
Moreover, y exists on R if and only if R¢ ¢y and we L*(R — 2,) (Sario
[84]). The Theorem yields:

COROLLARY. If R& 0y and we L*(R — £2), then B exists on R.

For the sake of completeness we give a (slightly simplified) proof.
Choose z,yeR and then 2, with z,ye2,, For 2 D2, we have by
virtue of y, = 4y, = 0 on 34,

ra(@,y) = L 90(x,2) % gy(2,Y) = L 902, )% g2, y) .

If Rg 04, then g,(z,0) — 9(2,%), 9,(2,9) — 9#,y) on R, and w,— o0 #1
on R — 2, There exists a compact set C and constants 0 < m < M <oo
such that both g,(z,x) and g,(z,y) are between m and M for all z¢caQ,
and all 2 > C. Therefore they are between mo, and Mw, on 92, U 892,
hence on 2 — 2,, and we have

mzj Wg * Wy <I gox, 2) %902, y) < MZJ We* Wy .

R~09 2-20 2-920

If we LA(R — 2, the integral in the middle converges and so does 7,(x, ¥).
Conversely, if 7y(x,y) converges, so does the integral in the middle,
and we LX(Q — Q). The Theorem then gives the Corollary.

9. As an immediate application of the Corollary, we have the
result of No. 1 that E¥ carries p if N > 4. Moreover, we now see that
this fact is independent of the pole y and the exhaustion {Q} of E7.
Indeed, for N> 2, 2, ={r <1}, p> 1, 2 ={r <p}, p— oo,

~N+2 ~N+2
r — P ~N+2

Wg = — 7
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For N > 4, we have |lo|| < oo, hence 8 exists on E7.
For further illustration of the Corollary, consider the Poincaré N-
ball

BY = {r <1l|ds = (1 — r»=|dx|},
« a constant. A function k(r) on BY is harmonic if and only if

_ 1
PN-1Y(1 — pE)Ne

4h(r) = (r¥-1(1 — P)V-Dep/ ()Y =0,

that is,

h(r) = CIT ALY - ,,.2)—(N—z>ud,,. .
This is bounded, hence BY & 04, for every « if N =2, for a < (N — 2)7!
if N > 2. The harmonic measure is

clogr for N =2,
o(r) ~
c(l — p)~N-Dat1 for N > 2.
For 0 <p,<p<1,
(”0)”(/’0<r<ﬂ))z~ el — p)2a+3 for N=2,
(1 — p)y~W-Hats for N > 2,
and
a > —-g- for N =2,
BY carries g if{—-3<a<1 for N =3,
«<_ L  forN>3.
\ N -2
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