
BULL. AUSTRAL. MATH. SOC. 6 5 N 0 5 , 6 5 N I 5 , 65N30

VOL. 29 ( 1984 ) , 267-288 .

THE FINITE DIFFERENCE VERSUS THE
FINITE ELEMENT METHOD FOR THE

SOLUTION OF BOUNDARY VALUE PROBLEMS

VlDAR THOMEE

In this lecture we describe, discuss and compare the two classes

of methods most commonly used for the numerical solution of

•boundary value problems for partial differential equations,

namely, the finite difference method and the finite element

method. For both of these methods an extensive development of

mathematical error analysis has taken place but individual

numerical analysts often express strong prejudices in favor of

one of them. Our purpose is to try to convey our conviction that

this attitude is both historically unjustified and inhibiting,

and that familiarity with both methods provides a wider range of

techniques for constructing and analyzing discretization schemes.

We shall begin by describing and discussing the two methods for a

simple model problem, the Dirichlet problem for Poisson's equation in the

plane and then make some historical remarks. After this we shall present

some examples of recent work on discretization of boundary value problems

in which a unified finite difference finite element point of view is

helpful. In the first such example we consider two different finite
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268 V i d a r Thomee

difference schemes for the solution of a singular two-point boundary value

problem arising from a spherically symmetric Dlrichlet problem in three

dimensions. We then turn to a parabolic model problem and demonstrate how

the lumped mass finite element method may be used to construct an explicit

finite difference type scheme adjusted to the geometry of the domain. In

connection with the parabolic problem, we also comment on the concept of

superconvergence, and close by a remark concerning the discretization in

time.

Consider thus the Dirichlet problem

-AM = f in U ,
(1)

u = o on an ,

where Q is a bounded domain in Jf . In the finite difference method one

covers fi with a mesh \3'h, j S zf~\ 5 where h is a small positive

number, and determines the values of an approximate solution U. at the
3

finite number of mesh-points jh in fi from a linear system of equations.

This system is obtained by replacing derivatives in (l) by finite

difference quotients,

U. -2U ,+U. U. -2U .+U.
3+e 3 3-e 3+e 3 3-e

h h

at interior mesh-points, that is, such mesh-points for which the neighbors

(j±e,)h belong to fi . If all mesh-points of Q are interior in this

sense, the equations (2), together with the vanishing of U. for boundary
3

mesh-points will produce a linear system of the foxm All = F , with A

symmetric positive definite, and using a discrete maximum principle one may

show that

(3) sup \U.-u(jh)\ < Ch2\\u\\ ,

The second order accuracy is a consequence of the fact that the difference

operators in (2) approximate the corresponding derivatives to this order,

or, for smooth functions,
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V{x+he .)-2v(x)-v\x~he .) -2
(x)

1,2
r— h sup

For general smooth domains some mesh-points near the boundary are not

interior mesh-points, and other equations have to be set up for these

points, for instance by means of interpolation. This may, in fact, be

accomplished in such a way that the error estimate (3) remains valid, but

the proof will be somewhat more complicated and the symmetry of the matrix

A is lost. Higher order of accuracy may be attained by more complicated

choices of the finite difference approximations of the derivatives at the

expense of more complicated boundary approximations, matrices A , and

convergence proofs.

We now consider the simplest form of the finite element method for the

same problem (l). Let us assume, for simplicity, that ft is a convex

domain with smooth boundary. We then partition ft into disjoint triangles

T such that no vertex of any triangle lies on the interior of a side of

another triangle and such that the union of the triangles determine a

polygonal domain ft^ whose boundary vertices lie on 3ft . The maximal

diameter h of the triangulation will be a measure of the fineness of the

triangulation, which we shall assume to be quasiuniform in the sense that

each triangle contains a disk, with radius oh with o bounded below

independently of h . Let 5, denote the continuous functions en ft

which are linear in each triangle and vanish outside ft, . Such a function

Nh
X is uniquely determined by its values at the interior vertices {p.}

of the triangulation and may be expressed as

X(«) = Z x(P-)<Mx) •-•_n J J

where the "pyramid" functions {<)).}, , defined by <t>-[Ph) = 6., form a
3 1 3 K' JrC

basis for S, . Letting Lv denote the obvious interpolant of the smooth

function v vanishing on 3ft , we have, for instance,

(**) 0-Z", v—wjj_ ,_> + ?ij |VJ,u-7u| , _ . < Ch |)v] ,
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and

In the finite element method one first writes the Dirichlet problem in

weak form as

V<1>) = (/ , 4>) for al l $

where (•, •) denote the standard inner products in L_(fi) , and fTZ

the functions with first derivatives in L (Si) and vanishing on dQ . One

may then pose the discrete problem to find w, G S, such that

(5) (VM^, VX) = (/, X) for all X G ^ .

It is easy to see that this problem admits a unique solution for each f

in L^(fi) . This solution may also be defined as the function in 5,
d n

which minimizes the functional

(6) J(X) = Uvxll2 - 2 ( / , X) = «v(x-*)||2 - «vM«2 .

We note that this method may be written in matrix form as Aa = F

where A has elements (V<j>., V((>,) and thus is symmetric positive
0 *•

definite, and where a is the vector of nodal values of u, .

The standard L? error estimates for this method are

and i t has been shown that

(8) H~uhjQ) ^

The Lp estimates are of the same order in h as the best approximation

possible [cf. (U)) and so is the maximum norm estimate, modulo the factor

log l/h . In order to increase the accuracy one may employ functions which

reduce to polynomials of higher degree than first in the triangles. Thus,

for instance, with piecewise quadratics and cubics one would expect o[h )
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and 0\h ) error estimates, respectively. This will meet with some

difficulties in the case of a curved boundary, because of the discrepancy

between ft, and ft , but different ways have been devised to overcome

these.

One way of performing a triangulation of ft is to start with the

three families of straight lines a; = jh , x = jh , x + x = jh ,

j e Z . The triangles thus formed may be used in the interior of ft and

then supplemented by other triangles near 9ft to form the desired t r i -

angulation. If this is done, the equation corresponding to an interior

vertex takes the form, with U. = u~,(jh) and <J>. the corresponding basis
3 ft 3

function

U. -2U.+U. U . -2U .+£/ .
g+e j 3-e j+e g g-e

^ — ~ = h~2(f * )

We recognize this as essentially the same equation as our previous finite

difference equation, but with the right hand side /. = f{g"h) replaced by
d

an average of / over a neighborhood of the point x = jh . In practice

this average may have to be evaluated by a numerical quadrature rule, and

taking the value of / at i = jh is a possible such rule.

Thus the finite difference method consists in replacing derivatives by

finite differences with some ad hoc modification near the boundary, whereas

the finite element method uses a variational formulation in a way that

automatically accommodates the boundary conditions. The error analysis for

the finite difference method uses a local accuracy condition, usually based

on Taylor expansion, and some stability property, in our example in the

form of a discrete maximum principle. The finite element error analysis is

in essence based on the variational formulation itself and is global in

nature. We note that the finite element error estimates above require the

solution to have two derivatives, whereas four derivatives are needed in

the finite difference method. This advantage of finite elements stems from

the use of averages and disappeared when a quadrature rule is used.

The difficulties in the construction of finite difference equations

near the boundary are even greater for Neumann type boundary conditions,

whereas in the variational or finite element approach these are natural
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272 Vidar Thomee

boundary conditions which do not have to be imposed on the approximating

functions and are thus very simple to treat.

We pause now for some historical remarks.

The idea of using a variational formulation of a boundary value

problem for its numerical solution goes back to Lord Rayleigh [37, 32] and

Ritz [33]. In Ritz's approach the approximate solution was sought as a

finite linear combination of functions in a sequence {4>-K which in some

sense spans the space of admissible functions. Such functions could be, for

instance, polynomials or trigonometrical polynomials. The idea to use an

orthogonality condition such as (5) rather than the minimization of <7(x)

in (6) is attributed to Galerkin [19]. This latter approach is in some

sense more general than the Ray leigh-Ri tz procedure; its use for time-

dependent problems is sometimes referred to as the Faedo-Galerkin method

[15].

The defining feature of the finite element method may be considered to

be the use of approximating functions which are piecewise polynomials, on a

partitioning of the domain under consideration into small "elements", such

as triangles or quadrilaterals, and with the property that the polynomial

in an element is determined by local parameters. The approximating space

then admits a basis of functions with small support and, as a consequence,

the matrices occurring in the corresponding algebraic problems will be

sparse, which facilitates the computational work. The use in this context

of piecewise linear approximating functions based on triangulations adapted

to the geometry of the domain was suggested by Courant in an address

delivered to the American Mathematical Society in 19^1 [8], but the further

development and analysis of the method would occur much later.

Already in the fundamental 1928 paper by Courant, Friedrichs and Lewy

[9], finite difference equations of the form considered above were analyzed

and, in fact, deduced from a variational principle, although with the

Dirichlet integral replaced by a finite sum over the points of a uniform

mesh of the sum of squares of difference quotients. Convergence was shown

by compactness arguments and no error estimates or convergence rates were

given. Error estimates of the type described above in (3) were shown by

Gerschgorin in 1930 [20]. For the following several decades the finite

difference method continued to develop as a basic technique in numerical
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work and is still by some considered to be the most effective, particularly

for hyperbolic problems. The analysis has grown increasingly sophisticated

mathematically, but has generally moved away from the variational approach.

The finite element method as it is known today originated in the

engineering literature, where in the mid 1950s structural engineers had

connected the well established framework analysis with variational methods

in continuum mechanics into a discretization method in which a structure is

thought of as divided into elements with locally defined strains or

stresses. Some of the pioneering work was done by Turner, Clough, Martin

and Topp [.401 and Argyris [/] and the name of the finite element method

appeared first in a I960 paper by Clough [7]. The method was later applied

to other classes of problems in continuum mechanics, see, for example,

Zienkiewicz and Cheung [43]; a standard reference from the engineering

literature is Zienkiewicz [42J.

In the mid 1960s, a number of papers appeared independently in the

mathematical literature, which were concerned with the construction and

analysis of finite difference schemes by the variational principle. Thus

Friedrichs and Keller [7 7] applied the Rayleigh-Ritz procedure with piece-

wise linear approximating functions to the Neumann problem and gave the

natural error estimates in the energy norm, and Feng [16] persued a similar

program for a somewhat more general class of problems, including the

equations of elasticity. Other related work was published by Cea [4],

Demjanovic [7 7] and Oganesjan [28]. The methods discussed were, in fact,

special cases of the finite element method but were thought of by the

respective authors as finite difference methods; they were referred to in

the Russian literature as variational difference schemes.

In the period immediately following this, the theory established

itself through contributions such as Birkhoff, Schultz and Varga [3], in

which the theory of splines was brought to bear on the development, and

Zla'mal [44], with the first stringent error analysis of more complicated

finite elements. The L error estimate in (7) was proved by a now well-

known duality argument independently by Aubin [2], Nitsche [26] and

Oganesjan and Ruchovets [29] and later maximum-norm error estimates such as

(8) were shown by Scott [36], Natterer [25] and Nitsche [27]. The theory

attracted the attention of many mathematicians including several previously

working with finite differences and is now a very active field. We shall
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refrain from describing the more recent history as the main purpose of our

above remarks was to point out how early work on finite differences was

related to variational principles and that the pioneers in the mathematical

analysis of the finite element method thought in terms of finite

differences. We refer to the books by Ciarlet [6] and Strang and Fix [37]

for more references.

We shall now return to the mathematics and cite some more recent work.

Consider f irs t the Dirichlet problem

-AM + qix)u = f in B ,

w = 0 on 3S ,

where B = B (0) is the unit ball in R and where q is non-negative

and q and / are smooth and depend only on |x| . Then the solution

also depends only on |x| and introducing polar coordinates, one finds

that u = u{\x\) satisfies the singular two-point boundary value problem

(9) -u" + | u' + qix)u = fix) for all x e (0, l) ,

u'iO) = w(l) = 0 .

The differential equation may be written in the form

-{x2u')' + x2qu = x2f ,

and one finds hence that u solves the variational problem

Aiu, <f>) = (x2wr, $') + [x2qu, <|>) = [x2f, 4>) for all $ G jp- ,

where H denotes the space of all v £ £((0, l]) which vanish at x = 1

and for which ai' £ i . One may therefore seek an approximate solution

in the finite dimensional space S, of continuous functions which vanish

at x = 1 and which are linear in each interval J. = [ij-l)h, jh) ,
3

j = 1, . . . , N , where h = 1/N , and which sat isf ies

(10) 4 ^ , x) = [x2f, x) for a l l X e ^ .

Letting •(<J> .]• be the basis of S, defined by <(>.(x.) = 6. . and
3 " ft % 3 1*3
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U. = u, (x.) (x. = ih] this problem reduces to the difference scheme

I (V"J + ( ^ V VK + (*^*i' *o]yi = [&• •o) '
- 2 W l ] 1 ^ f 1 ( 2 . . } . . I f 2 . . 1

- x i - \ — h — \ + fc fe=?_x [
x "h* *i]°k = h [ x f ' h \

1 f-2 Ui*rUi

[x — s —
for i = 1, . . . , ff-1 ,

-2 1 1 2 2
where x. , = r-pr 5x.+2x.x. J-5x.

^+^ 12 [ i t i+l i

Using a straightforward variational technique, Schreiber and

Eisenstadt [35] have shown that

| | x ( V M ) | | L <Ch2\\xu"\L ,

and by a somewhat more refined analysis, Jespersen [22] was able to derive

the uniform error bound

Numerical experiments using the above procedure show a marked loss of

accuracy near x = 0 , which is not unexpected as the underlying norm

contains the weight function x . In order to remedy this disadvantage we

shall now consider an alternative variational formulation with a weaker

weight near the origin (e/ . Eriksson and Thomee [J4]). For this purpose we

first observe that the differential equation (9) may also be written

~{xu')' - u' + xqu = xf ,

and that u thus sa t i s f ies

B{u, <f>) = (xwf, <J)') - ( u \ <(>) + (xqu, <}>) = (xf, cj>) for a l l <J> G ff1 .

We therefore propose as an al ternat ive to (10) the discrete method

(11) Bfu^, x) = ixf, X) for a l l X G ^ •

We note that S ( • , •) i s non-symmetric but for V vanishing at x = 1 ,

we have

B(v, v) = (xv', v') + ^u(O) + (xqu , v) > 0 for v $ 0 ,
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so that , in particular, the discrete problem (11) admits a unique solution.

The natural norm associated with this formulation is ||x v\\ and one may

demonstrate the uniform error estimate

Numerical experiments show a more uniform error distribution over the

interval than for the above symmetric method.

This time the corresponding difference scheme is

uo ~ ui +

U. -2U.+U. U. -£/. . i+1

i = 1, . . . , N-l ,

or, using Simpson's rule for the local quadratures,

, 2 ~ c 2/z
n

+ - f

where x^ = %(v*i+i) • *i+h = ?K+!,) ' a n d

We note again that both procedures are finite difference schemes and

that they have been arrived at by a variational philosophy rather than by

an ad hoc approximation of derivatives by finite difference quotients.

We shall briefly consider the application of the finite difference and

the finite element methods to the ini t ial boundary value problem for the

simple heat equation,
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(12) ut - AM = / in ftx(O, <=°) ,

u = 0 on 3flx(o, °°) ,

u(x, 0) = v(a;) .

In the finite difference approach to this problem we may replace the

differential equation by

where U. is the approximation at {jh, rik) with h and fe the mesh
3

sizes in space and time. This equation may be written in the explicit form

+ kf. ,
J 3

where X = fe/?z . Combined with discrete initial and boundary conditions

this defines a method for finding an approximate solution of our problem.

If k < kh all the above coefficients are nonnegative and, assuming the

boundary conditions are well behaved, maximum norm stability holds, so that

in the case of the homogeneous equation (/ = 0) ,

max
3 3

< max
3

iP.
3

< . . . £ max
3

U°
3

o
In practice, the requirement k <, \h often presents too severe a

restriction for the time step and one is lead to using instead of a forward

difference quotient in (13) a backward difference quotient, which leads to

the equation

In contrast to our previous explicit scheme, this method is implicit in

that a linear system of equations has to be solved at each time level, but

no restriction on the mesh-ratio A is required for stability. In both

cases, in the same way as for the elliptic problem, complications may arise

in the construction of the difference equations near the boundary and the

symmetry of the matrices may be lost.
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Taylor expansion around the point (_jh, nk) shows that a smooth

solution of (12) satisfies the equation (13) up to an error of order

0{k+h ) and similarly for the backward Euler equation. Together with the

stabil i ty of the method this will show a global error estimate of the same

order. Since these schemes are only first order in k , one often prefers

the Crank-Nicolson scheme

A I
(if1*1 -

3+e 3

h2 h2

which is symmetric around [jh, {n+%)k) and has local and global errors of

order 0 [k +h J , without any mesh-ratio restrictions for stability. We

refer to Richtmyer's book [33] for more details about the finite difference

method.

In the Galerkin finite element method for the same problem one first

writes the problem in weak form

[ut, 4>) + (vMj 7*) = ( / , 4>) for <i> e flj(n) , t > o ,

and then reduces the problem to a system of ordinary differential equations

by setting WT,(*) e S-u > with S, as for the elliptic problem above, and

K , t ' X) + (Vuh' VX^ = {f' <t>) for X G Sh ' * " ° '

uh{0) = vh « v .

This may then be followed by a discretization in time, for instance by

forward or backward differencing,

, VX) = {f, X) for

Vx) = t / 1 * 1 . X) for

or by the Crank-Nicolson method

, x) , (V ̂ . ,x) - tf"". X)

In matrix notation the semidiscrete equation may be written
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(15) Ba'(t) + Aa(t) = F(t) for t > 0 , with a(0) = y given,

where B is the mass matrix with elements b ., = (<{>., <j>,) , J4 = (<z .,)

the stiffness matrix with a.^ = (Vf̂ ., V^) , F = (ffe) with / f e = (/, <J>fe)

and a(t) vector of nodal values for the approximate solution. The

completely discrete schemes may be correspondingly represented, as for

instance for the forward Euler method,

(16) B

We note that since B is not diagonal, this is not a completely explicit

method as was the case for the forward Euler finite difference method.

The most natural analysis of these finite element methods take place

in L based spaces and in the Lp norm one may show, for instance, for

the homogeneous semidiscrete problem with suitable choice of discrete

initial data,

and for the backward Euler method with an additional term C&jAull. /Q\ •

Maximum-norm error estimates are also available, but as before their proofs

now require more refined tools.

We note that in the same way as for the elliptic problem, in the case

of a triangulation which is uniform in the interior of SI , these equations

may be interpreted as finite difference equations, but even for non-uniform

triangulations, the error stemming from the discretization in space is

0(h ) • For a survey of estimates such as the ones just quoted, see Thomee

As remarked above, the most natural finite element discretization of

the heat equation leads to the semidiscrete problem (15) where B is

positive definite but not diagonal. We shall now briefly consider a

modification of this method, the lumped mass method. This method may be

most easily defined by simply replacing the matrix B in (15) by the

diagonal matrix B having for its diagonal elements the row sums of B .

The homogeneous semidiscrete problem then takes the form
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(17) Ba'(t) + Aa(t) = 0 ,

in which B may t r i v i a l l y be inverted.

Another way of defining th is method is as follows (of. Raviart [30]):

for each t r iangle T in the triangulation (with vertices \p .}^ ) l e t us

introduce the quadrature formula

3
'_(/) = ̂  area T £ f[p ) ~ f fdx ,

i 3=1 T ' J ' Jx

and set

where the summation extends over the triangulation. Then the equation (17)

is equivalent to

(18) (w , x k + fiu
h>

 vx) = 0 for a l l x G S, .

This modification may be applied as well to the totally discrete

schemes discussed above. For instance, the forward Euler method (lU) or

(l6) now corresponds to

>h

or in matrix form

(19) [ fc , x) + {Vl?1, Vx) = 0 for a l l X e

i a n + 1 = (B+kA)an .

In this latter case, as B is diagonal, we may think of (19) as a purely

explicit method, a generalization to non-uniform meshes of the forward

Euler finite difference scheme. As earlier the stability of this method

2
requires the mesh-ratio k/h to be sufficiently small.

It may be shown that the error in the lumped mass method is again of

second order. More precisely, if the initial data are chosen

appropriately, we have for the semidiscrete problem
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For the forward and backward Euler methods an additional term

C?c||(-A) ' u|| . . appears and in the case of the Crank-Nicolson method,

? s /p

Ck ||(-A) v|| , . . Here the fractional powers of -A are defined by-

spectral representation.

An interesting feature of the lumped mass method is that, in contrast

to the situation for the standard Galerkin method, an exact maximum

principle holds, under the specific assumption that the triangulation

contains no obtuse triangles, so that (of. Fujii [7S])

and similarly for the discretizations in time. This maximum norm stability

may be applied, as in the finite difference theory, together with a local

approximation property to yield maximum-norm convergence of the method (of.

Ushijima [47]). However, as the local order of approximation will

generally only be 0(h) , the same will hold for the global error bound.

Using energy methods suggested by the Galerkin formulation (l8), it is

shown in Chen and Thome'e [5], without the use of the maximum principle and

the non-obtuseness of the triangles, that

\\uh(t)-u(t)\\L = o(h2(log i] ] ,

and correspondingly for the completely discrete variants.

We may thus think of this example as a way of constructing a finite

difference scheme for a non-regular mesh, and where the finite element mode

of thinking produces a better error bound than the straight-forward finite

difference approach.

The theory of finite difference schemes has obviously influenced the

analysis of the finite element method and many results for the latter may

be seen as generalizations of earlier results for finite differences. We

shall mention one particular such instance when finite difference analysis

was instrumental in the development. This concerns a type of result which

has later become characterized by the term superconvergence (of. Douglas

and Dupont [72]). Consider thus the pure initial-value problem for the

heat equation
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u,=u f o r -» < x < <=° , t > 0 ,
Lr 3C2C

and le t u, denote the approximate solution by Galerkin's method in the
n

set 5, of smooth splines of order r fthat i s , of C piecewise
n v

polynomials of degree r - 1 ) , based on a uniform mesh with subinterval

length In. . Then the best order of global approximation is Offr**) and

such a bound may also be shown for the global error u. - u . However,

interpreting the discrete equation as a finite difference equation and

using established knowledge for these, i t was shown in Thome'e [3SJ that at

the mesh-points, the error is indeed of higher order, or

uhUh, t) - u{jh, t) = 0{hZr~2) as h -*- 0 .

For instance, for v = U , which corresponds to piecewise cubics, the

global error is o[h ) and the error at the mesh-points is o(h ) .

In most work on finite element methods for time dependent problems the

discretization in time has been accomplished by a finite difference

approximation, such as the forward or backward Euler or the Crank-Nicolson

method. I t is natural to consider also the use of the Galerkin method in

this context and results in this direction have been presented in Jamet

[21], Lesaint and Raviart [24] and Johnson, Navert and Pitkaranta [23]. We

shall quote briefly some work in preparation for parabolic problems by

Eriksson, Johnson and Thomee [.131.

Consider first for simplicity an initial-value problem for a system of

ordinary differential equations of the form

(20) u' + Au = / for t > 0 , M(0) = V ,

where A is a constant matrix. Letting 0 = t < t < . . . be a partition

of the positive real axis we shall approximate the solution of (20) by a

function U which reduces to a polynomial of degree less than or equal to

o - l ( ( / en A on each of the intervals ft , t ,) and which is
^ l q-lJ K n n+lJ

determined from the equations
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t t
( n+1 „ r n+1(U'+AU,
t " T "' >t
n n

for all i(; e n

where U+ denote the limits from above and below at t . (Note that

continuity across the points t is not required from U . J For the case

of piecewise constant approximating functions (q = l) this procedure

reduces to a backward Euler method and for q > 1 it is associated with a

higher order subdiagonal Pade approximation of the exponential. With

k = max(t -t J one may show the expected error estimate

sup \U{t)-u(t)\ £ Ckq ,
t

but also a "superconvergent" order error estimate at the partition points,

sup
n

C ^ " 1

Using piecewise linear approximating functions, for instance, the global

error estimate is 0[k ) and the error at the nodes is 0[k ) .

This procedure, which was analyzed for ordinary differential equations

by Del four, Hager and Trochu [10] may now be applied to systems such as

(15) obtained from discretization of parabolic equations. One may then

show, for instance, in the case of the homogeneous equation, with suitable

choice of semidiscrete initial data, that the error between the completely

discrete and the semidiscrete solutions is tiounded as

Such estimates may be combined with error bounds for the discretization in

space to yield optimal order error estimates for the totally discrete

scheme. Note that in the application to a nonhomogeneous equation this

method uses averages in time of / rather than point-values as was the

case in the finite difference approach.
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This concludes our series of examples of work on the border line

between the finite difference and finite element methods. In summary, our

examples propose to demonstrate that often an efficient way of generating a

(generalized) finite difference scheme for a boundary value problem is to

apply the finite element Galerkin approach, combined with numerical

quadrature. Such a method may be easily adapted to the geometry of the

problem and its error analysis naturally offers itself by the variational

formulation.
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