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An efficient representative volume element generation strategy is developed in modeling
nanoporous materials. It uses periodic 3D beam finite element (FE) models derived from
skeletonization of spinodal-like stochastic microstructures produced by a leveled random field.
To mimic stiffening with agglomeration of the mass at junctions, an increased Young’s modulus
is assigned to the elements within the junction zone. The effective Young’s modulus, Poisson’s
ratio, and universal anisotropy index are computed. A good agreement of the Young’s modulus
predictions with those obtained from experimental results for phase volume fractions
0:20,fB , 0:50 is observed. Moreover, the elastic anisotropy index of the generated beam
networks shows sufficient proximity to isotropy. Finally, it is demonstrated that, as compared to
the simulation statistics of voxel-FE models, for the beam-FE models over 500-fold computa-
tional acceleration with 250-fold less memory requirement is provided.

I. INTRODUCTION

Nanoporous materials made by dealloying present
themselves as a stochastic open-cell ligament networks
at nanoscale with solid volume fractions in between 0.25
and 0.50.1–4 High yield strength to phase volume ratio,
large specific surface area, and electrocatalytic perfor-
mance are among towering features popularizing their
use in applications such as catalysts, sensors, optical-
active materials, mechanical actuators, fuel cell and
microbalance electrodes, and coating for medical devi-
ces.2,5,6 Upon mechanical loading, a bending-dominated
load transmission occurs among interconnected liga-
ments.7 Thus, the Gibson–Ashby scaling relation8 is
frequently used with reference to their mechanical be-
havior. However, this leads to more than an order of
magnitude over-prediction of the Young’s modulus
especially with smaller solid volume fractions.4,9–15

This prediction gap is bridged by devising 3D finite
element (FE)-based micromechanical analyses of

representative volumes, see, e.g., Refs. 4 and 13. In Ref.
4, a representative volume element (RVE) is formed through
3D tomographic reconstructions using a dual-beam focused
ion beam (FIB) and scanning electron microscopy (SEM).
The identified phase domain is then discretized with
quadratic tetrahedral FEs and used in simulations of
compressive loading. In Ref. 13, a new scaling relation, as
a modification of that suggested in Ref. 16, is proposed
based on the simulation results devising voxel-based FE
discretizations of a stochastic random composition field
representing the early stages of spinodal decomposition as
conceived in Ref. 17. However, these models require
a notably large amount of solid FEs and degrees of freedom
which demand high computational power.
To remedy this high computational source demand,

however, regarding simulation of bone tissue for which
classically voxel-based FE simulations were conducted, see,
e.g., Refs. 18–20, researchers proposed the use of beam-FE
or beam-shell-FE models.21–24 A 3D-line skeleton graph
analysis technique was used in Ref. 21 to describe the
internal structure of the trabecular bone, and a network of
straight beam elements were utilized for determining the
stiffnesses. In these alternative studies, the authors obtained
satisfactory agreement with those computed from voxel-
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based FE models having solid elements. Moreover, signif-
icant reductions in the computational costs pertaining to
time and memory are reported. In the context of nanoporous
gold, an efficient FE beam-based modeling approach re-
lying on skeletonization has first been reported in Ref. 25.
In Ref. 26, a similar idea based on 3D focused ion beam-
SEM tomography data is pursued.

In the current study, we revisit Cahn’s algorithm (Ref.
17, see also Ref. 13) to generate a periodic skeletonization-
based efficient beam-FE model representing 3D stochastic
bicontinuous microstructures. The beam-FE model is de-
rived from homotopic medial axis skeletonization of the
spinodal-like stochastic microstructures generated by
a convenient and fast numerical algorithm computing
a leveled periodic random field composed of superposi-
tion of standing sinusoidal waves of fixed wave length.
For the possible influence of shear strains, especially for
beams having thicker cross sections, Timoshenko beam
theory is utilized. For the diameter of the assumed
circular cross sections, a 3D local thickness field
computation is used. Thus, in terms of providing an
accurate thickness distribution assignment and by carry-
ing the native topological features of the phase field, the
presented periodic skeletonization-based microstructure
generation method proves superior to the regular or
disordered beam network approaches relying on perfect
and randomized diamond-cubic unit cells9,10,27,28 or
Voronoi or Laguerre tessellations.29–32 For an extended
review of relevant microstructure generation methods,
the reader is referred to Ref. 25 and the references
therein. To mimic the stiffening with agglomeration of
the mass in junctions, an increased Young’s modulus is

assigned to the elements within the junction zone
through a radially varying stiffness scaling factor. While-
doing so, the effective Young’s modulus, effective
Poisson’s ratio, and effective universal anisotropy index
values are computed for the developed microstructures.

II. STOCHASTIC MICROSTRUCTURE
GENERATION

Computational mechanics of composites relies on com-
putational micro-to-macro transition.33,34 Figure 1 depicts
a composite through the notion of a continuum with
microstructure for a porous material and possible discretiza-
tion strategies for numerical simulation. Here, MB � R3

represents the homogenized macrocontinuum. Each material
point Mx 2 MB at the macroscale encapsulates a so-called
representative volume V � R3 composed of a solid and pore
phase denoted by B � R3 and P � R3, respectively. The
averages of the microscopic stress and strain fields over the
RVE centered at a material point give the macroscopic stress
and strain fields at the same point, as resultants of a boundary
value problem (at the microscale) once the condition of
separation of scales holds with lL � RVEL � ML35–37

where the characteristic size of a microstructural feature
(e.g., ligament diameter) is denoted by lL. The averaging
process, once computationally realized, could devise different
discretization strategies, see, e.g., Fig. 1.

A. Periodic random field

Let x, N, qi, and ui denote the position vector, the
number of waves, wave direction, and wave phase of the

FIG. 1. Each material point Mx 2 MB in macrocontinuum MB corresponds to a microstructure B of the representative volume V whose effective
behavior is representative of that of the material as a whole. Here, ML denotes the characteristic size of the body at macroscale or the length scale
associated with the fluctuations of the applied mechanical loading. RVEL is the RVE size. Computationally, different discretization strategies are
possible in the representation of the domain, e.g., a voxel-FE or beam-FE model, as used in the current work. (color online)
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ith wave, respectively. Let a constant wave number qi 5
jqij 5 q0 with uniformly distributed wave directions over
the solid angle 4p and wave phases uniformly distributed
on [0, 2p). In view of these definitions, we consider
a random field f(r) generated by superimposing standing
sinusoidal waves of fixed wave length and amplitude but
random direction and phase17:

f xð Þ ¼ 2
N

� �1=2 XN
i¼1

cos qi � xþ uið Þ : ð1Þ

Given the random function (1), the different phases of
the system are defined via a level cut n:

x 2 B if f xð Þ, n ;

x 2 @B if f xð Þ ¼ n ; ð2Þ

x 2 P if f xð Þ > n :

Letting j{d}j denote the volume contained in {d}, the
volumes fractions of the solid and pores are represented
by fB ¼ Bj j= Vj j and fP ¼ Pj j= Vj j, respectively, with
Vj j ¼ Bj j þ Pj j and thus fB þ fP ¼ 1. Under the given
conditions, f xð Þ is a Gaussian random field with hfi 5 0,
h f 2i 5 1. Letting erf�1(x) denote the inverse error
function, this allows linking the phase volume fraction
fB to the level cut n by

n fBð Þ ¼ 21=2erf�1 2fB � 1ð Þ : ð3Þ
Within a selected finite domain size, the fields gener-

ated using Eq. (1) are generally not periodic. However,
translational periodicity of f with lattice vectors of
magnitude a can be achieved by making use of waves
with qi of Eq. (1) be of the form

q ¼ 2p
a

h; k; lð Þ ; ð4Þ

where the Miller indices h, k, and l are integers
amounting to H 5 [h2 1 k2 1 l2]1/2 hence constant
jqj5 q0 5 2pH/a. Aiming at a high multiplicity, as well
as a sufficient number of wavelengths represented
within a, the considered microstructures in this work
derives from random fields with H 5 1461/2 with
h0 5 11i-, h1 1 12i-, h1 8 9i-, h3 4 11i-, and h4 7 9i-
type vectors, leading to N 5 96 independent directions.
For further details on the generation and the elastic and
topological properties of these microstructures, the
reader is referred to Soyarslan et al.13

B. Generation of periodic beam-FE model
microstructures

Unlike other studies,9,10 which use regular or disor-
dered diamond-cubic unit cells in the development of
beam networks, generation of the more realistic beam-FE

FIG. 2. Periodicity of the generated beam-FE model is provided by making use of topology conserving medial axis skeletonization of the
voxelization of the random periodic field over a 3a � 3a � 3a sized domain. Then, the one-voxel-thick skeleton of a � a � a central cubic cell is
clipped out. The voxels making up the skeleton are then linked by ligaments to each of which a circular beam section is assigned (right-top). This
makes each skeleton voxel a FE node. A node merging more than two ligaments is referred to as junction which is depicted by red spheres. Blue
spheres denote periodically located nodes at the periodic volume element face of size a � a � a. In the simplified beam network models, the
junctions connected by ligaments are merged by straight links composed of one or many beam elements (right-bottom). In this process, all junction
and periodically located node positions are preserved. (color online)
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model in the current study requires skeletonization of the
underlying random periodic field. To this end, we use
a modified version of MATLAB script Skeleton3D.38 As

an input, Skeleton3D uses a binary image sequence, i.e.,
the voxel representation of the 3D phase distribution
within a finite domain size. One-voxel-thick medial axis

FIG. 3. Generated (left) 3D periodic phase field, (b) one-to-one periodic skeleton based beam-FE model, and (c) simplified periodic beam network
for the single level cut method for solid volume fractions of (a) 0.20, (b) 0.30, (c) 0.40, and (d) 0.50. The number of beam elements for
corresponding discretizations are (a) 18,317 and 3674, (b) 26,786 and 8166, (c) 31,989 and 11,479, and (d) 34,351 and 12,716. (color online)
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skeleton, homotopic to the original image, is created by
a connectivity preserving thinning algorithm which relies
on an iterative removal of the surface voxels of the
binarized image belonging to the periodic field. While
doing so, skeleton pruning is applied where redundant
branches shorter than a threshold length are removed.
The voxels making up the skeleton are then linked by
beam FEs with circular cross sections. This makes each
skeleton voxel an FE node. A node merging more than
two ligaments is referred to as a junction. In the
simplified beam network models, the junctions connected
by ligaments are merged by straight links composed of
one or many beam elements. Although voxelizing a 3D
cubic cell with edge length of lattice parameter a in view
of Eq. (4) assures the periodicity of the voxelization, due
to boundary effects, periodicity of the skeletonization is
not guaranteed. To remedy this, we consider a cubic
domain size of 3a � 3a � 3a over which the random field
is computed and voxelization is realized. After the
application of the skeletonization, the skeleton of the
central cubic cell with size a � a � a is clipped out, as
depicted in Fig. 2.

In this work, 128 � 128 � 128 voxelization of the
random field realizations are considered over a single unit
cell of size a. Figure 3 demonstrates the phase distribu-
tion for microstructures with phase volume fractions fB
ranging from 0.20 to 0.50 and the corresponding two
beam-FE model generated by making use of the de-
veloped periodic skeletonization procedure. The density
and connectivity of the ligaments are higher for the
volume fraction of 0.5 if compared to those of 0.2.

C. Local thickness distribution

A complete geometrical description of the discretization
of the domain with beam FEs having circular cross sections
is not possible without identification of the radii of the
cross sections. To this end, we follow a path similar to the
steps in Ref. 39 where the distribution of local dimensions
of the ligaments of nanoporous gold is recovered from the
skeletonized scanning electron micrographs and Euclidean
distance fields. The ligament diameter at an arbitrary node

of the beam network is retrieved from the local thickness
field qualified using the plugin BoneJ40–42 of the open-
source image analysis platform Fiji.43 In this method, the
local thickness D(p) at point p 2 B is defined by the
diameter of the largest sphere inside the structure which
contains the point p,40 i.e.,

D pð Þ ¼ 2�max r: p 2 sph x; rð Þ � B; x 2 Bf gð Þ :

ð5Þ
Figure 4 demonstrates the local thickness distribution

of the periodic beam-FE model produced for phase
volume fractions of 0.20, 0.30, 0.40, and 0.50. As
anticipated, junctions acquire larger diameters. Figure 5
shows the distribution of the mean ligament diameter for
the beam-FE model as a function of phase volume
fraction. It is seen that, although the mean ligament
diameter increases with increased phase volume fraction,
the change in the standard deviation seems to be
marginal. Figure 5 also shows that there is a good
agreement between the periodic beam-FE model compu-
tations with the voxel-FE computations presented in
Ref. 13.

III. ELASTOMECHANICAL CHARACTERIZATION
OF PERIODIC BEAM FE MODELS

A. Periodic homogenization and effective
mechanical property determination

Let the displacement field at x 2 B at time t 2 Rþ be
denoted by u: B �Rþ ! R3 and r is the Cauchy stress
tensor. Omitting dynamic effects and body forces, the
microequilibrium is defined via divr 5 0 in B. In view
of linear and infinitesimal elasticity, we use r ¼ ℂ:e in B,
where ℂ is the elastic constitutive tensor and e :5 sym(d) is
the microscopic strain tensor with d 5 =u denoting the
displacement gradient. Considering elastic isotropy at the
microscale, the definition of ℂ requires only two material
constants: the Young’s modulus E and the Poisson’s ratio m.

The macroscropic response of the composite is iden-
tified through an averaged Hooke’s law

FIG. 4. Local thickness distribution of the generated beam-FE models for (a) 0.20, (b) 0.30, (c) 0.40, and (d) 0.50 phase volume fractions
following the method provided in Ref. 39 in conjunction with Refs. 40 and 42. An increase in the ligament diameters with increasing phase volume
fraction with junctions acquiring relatively higher thickness in each case is evident. Local thicknesses are given in terms of wave length k 5 2p/q0
of the random field. (color online)
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Mr ¼ ℂ?:Me in MB ; ð6Þ

with ℂ?, Mr, and Me denoting averaged elastic constitu-
tive, stress and strain tensors, respectively. At the macro-
scale, the composite is not necessarily isotropic. Thus, ℂ?

has 36 effective constitutive constants where only 21 of
them are independent. These constants are determined by
computing Mrhii for i 5 1, . . ., 6 independent load cases
which are fully prescribed in terms of macroscopic strain
tensor Mehii that is imposed to the RVE by means of
a convenient macroscropic displacement gradient Mdhii
through four master nodes only. These points correspond
to the corners in a cubic RVE and have reference positions
x{1} 5 (0,0,0), x{2}/jx{2}j 5 (1,0,0), x{3}/jx{3}j 5 (0,1,0),
and x{4}/jx{4}j 5 (0,0,1). Under applied macroscopic
loading i, the displacement vector of control node j is
fully prescribed as u{j}hii(t) 5

Mdhii(t)�x{j}.
With xþ 2 @Vþ and x� 2 @V� denoting two nodes

periodically located, the application of 6 independent load
cases are conducted under periodic boundary conditions
considering periodic displacements u and rotations h as

u ih i xþ; tð Þ � u ih i x�; tð Þ ¼ Md ih i tð Þ � xþ � x�½ � ;

h ih i xþ; tð Þ � h ih i x�; tð Þ ¼ 0 : ð7Þ

With the limitation to geometrically linear analysis, the
homogenized stresses are then computed viz.44

Mr ih i ¼ 1
Vj j

X4
j¼1

f jf g ih i 	 x jf g ; ð8Þ

where f{j}hii is the external force applied to control node j
during load case i. The symmetry of Mrhii is guaranteed
for the converged solution which provides the rotational
equilibrium of forces f{j}hii.

44 Once the computational
homogenization is completed, the extent of anisotropy in
ℂ? may be quantified using the universal anisotropy
index AU.45

AU ¼ KV

KR

þ 5
lV
lR

� 6$ 0 ; ð9Þ

where KV, lV, KR, and lR are Voigt and Reuss estimates
for the isotropicized single crystal elasticity shear and
bulk moduli, respectively. For elastic isotropy, AU 5
0 and AU . 0 increase with increasing elastic anisotropy.

B. Treatment of local stiffening in the vicinity of
junctions

Consideration of the agglomeration of the mass in
junctions is crucial for an accurate identification of the
stiffness in bending dominated structures such as the
ligament network of nanoporous gold.9,10,46,47 With this
mass agglomeration, there occurs a considerable increase
in the bending resistance through the increase in the
section’s moment of inertia in junction vicinities. In
beam-FE models, this cannot be compensated by using
the increased local thickness around junctions. The joint
stiffening methods for 3D steel framed structures dates
back to 196348 and constitute a wide field of research
area. For the details of these studies, one may refer to the
review paper by Diaz et al.49 In the spirit of these studies,
a junction zone strategy is devised in this work. Accord-
ingly, an increased Young’s modulus is assigned to the
elements within the junction zone through a stiffness
scaling factor as summarized in Fig. 6.

IV. RESULTS AND DISCUSSION

A. Model details

In this study, only periodic beam-FE models with one-
to-one utilization of the underlying homotopic medial
axis skeleton in the absence of any network simplifica-
tions, see Fig. 2, are considered. Since periodic structures
are concerned, the computed responses are deemed to be
effective for each individual realization. Phase volume
fractions of 0.20, 0.25, 0.30, 0.40, 0.45, and 0.50 are
investigated considering nanoporous gold made by deal-
loying. Each investigation is supported by five stochastic
realizations satisfying H 5 1461/2 to collect sufficient
statistical information.

FIG. 5. Local thickness distribution for the developed beam-FE models
as a function of phase volume fraction computed using the method
provided in Ref. 39 in conjunction with Refs. 40 and 42. Data are
presented as averages of the means l (dots) and averages of the standard
deviations r from ligament diameter distribution analysis over 5 random
realizations. A comparison with the data from Ref. 13 is also provided in
which computations over 3D images of 36 wave length size aperiodic
microstructures with 512 � 512 � 512 voxel discretization are
considered. The results are presented in terms of the wave length k 5
2p/q0 of the random field. Despite the differences in both domain size of
computation and discretization resolution, a good agreement especially
with increasing phase volume fraction is observed. (color online)
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All reported results use 384� 384� 384 voxelizations
having fixed sizes for the periodic skeletonization pro-
cedure with the skeleton occupying the central 128 � 128
� 128 voxel region is clipped out for simulations. By this
way, we provide a voxel resolution which is identical to
the one that is used in voxel-based FE simulation,13 in
which the voxel size was determined through mesh
convergence analysis.

Notwithstanding with the elastic anisotropy of the gold
single crystal, we assume elastic isotropy of the solid
phase with EB ¼ 79 GPa and mB ¼ 0:44.50 Since the
properties exhibited by the surfaces of the bodies are
different from those associated with their interiors, in
nanosized samples of nanoporous gold, the stored energy
in the surfaces can become comparable to that of the
bulk. As a consequence, a dramatic elastic stiffness gain
is observed in nanoporous metal samples with reduction
of the average ligament diameter at sub-micron scale, see,

e.g., Refs. 51–53, and the references therein. In Ref. 53,
randomly connected beam-FE networks accounting for
surface elasticity theory and constructed using Voronoi
tessellations are used. In the context of plasticity, surface
and inner grain boundary conditions play a significant
role for crystals at small scales through affecting the
dislocation activity and thus hardening behavior, see,
e.g., Ref. 54. This constitutes another source for size-
affected mechanical response which is not considered in
conventional continuum mechanics estimates. Following
in line with our earlier studies in Ref. 13, we leave
the size effect beyond the scope of the current study.
Since no size dependent constitutive phenomena are
considered, the computed mechanical properties are
equally valid for any ligament size.

The investigations are realized considering constant
stiffness intensity factors of x(r) 2 {1, 5, 20, 40} for
r , R. Figure 7 demonstrates the von Mises stress

FIG. 6. Mechanical treatment of the stiffening around junctions with agglomeration of the mass is realized through increasing the Young’s modulus
with a scaling factor x(r). (a) An example junction of a nanoporous material. Here, the transparent gray region bounded by solid black lines represents
the solid phase whereas the shaded 3D lines represent the corresponding skeleton. r denotes the radial distance from the junction, whereas R denotes the
local thickness computed at the junction. The distribution can be assumed to be constant within the junction zone, i.e., for r , R, as depicted in (b).
Another approach may be selection of a nonlinear distribution, e.g., depicted in (c). In this work, approach (b) is used. (color online)

FIG. 7. von Mises stress distributions for the models with 0.20 (top) and 0.50 (bottom) phase volume fractions under six strain-controlled loading
conditions with the macroscopically imposed strains of (from left to right) Meh1i 5 ae1 5 e1,

Meh2i 5 ae2 5 e2,
Meh3i 5 ae3 5 e3,

Meh4i 5 [a/21/2]
[e2 5 e3 1 e3 5 e2],

Meh5i 5 [a/21/2][e1 5 e3 1 e3 5 e1], and
Meh6i 5 [a/21/2][e1 5 e2 1 e2 5 e1] considering periodic boundary conditions

where a controls the extent of loading. This set of simulation results allows determination of the macroscopic elastic moduli through computational
homogenization. The local stress development over the elements in the 0.50 volume fraction case is considerably higher than those computed for
0.20 volume fraction case. Among the plane strain compression tests and among the simple shear tests conducted in different directions, the
statistical distribution of the observed von Mises stress magnitudes over the ligaments are in complete agreement. This signals the isotropy in the
macroscropic elastic response of the ligament network. These results correspond to a constant stiffness intensity factor of x(r) 5 40 for r , R,
whereas no qualitative difference in the findings is observed once other intensity factors are analyzed. The Cartesian unit vectors e1, e2, and e3 are
represented by the vectors colored with red, green and blue, respectively. (color online)
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distribution among ligaments for 0.20 (top) and 0.50
(bottom) volume fractions for x(r) 5 40. As compared to
the 0.20 volume fraction case, over 8-fold higher magni-
tudes are observed as far as the local stress development
in the ligaments of 0.50 volume fraction model is
concerned. In both cases, due to random ligament
orientations, strong local stress fluctuations are observed.
Nevertheless, among the plane strain compression tests
and among the simple shear tests conducted in different
directions, the statistical distribution of the observed von
Mises stress magnitudes over the ligaments are in
complete agreement. This signals the isotropy in the
macroscropic elastic response of the ligament network.

A more rigorous investigation of the macroscopic
elastic anisotropy required computation of the universal
anisotropy indices and plotting the stereographic projec-
tions of the macroscopic elasticity moduli, as given in
Fig. 8. The plots in Fig. 8 show that the elastic anisotropy
in the macroscopic response can be approximated by
elastic isotropy sufficiently well especially for higher
solid volume fractions. These findings are in line with
those reported in Ref. 13. This allows representation of
the effective elasticity constants of the materials with the
aggregate macroscopic elastic properties with just two
magnitudes: E⋆ ≃ 1/2[EV 1 ER] and m⋆ ≃ 1/2[mV 1 mR]
with in fact EV ≃ ER and mV ≃ mR. For 0.20 and 0.50 solid
volume fractions, the anisotropy indices AU read 0.32186
0.1455 and 0.0194 6 0.0074, respectively, where the
former structure shows a higher degree of anisotropy.

Finally, in Table I, voxel-FE and beam-FE simulation
statistics are compared for identical RVE size. As seen, for
the investigated interval of phase volume fractions, a gain
in the memory requirement and in the simulation time up
to 94,056/370 ≃ 254-fold and 13,985/24 ≃ 583-fold,
respectively, are recorded in favor of beam-FE analysis.

B. Scaling law for elastic properties

Since a bending dominated load transmission occurs
among interconnected ligaments of nanoporous struc-
tures, usually Gibson–Ashby scaling relations8 are used
with reference to their mechanical behavior under applied
loads. With C1 and n denoting the material parameters,
the Gibson–Ashby scaling law for the effective elasticity
of open-cell foams reads8,55

E?

EB
¼ C1f

n
B : ð10Þ

Diminishing elastic anisotropy in the mechanical re-
sponse of generated microstructures allows representing
the effective elastic properties by just two constants E⋆

and m⋆ which are well approximated by the aggregate
effective elastic properties. The variation of the computed
effective Young’s modulus results belonging to the

stiffness intensity factors of x(r) 2 {1, 5, 20, 40} for
r , R with solid fraction is demonstrated in Fig. 9(a).
Here, voxel-based FE results for periodic and aperiodic
structures as well as the experimental findings are depicted
and compared with each other. We observe that, although
for x(r) 5 1, a highly compliant Young’s modulus
prediction as compared to the voxel-based FE approach
prevails, considering junction stiffening by mass agglom-
eration with x(r)5 40 provides a good agreement. Due to
the increase of number of elements within the junction
zone with increasing local thickness at the junctions with
increased volume fractions, the influence of x(r) over the
effective Young’s modulus becomes higher. As

FIG. 8. Stereographic projections of the normalized effective elastic
moduli demonstrating the directional dependence of normalized
Young’s modulus for increasing volume element size for 0.20, 0.30,
0.40, and 0.50 solid volume fractions. Volume fraction is increasing
from left to right. Elastic isotropy is represented by uniform color
distribution over the circle. Each row represents one of the 5
realizations. The randomness of the directional dependence is evident.
Moreover, while for 0.20 volume fraction, we observe a relatively
higher average anisotropy index for increasing the volume fraction,
and the material behavior is qualitatively isotropic. These results are in
complete agreement with those reported in Ref. 13 in which a voxel-
based FE approach was used. The mean and standard deviation of the
anisotropy indices for 0.20 and 0.50 phase volume fractions are AU 5
0.3218 6 0.1455 and AU 5 0.0194 6 0.0074, respectively. These
results correspond to a constant stiffness intensity factor of x(r) 5 40
for r , R, whereas no qualitative difference in the findings is observed
once other intensity factors are analyzed. (color online)
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anticipated, since the beam-FE models are obtained by
exact skeletonization of the leveled random field with
varying topological properties with selected phase volume
fraction, they are fully capable of reflecting the influence
of topological variations on the effective elastic response
of the material. Thus, by carrying the native topological
features of the phase field, the presented periodic
skeletonization-based microstructure generation method
proves superior to the regular or disordered beam network
approaches relying on diamond-cubic unit cells9,10,27,28 or
Voronoi or Laguerre tessellations.29–32 In Fig. 9(a), Gib-
son–Ashby relation for C1 5 1 and n 5 2 and a modified
form of the Roberts and Garboczi relation16 of
E?=EB ¼ C2 fB � fP

B
� �

= 1� fP
B

� �� �m
for C2 5 2.03 6

0.16 and m 5 2.56 6 0.04 and the solid percolation
threshold fP

B ¼ 0:159 as proposed in Ref. 13 are also
given. Considering invariant network connectivity, the
Gibson–Ashby scaling law with C1 5 1 and n 5 2
provides more than an order of magnitude higher pre-
diction of the Young’s modulus at lower phase volume
fractions, as compared to the experimental findings and
demonstrated FE predictions. In Ref. 56, Saane et al.
generate a fB ¼ 0:35 nanoporous gold microstructure via
nanotomography of cross-sectional slices created using an
FIB and imaged using SEM, and vary its phase volume
fraction computational geometrical operations of dilation
and erosion. They report an agreement with the results of
simulations for corresponding voxel-FE models with the
Gibson–Ashby relation, however, for an unusually large
hardening exponent of n 5 3.9. Using C1 5 3 rather than
C1 5 1.33 which is proposed in Ref. 56 which amounts to
a translation of the curve in the log–log scale plot.
Complying with the comments in Ref. 56, once only the
rate of stiffness gain with phase volume fraction is
concerned the Gibson–Ashby scaling law with n 5 3.9
gives an acceptable prediction, but only for fB > 0:35.
However, once the region fB , 0:35 is concerned, al-
though a much better prediction as compared to the results
of the Gibson–Ashby law for n 5 2 is due, that with n 5
3.9 still significantly overestimates the effective Young’s
modulus. The reader should note that the Gibson–Ashby
relation gives vanishing material response only for vanish-
ing phase volume fraction fB ¼ 0:35, a condition which is
not realistic in the context of nanoporous materials with

TABLE I. Comparison of voxel-FE and beam-FE simulation statistics. The listed results are in terms of rounded averages corresponding to
a number of simulations and realizations. Both the number of elements and the number of nodes are defined by the user.

Voxel-FE Beam-FE

fB 0.20 0.50 0.20 0.50
Number of elements 441,824 1,047,856 18,413 34,252
Number of nodes 796,521 1,453,094 18,273 32,744
Floating PT operations per iteration 2.08 � 1011 2.51 � 1014 1.86 � 108 2.80 � 109

Memory to minimize I/O (mbytes) 6064 94,056 172 370
User time (s) 144 13,985 11 24

FIG. 9. Beam-FE model prediction of the phase volume dependence
in (a) macroscopic Young’s modulus and (b) Poisson’s ratio. For
the Young’s modulus, junction stiffening by mass agglomeration with
the selection of x(r) 5 40 for r , R results in perfect agreement
with the results of periodic and aperiodic voxel-based FE solution
results of Ref. 13 as well as experimental results of Refs. 12, 14, 39,
and 57–59. For the Poisson’s ratio, however, this is the case only for
fB , 0:35. Here, the experimental results are from Refs. 58 and 60.
Data are presented as mean value l (dots) and standard deviation r
from analysis of 5 random realizations. (color online)
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a nonzero solid percolation threshold. Thus, for nano-
porous gold, the predictions of the modified scaling
law, considering the percolation threshold, provides
a much better agreement of both the FE simulations
and the extensive experimental findings reported in the
studies12,14,39,57–59 for 0:20,fB , 0:50.

The variation of the computed effective Poisson’s
ratio results are demonstrated in Fig. 9(b). Here, periodic
and aperiodic voxel-based FE structures, a scaling law
m? ¼ D1 logfB þ D2 with D1 5 0.116 6 0.003 and
D2 5 0.363 6 0.002 for the corresponding effective
Poisson’s ratio as well as the experimental findings of
Refs. 58 and 60 are given. Like for the case of Young’s
modulus predictions, the Gibson–Ashby model proposal
of a constant Poisson’s ratio of 0.30 results in a consider-
able overestimation in the transverse strain to axial strain
ratio for especially smaller volume fractions. Unlike the
results for effective Young’s modulus, here we observe
a good agreement with the voxel-based FE approach only
for fB , 0:35. With increasing phase volume fraction for
fB > 0:35, the effective Poisson’s ratio shows a decreas-
ing trend unlike what is detected in the results of the voxel-
based FE simulations. Recalling that the bulk Poisson’s
ratio for gold is 0.44, this is attributed to the inability of the
beam networks to reflect the bulk Poisson’s ratio for
microstructures with higher phase volume fractions. Still,
the results are in error margins of the experimental results
of Refs. 58 and 60.

V. CONCLUSIONS

In this study, a 3D microstructural beam-FE model
generation method is proposed for the estimation of the
effective elastic properties of nanoporous materials made
by dealloying. The periodic beam-FE model is derived
from homotopic medial axis skeletonization of the
spinodal-like stochastic microstructures generated by
Cahn’s method of computing leveled periodic random
field composed of superposition of standing sinusoidal
waves of fixed wave length. Circular cross-sectioned
Timoshenko beams are used in the analysis to account
for shear deformation effects. A 3D local thickness field
computation is used for the detection of the diameter of
the beams. To mimic the stiffening effects due to
agglomeration of the mass in junctions, an increased
Young’s modulus is assigned to the elements within the
junction zone through a radially varying stiffness scaling
factor. A detailed investigation of the influence of the
stiffness scaling factor on the macroscopic response of
beam-FE models for a wide range of phase volume
fractions is presented. The results show that a stiffness
factor of 40 gives a reasonable approximation for the
Young’s modulus for the phase volume fractions
0:20,fB , 0:50, whereas for the Poisson’s ratio, an
agreement is due only for fB , 0:35.

As in the case of voxel-FE models of the identical
random fields, the anisotropy indices of the elasticity of
the generated beam-FE models show a sufficient prox-
imity to isotropy.

Finally, it is demonstrated that as compared to the
simulation statistics of voxel-FE models, it is seen that
for the beam-FE models, one obtains over 500-fold
computational acceleration with 250-fold less memory
requirement.
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