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Abstract. Let G be a symmetrizable Kac–Moody group over a field of characteristic zero, let T

be a split maximal torus of G. By using a completion of the algebra of strongly regular func-
tions on G, and its restriction on T, we give a formal Chevalley restriction theorem. Specializ-
ing to the affine case, and to the field of complex numbers, we obtain a convergent Chevalley

restriction theorem, by choosing the formal functions, which are convergent on the semi-
groups of trace class elements Gtr � G resp. T tr � T.
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Introduction

Let G be a reductive linear algebraic group, and equip its coordinate ring C½G� with

the G-action, induced by the conjugation action of G on itself. Let T be a maximal

torus of G with corresponding Weyl groupW, and equip the coordinate ring C½T � of

T with theW-action, induced by the conjugation action ofW ¼ NGðT Þ=T on T. Let

X ðT Þ
þ be the monoid of dominant characters of T with respect to some Borel

subgroup containing T. Denote by TrL the character of the rational irreducible G-

representation (LðLÞ, pL), belonging to the highest weight L 2 X ðT Þ
þ.

The Chevalley restriction theorem says that the restriction map r : C½G� ! C½T �

induces an isomorphism of the invariant algebras C½G�
G and C½T �

W . Furthermore,

the characters TrL, L 2 X ðT Þ
þ, form a C-base of C½G�

G. If G is in addition semi-

simple, simply connected, then C½G�
G is a polynomial algebra in the characters

TrNi
belonging to the fundamental dominant weights Ni, i ¼ 1; . . . ; n.

V. Kac and D. Peterson constructed in [K, P 1], to a Kac–Moody algebra g over a

field F of characteristic 0, a group analogue of a semisimple, simply connected alge-

braic group, the Kac–Moody group G. In the symmetrizable case, they defined and

investigated in [K, P 2] the algebra of strongly regular functions F½G� on G. They

showed that it admits a Peter and Weyl theorem, i.e., F½G� ffi
L

L2PþL�ðLÞ � LðLÞ

Compositio Mathematica 135: 123–152, 2003. 123
# 2003 Kluwer Academic Publishers. Printed in the Netherlands.

https://doi.org/10.1023/A:1021739615180 Published online by Cambridge University Press

https://doi.org/10.1023/A:1021739615180


as a G  G-module, (Pþ the set of dominant weights). Due to this result, it seems rea-

sonable to interpret the algebra of strongly regular functions as the analogue of the

coordinate ring of a semisimple, simply connected algebraic group. (For a precise

investigation of this question, see [M 1].)

However, in the nonclassical case, there is no direct analogue of the Chevalley

restriction theorem. If the generalized Cartan matrix has no component of finite type,

then, with the exception of one-dimensional representations, the irreducible highest

weight representations LðLÞ are infinite-dimensional, and their traces cannot be rea-

lized as functions on G, resp. T. The invariant algebras F½G�
G, resp. F½T �

W are span-

ned only by the traces of these one-dimensional representations on G, resp. T. (Here

F½T � denotes the restriction of the algebra of strongly regular functions on T.)

To obtain nevertheless a formal analogue of the Chevalley restriction theorem, we

complete the algebras F½G�, F½T � in a natural way, obtaining a G-algebra dF½G�F½G�, and a

W-algebra dF½T �F½T �. The restriction map extends, inducing an isomorphism of the invar-

iant algebras dF½G�F½G�
G and d

F½T �
WF½T �
W . These invariant algebras are, in a certain sense,

spanned by the formal G resp. T-characters of the modules LðLÞ, L 2 Pþ. We also

obtain an algebraic description of these algebras.

Specializing to the field of complex numbers, every irreducible highest weight

module LðLÞ, L 2 Pþ, carries a contravariant positive definite Hermitian form,

unique up to a nonzero positive scalar factor. Denote by Gtr the semigroup of ele-

ments g 2 G, such that for all L 2 Pþ the linear map pLðgÞ extends to a trace class

operator on the Hilbert space completion of LðLÞ. Denote by T tr the intersection

of Gtr with T.

To obtain a convergent Chevalley restriction theorem in the affine case, we realize

certain subalgebras of dC½G�C½G�, dC½T �C½T �, as algebras of functions C½Gtr�, C½T tr� on the

semigroups Gtr, T tr. In particular, the formal characters are now realized as func-

tions on Gtr, respectively T tr. These algebras carry a G-, respectively a W-action,

and the restriction map induces an injective homomorphism of C½Gtr�
G into C½T tr�

W .

We restrict to the affine case because, for an indefinite Kac–Moody group, Gtr is

not invariant under G-conjugation. Even more worse, every element of T tr is G-

conjugate to some element not contained in Gtr, compare [M 2]. It remains open

whether there is a similar result, now using a subalgebra of dC½G�C½G�, which can be rea-

lized as an algebra of functions on
S

g2G gGtrg�1.

There are the following relations to the work of other people: E. Looijenga devel-

oped in [Loo], section 4, an invariant theory of exponential type associated to certain

root data of generalized Cartan matrices. Using the fans L � Qþ
0 , L 2 Pþ, he built a

Z-algebra A. He defined and investigated the algebra of W-invariants AW and W-

anti-invariants A�W . In particular he obtained an algebraic description of AW in

the affine case. The invariant algebra dF½T �F½T �
W used for the formal Chevalley restriction

theorem is constructed in a similar way as AW . Starting with F½T �, we build the

algebra dF½T �F½T �, and then the invariant algebra dF½T �F½T �
W . But to define dF½T �F½T �, we use the

set of weights of LðLÞ instead of the fans L � Qþ
0 , L 2 Pþ. Therefore, our spacedF½T �F½T � is much smaller than the corresponding space A adopted to the field F. Our
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invariant space dF½T �F½T �
W is for a generalized Cartan matrix, which has a component of

nonindefinite type, smaller than AW adopted to F. This modification is required be-

cause, in the case of a generalized Cartan matrix of finite type, we want dF½T �F½T � to equal

the classical coordinate ring of the torus, and dF½T �F½T �
W to equal its invariant algebra.

We obtain an algebraic description of the invariant algebra dF½T �F½T �
W for an arbitrary

generalized Cartan matrix, generalizing the corresponding description of AW by

Looijenga in the affine case. Our main aid to prove this description is a finite cover-

ing of PðLÞ \ Pþ, (L 2 Pþ), by certain set of weights, which are related to cones

build of imaginary roots. This covering can be considered as a generalization of

the covering by imaginary root strings in the affine case.

Let F ¼ C. For L 2 Pþ, the formal T-character

wL ¼
X

l2PðLÞ

mlel; ml :¼ dimðLðLÞlÞ;

determines a function on T tr by wLðtÞ :¼ TrðpLðtÞÞ; t 2 T tr: These functions, as well

as the domain of convergence T tr, have been studied by several people starting with

Moody and Lepowsky [L, Mo], Meurman [Meu] in the rank two hyperbolic case,

Slodowy [Sl 2], Kac and Peterson, whose results can be found in [K], sections 10.6

and 11.10.

In the affine case G. Brüchert determined in [B] a conjugation invariant sub-

semigroup G>1 of Gtr, and conjectured equality. He showed, that the functions

TrL on Gtr defined by TrLðgÞ :¼ TrðpLðgÞÞ; g 2 Gtr; are conjugation invariant on

G>1, L 2 Pþ.

We shall prove the conjecture of G. Brüchert. The functions wL, TrL fit into our
framework. The conjugation invariance of TrL will be deduced from a more general

theorem for the functions of C½Gtr�.

For an affine Kac–Moody group ~GG of holomorphic loops (which contains the

Kac–Moody group G of Laurent polynomial loops as a subgroup), P. Etingov,

I. Frenkel, and A. Kirillov defined and investigated in [E, F, K] spherical functions.

These are functions on certain ~GG0-conjugation invariant parts ~GGq of ~GG, 0 < q < 1,

with certain holomorphy properties, and certain properties with respect to the ~GG0-

conjugation action. The union of these parts ~GGq, 0 < q < 1, is disjoint. It gives a sub-

semigroup of ~GG, which extends the subsemigroup G>1 of G.

In particular, Etingov, Frenkel, and Kirillov showed, that the characters of the

integrable modules at level k form a basis in the space of ~GG0-conjugacy invariant

functions on ~GGq of degree k, k > 0.

1. Preliminaries

In this section we recall some basic facts about Kac–Moody algebras, Kac–Moody

groups, and the algebra of strongly regular functions, which are used later, merely to

introduce our notation.
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The Kac–Moody group given in [K, P 1], [K, P 3] corresponds to the derived Kac–

Moody algebra. We work with a slightly enlarged group, corresponding to the full

Kac–Moody algebra, as in [Ti], [Mo, Pi].

All the material stated in this subsection about Kac–Moody algebras can be found

in the books [K] (most results also valid for a field of characteristic zero with the

same proofs), [Mo, Pi], about Kac–Moody groups in [K, P 1], [K, P 3], [Mo, Pi],

about the algebra of strongly regular functions in [K, P 2], and about the faces of

the Tits cone in [Loo], [Sl 1].

Furthermore, we will prove some properties of the set of imaginary roots, and of

the set of weights of irreducible admissible highest weight modules, which will be

important in the following sections at several places.

We denote by N ¼ Zþ, Q
þ, resp. Rþ the sets of strictly positive numbers of Z, Q,

resp. R. The sets N0 ¼ Zþ
0 , Q

þ
0 , Rþ

0 contain, in addition, the zero. In the whole

paper, F is a field of characteristic 0, and F its group of units.

1.1. GENERALIZED CARTAN MATRICES

Starting point for the construction of a Kac–Moody algebra, and its associated sim-

ply connected Kac–Moody group is a generalized Cartan matrix, which is a matrix

A ¼ ðaijÞ 2 MnðZÞ with aii ¼ 2, aij 4 0 for all i 6¼ j, and aij ¼ 0 if and only if

aji ¼ 0. Denote by l the rank of A, and set I :¼ f1; 2; . . . ; ng.

For the properties of the generalized Cartan matrices, in particular their classifica-

tion, we refer to the book [K]. In this paper we assume A to be symmetrizable.

A nonempty subset J � I is said to have a property, if the corresponding subma-

trix of A, which is a generalized Cartan matrix, has this property.

1.2. REALIZATIONS

A simply connected minimal free realization of A consists of dual free Z-modulesH;P

of rank 2n � l, and linear independent sets P_ ¼ fh1; . . . ; hng � H, P ¼

fa1; . . . ; ang � P such that aiðhjÞ ¼ aji, i; j ¼ 1; . . . ; n. Furthermore, there exist (in

general nonuniquely determined) weights N1; . . . ;Nn 2 P such that NiðhjÞ ¼ dij,
i; j ¼ 1; . . . ; n.

P is called the weight lattice and Q :¼ Z-spanfai j i 2 I g the root lattice. Set

Q�
0 :¼ Z�

0 -spanfai j i 2 I g; Q� :¼ Q�
0 n f0g:

We fix N1; . . . ;Nn 2 P as above, and set PI :¼ Z-spanfN1; . . . ;Nng. Extending

h1; . . . ; hn 2 H, N1; . . . ;Nn 2 P to a pair of dual bases h1; . . . ; h2n�l 2 H,

N1; . . . ;N2n�l 2 P gives a system of fundamental dominant weights N1; . . . ;N2n�l.

1.3. THE WEYL GROUP, THE TITS CONE, AND ITS FACES

Define the following vector spaces over F:

h :¼ hF :¼ H �Z F; h� :¼ h�
F :¼ P �Z F:
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H and P are identified withH � 1, P � 1, and h� is interpreted as the dual of h. Order

the elements of h� by l4l0 if and only if l0
� l 2 Qþ

0 .

Because A is symmetrizable, we can choose a symmetric matrix B 2 MnðQÞ, and a

diagonal matrix D ¼ diagðE1; . . . ; EnÞ, E1; . . . ; En 2 Q
þ, such that A ¼ DB. Define a

nondegenerate symmetric bilinear form on h by

ðhijhÞ ¼ ðhjhiÞ ¼ aiðhÞEi ði 2 I; h 2 hÞ;

ðhijhjÞ ¼ 0 ði; j ¼ n þ 1; . . . ; 2n � l Þ:

The induced nondegenerate symmetric form on h� is also denoted by ð j Þ.

The Weyl group W ¼ WðAÞ is the Coxeter group with generators si, i 2 I, and

relations:

s2i ¼ 1 ði 2 IÞ; ðsisjÞ
mij ¼ 1 ði; j 2 I; i 6¼ jÞ:

The mij are given by

aijaji
�� 0 1 2 3 5 4

�������������������������������������������������
mij

�� 2 3 4 6 no relation between si and sj:

The Weyl group W acts faithfully and contragrediently by

sih :¼ h � aiðhÞhi; i 2 I; h 2 h;

sil :¼ l � lðhiÞai; i 2 I; l 2 h�;

on h and h�, leaving the lattices H, Q, P and the forms invariant.

Dre :¼ Wfai j i 2 Ig � Q is called the set of real roots.

To illustrate the action of W on h�
R geometrically, for J � I set

FJ :¼ fl 2 h�
R j lðhiÞ ¼ 0 for i 2 J; lðhiÞ > 0 for i 2 I n J g;

�FFJ :¼ fl 2 h�
R j lðhiÞ ¼ 0 for i 2 J; lðhiÞ5 0 for i 2 I n J g:

Call �CC :¼ �FF; ¼ fl 2 h�
R j lðhiÞ5 0 for i 2 I g the fundamental chamber. The Tits

cone X :¼ W �CC is a convex W-invariant cone with edge c :¼ FI ¼ �FFI ¼

fl 2 h�
R j lðhiÞ ¼ 0 for i 2 Ig. A W-invariant partition into facets is given by

fsFJ j s 2 W; J � Ig. The chamber �CC ¼ _SS
J�IFJ is a fundamental region of X,

and the parabolic subgroup WJ of W is the stabilizer of every element l 2 FJ.

Every face of the convex cone X is exposed, andW-conjugate to exactly one of the

faces

RðYÞ :¼ X \ fl 2 h�
R j lðhiÞ ¼ 0 for all i 2 Yg ¼ WY?

�FFY;

where Y � I is special, which means either Y ¼ ; or else all connected components

of Y are of nonfinite type, and Y? :¼ fi 2 I j aij ¼ 0 for all j 2 Yg.

1.4. THE KAC–MOODY ALGEBRA

The Kac–Moody algebra g ¼ gðAÞ is the Lie algebra over F generated by the Abelian

Lie algebra h and 2n elements ei; fi (i 2 I), with the following relations, which hold

for any i; j 2 I, h 2 h:

A FORMAL CHEVALLEY RESTRICTION THEOREM 127

https://doi.org/10.1023/A:1021739615180 Published online by Cambridge University Press

https://doi.org/10.1023/A:1021739615180


½ei; fj� ¼ dijhi; ½h; ei� ¼ aiðhÞei; ½h; fi� ¼ �aiðhÞfi;

ðad eiÞ
1�aij ej ¼ ðad fiÞ

1�aij fj ¼ 0 ði 6¼ jÞ:

The Chevalley involution � of g is the involutive anti-automorphism determined by

e�i ¼ fi, f
�
i ¼ ei, h

� ¼ h, (i 2 I, h 2 H).

The space h and the elements ei, fi, ði 2 IÞ, can be identified with their images in g.

The nondegenerate symmetric bilinear form ð j Þ on h can be uniquely extended to a

nondegenerate symmetric invariant bilinear form ð j Þ on g. We have the root space

decomposition:

g ¼
M
a2h�

ga where ga :¼ fx 2 g j ½h; x� ¼ aðhÞx for all h 2 hg:

In particular g0 ¼ h, gai ¼ Fei, g�ai ¼ Ffi, ði 2 IÞ.

The set of roots D :¼ fa 2 h� n f0g j ga 6¼ 0g is invariant under the Weyl group and

spans the root lattice Q. We have Dre � D, and Dim :¼ DnDre is called the set of ima-

ginary roots.

D, Dre and Dim decompose into the disjoint union of the sets of positive and

negative roots D�
¼ D \ Q�;D�

re :¼ Dre \ Q�;D�
im :¼ Dim \ Q�; and we have D�

¼

�D�; D�
re ¼ �D�

re;D
�
im ¼ �D�

im:

The roots belonging to the cone X [ ð�XÞ are exactly the imaginary roots, more-

over D�
im ¼ D \ X. Therefore, to describe the negative imaginary roots, it is sufficient

to describe their intersection with the fundamental chamber: For q ¼
P

i2I kiai 2 Q

set suppðqÞ :¼ fi 2 Ijki 6¼ 0g. In [K], Theorem 5.4, it is shown, that

D�
im \ �CC ¼ fg 2 ðQ�

0 \ �CCÞnf0g j suppðgÞ is connectedg:

We need an easy conclusion of this description. For a special set Y � I, we get a

nonempty subsemigroup of Q by

KðYÞ :¼ fg 2 Q�
0 \ �CC j suppðgÞ ¼ Yg:

Note that Kð;Þ ¼ f0g. It is also easy to see, that for Y 6¼ ;, the subsemigroup KðYÞ is

the intersection of Q with a pointed, finitely generated, convex, Q-rational cone in

Q �Z R.

PROPOSITION 1.1. ð1Þ If Y is nonempty, special, with connected components

Y1; . . . ;Ym, then KðYÞ ¼ KðY1Þ þ � � � þ KðYmÞ.

ð2Þ We have

D�
im \ �CC ¼

_[
Y special; connected; 6¼;

[
Y special; connected; 6¼;

KðYÞ; Q�
0 \ �CC ¼

_[
Y special

[
Y special

KðYÞ:

Proof. In (1), we only have to show the inclusion ‘�’. Let g ¼
P

i2Y niai 2 KðYÞ.

Then g can be written as a sum g ¼ g1 þ � � � þ gm, with gp :¼
P

i2Yp
niai 2 Q�

0 ,

p ¼ 1; . . . ;m. We have gp 2 �CC, because of
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gpðhjÞ ¼ gðhjÞ; for j 2 Yp;

gpðhjÞ ¼
X
i2Yp

aji|{z}
40

ni|{z}
40

5 0; for j 2 I n Yp:

Therefore gp 2 KðYpÞ, p ¼ 1; . . . ;m.

In (2), we only have to show the equation for Q�
0 \ �CC. Then the equation for

D�
im \ �CC follows from the description of [K], Theorem 5.4, stated above. It is suffi-

cient to show, that for any element g 2 Q�
0 \ �CC its support Y :¼ suppðgÞ is special.

We have g ¼ 0 if and only ifY ¼ ;, and this set is special. Let g ¼
P

i2Y niai 6¼ 0, and

let Y1; . . . ;Ym be the connected components of Y. Then for p 2 f1; . . . ;mg we have

04gðhjÞ ¼
X
i2Yp

aji ni|{z}
<0

for all j 2 Yp:

Due to [K], Corollary 4.3, Yp is not of finite type. &

Corresponding to the decomposition into positive and negative roots there is a

triangular decomposition g ¼ n� � h � nþ, where n� :¼ �a2D�ga.

For a real root a, the subalgebra ga � ½ga; g�a� � g�a of g is isomorphic to slð2;FÞ.

1.5. THE KAC–MOODY GROUP

To construct the Kac–Moody group, call a representation ðV; pÞ of g admissible if:

ð1Þ V is h-diagonalizable with set of weights PðVÞ � P.

ð2Þ pðxÞ is locally nilpotent for all x 2 ga, a 2 Dre.

Examples are the adjoint representation ðg; adÞ, and the irreducible highest weight

representation (LðLÞ, pL), L 2 Pþ :¼ P \ �CC.

The Kac–Moody group G ¼ GðAÞ can be characterized in the following way:

� The group G acts on every admissible representation. Two elements g, g0 2 G

are equal if and only if for all admissible modules V, and all v2V we have

gv ¼ g0v.

� (1) For every h 2 H, s 2 F there exists a unique element thðsÞ 2 G, such that

for any admissible representation ðV; pÞ we have

thðsÞvl ¼ slðhÞvl; vl 2 Vl; l 2 PðVÞ:

(2) For every x 2 ga, a 2 Dre, there exists a unique element expðxÞ 2 G, such

that for any admissible representation ðV; pÞ we have

expðxÞv ¼ expðpðxÞÞv; v 2 V:

G is generated by the elements of (1) and (2).

The Chevalley involution �: G ! G is the involutive anti-isomorphism det-

ermined by
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expðxaÞ
� :¼ expðx�

aÞ; thðsÞ
� :¼ thðsÞ ðxa 2 ga; a 2 Dre; h 2 H; s 2 F

Þ:

The Kac–Moody group has the following important structural properties: (a) The

elements of (1) induce an embedding of the torus H �Z F into G. Its image is deno-

ted by T.

For a 2 Dre the elements of (2) induce an embedding of ðga;þÞ into G. Its image Ua

is called the root group belonging to a.
Let a 2 Dþ

re. Let xa 2 ga, x�a 2 g�a, such that ½xa; x�a� ¼ ha. There exists an injec-

tive homomorphism of groups fa: SLð2;FÞ ! G with

fa
1 s
0 1

	 

:¼ expðsxaÞ; fa

1 0
s 1

	 

:¼ expðsx�aÞ ðs 2 F

Þ:

(b) Denote by N the subgroup generated by T and na :¼ fa

�
0 1

�1 0

�
, a 2 Dre. Then

N=T can be identified with the Weyl groupW, the isomorphism k: N=T ! W given

by kðnaT Þ :¼ sa, a 2 Dre. We denote an arbitrary element n 2 N with kðnT Þ ¼ s 2 W
by ns. The set of weights PðVÞ of an admissible g-module is W-invariant, and

nsVl ¼ Vsl, l 2 PðVÞ.

(c) Let B� be the subgroups generated by T and Ua, a 2 D�
re. Let U

� be the sub-

groups generated by Ua, a 2 D�
re.

Then ðG; ðUaÞa2Dre ;T Þ is a root groups data system, leading to the twinned BN-pairs

(B�, N), which have the property Bþ \ B� ¼ Bþ \ N ¼ B� \ N ¼ T. We have the

Bruhat and Birkhoff decompositions:

G ¼
_[

s2W

[
s2W

BEsBd ðE; dÞ ¼ ðþ;þÞ; ð�;�Þ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
Bruhat

; ðþ;�Þ; ð�;þÞ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
Birkhoff

:

The derived group G0 is identical with the Kac–Moody group as defined in [K, P 1].

It is generated by the root groupsUa, a 2 Dre, and we haveG ¼ G0jTrest, where Trest is

the subtorus of T generated by the elements thiðsÞ, i ¼ n þ 1; . . . ; 2n � l, s 2 F.

1.6. PROPERTIES OF THE ADMISSIBLE IRREDUCIBLE HIGHEST WEIGHT

REPRESENTATIONS, AND THEIR SET OF WEIGHTS

For L 2 Pþ :¼ �CC \ P there exists a nondegenerate symmetric bilinear form

hh j ii: LðLÞ  LðLÞ ! F, which is contravariant, i.e., hhv j xwii ¼ hhx�v j wii for

all v;w 2 LðLÞ, x 2 g, resp., x 2 G. This form is uniquely determined up to a nonzero

multiplicative scalar.

For the properties of the set ofweightsPðLÞofLðLÞwe refer to the book [K], sections

11.1, 11.2 and 11.3. We prove some more properties, which will be important later.

THEOREM 1.2. Let L1;L2 2 Pþ. We have:

ðaÞ LðL1Þ � LðL2Þ ffi �L2PðL1þL2Þ\Pþ nLLðLÞ; with nL 2 N0; nL1þL2 ¼ 1:

ðbÞ If L1 2 PðL2Þ, then PðL1Þ � PðL2Þ.
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ðcÞ PðL1Þ þ PðL2Þ ¼ PðL1 þ L2Þ.

Proof. To ðaÞ. Due to [K], Corollary 10.7 b),

LðL1Þ � LðL2Þ ffi
M

L2Pþ; L4L1þL2

nLLðLÞ

with nL 2 N0, nL1þL2
¼ 1. Also nL 6¼ 0 is only possible for L 2 PðLðL1Þ � LðL2ÞÞ.

Therefore it is sufficient to show PðLðL1Þ � LðL2ÞÞ \ Pþ � PðL1 þ L2Þ \ Pþ.

Recall from [K], section 11.2, that an element l 2 P is called nondegenerate with

respect to L 2 Pþ, if either l ¼ L, or else l < L, and for every connected component
S of suppðL � lÞwe have S \ fi 2 I j LðhiÞ 6¼ 0g 6¼ ;. Due to [K], Proposition 11.2(a),

the set of weights PðL1 þ L2Þ \ Pþ consists of the elements of l 2 Pþ, which are non-

degenerate with respect toL1 þ L2. Therefore it is sufficient to show, that every weight

in PðLðL1Þ � LðL2ÞÞ ¼ PðL1Þ þ PðL2Þ is nondegenerate with respect to L1 þ L2.

An element li 2 PðLiÞ is of the form li ¼ Li � qi with qi ¼
P

j k
ðiÞ
j aj 2 Qþ

0 . Due to

[K], Lemma 11.2, li is nondegenerate with respect to Li. (i ¼ 1; 2). Clearly

l1 þ l2 4 L1 þ L2. Let l1 þ l2 6¼ L1 þ L2, let S be a connected component of

suppðL1 þ L2 � ðl1 þ l2ÞÞ. Choose an element i0 2 S. We have k
ð1Þ
i0

6¼ 0 or k
ð2Þ
i0

6¼ 0,

and we may assume k
ð1Þ
i0

6¼ 0. Let S0 be a connected component of suppðL1 � l1Þ with
i0 2 S0. Due to S0 � fi 2 I j k

ð1Þ
i þ k

ð2Þ
i 6¼ 0g we get S0 � S. Because l1 is nondegene-

rate with respect to L1, we find

; 6¼ S0 \ i 2 I j L1ðhiÞ 6¼ 0
� 

� S \ i 2 I j ðL1 þ L2ÞðhiÞ 6¼ 0
� 

:

To ðbÞ. Denote by ‘co’ the convex hull in h�
R. Due to the W-invariance of PðL2Þ,

and due to [K], Proposition 11.3(a), we have WL1 � PðL2Þ � coðWL2Þ. Therefore

coðWL1Þ � coðWL2Þ. Because of L14L2, we also have L1 � Qþ
0 � L2 � Qþ

0 . Using

[K], Proposition 11.3(a), once more, we find PðL1Þ � PðL2Þ.

To ðcÞ. For n 2 N we have PðnLðLÞÞ ¼ PðLÞ. Using (a), we find

PðL1Þ þ PðL2Þ ¼ PðLðL1Þ � LðL2ÞÞ ¼
[

L2PðL1þL2Þ\Pþ; nL 6¼0

PðLÞ:

Due to (b), the union on the right is a subset of PðL1 þ L2Þ. We have equality

because of nL1þL2 6¼ 0. &

Recall that c denotes the edge of the Tits cone.

PROPOSITION 1.3. Let A have no component of finite type. For L 2 Pþ, we have

PðLÞ \ c 6¼ ; if and only if L 2 c.

Proof. We only have to show the direction ‘)’. Every element of PðLÞ can be

written in the form L �
P

i2I niai, where
P

i2I niai 2 Qþ
0 . Let L �

P
i2I niai 2 c. Then

by applying this element to hj, j 2 I, we find
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04LðhjÞ ¼
X
i2I

aji ni|{z}
50

:

Due to [K], Theorem 4.3, we get LðhjÞ ¼
P

i2I ajini ¼ 0 for all j 2 I. &

For an affine Kac–Moody algebra, the set of weights PðLÞ \ Pþ, (L 2 Pþ), can be

covered by finitely many imaginary root strings, i.e., sets of the form l � N0d, where
d denotes the minimal positive imaginary root. Compare [K], Proposition 12.6. Fur-
thermore, �N0d ¼ Q�

0 \ �CC. Now the only special sets are ; and I, and we can write

�N0d as the union �N0d ¼ Kð;Þ [ KðIÞ, where Kð;Þ ¼ f0g, KðIÞ ¼ �Nd. Therefore
every root string l � N0d is the union of l þ Kð;Þ ¼ flg and l þ KðIÞ ¼ l � Nd.
Next we give a generalization for an arbitrary Kac–Moody algebra. We find a

finite covering of PðLÞ \ Pþ; ðL 2 Pþ), by sets of the form l þ KðYÞ;Y special:

Call X � I relevant for L 2 Pþ, if either X ¼ ;, or else every connected component

of X intersects fi 2 I j LðhiÞ 6¼ 0g nontrivially. Proposition 11.2(a) of [K] can be writ-

ten in the form

PðLÞ \ Pþ ¼
_[

X rel: for L

[
X rel: for L

L þ SðXÞ; ð1Þ

where SðXÞ :¼ fq 2 Q�
0 j suppðqÞ ¼ X;L þ q 2 Pþg. Note that Sð;Þ ¼ f0g.

THEOREM 1.4. Let X � I be relevant for L 2 Pþ. Denote by X0, resp. X1, the union

of all connected components of X of finite, resp. non-finite, type. Then X0; X1 are also

relevant for L, and we have

SðXÞ ¼ SðX0Þ þ SðX1Þ: ð2Þ

Furthermore, SðX0Þ is finite, and there exists a finite set MðX1Þ � SðX1Þ such that

SðX1Þ ¼ KðX1Þ [
[

Y special; Y�X1

MðX1Þ þ KðYÞð Þ: ð3Þ

Proof. The sets X0; X1 are relevant, because they are unions of connected

components of X, or empty. To show the inclusion ‘�’ of (2), decompose q ¼P
i2X niai 2 SðXÞ in the form q ¼ q0 þ q1 with q0 :¼

P
i2X0 niai and q

1 :¼
P

i2X1 niai,
a sum over the empty set to be equal to zero. We have L þ q0 2 Pþ due to

ðL þ q0ÞðhiÞ ¼ ðL þ qÞðhiÞ5 0; for i 2 X0;

ðL þ q0ÞðhiÞ5LðhiÞ5 0; for i =2X0:

Therefore q0 2 SðX0Þ. Similar we find q1 2 SðX1Þ. To show the reverse inclusion, let

q0 2 SðX0Þ, q1 2 SðX1Þ. Then

ðL þ q0 þ q1ÞðhiÞ5LðhiÞ; for i =2X0 [ X1;

ðL þ q0 þ q1ÞðhiÞ ¼ ðL þ q0ÞðhiÞ5 0; for i 2 X0;

132 CLAUS MOKLER

https://doi.org/10.1023/A:1021739615180 Published online by Cambridge University Press

https://doi.org/10.1023/A:1021739615180


ðL þ q0 þ q1ÞðhiÞ ¼ ðL þ q1ÞðhiÞ5 0; for i 2 X1:

Therefore q0 þ q1 2 SðXÞ.

Let gX0 be the Lie algebra generated by g�ai ; i 2 X0. Let n�

X0
be its subalgebra gen-

erated by g�ai ; i 2 X0. Then Uðn�

X0
ÞLðLÞL is a finite-dimensional irreducible highest

weight module of the finite-dimensional split reductive Lie algebra gX0 þ h. Due to

L þ SðX0Þ � PðUðn�

X0
ÞLðLÞLÞ, the set SðX0Þ is finite.

We only have to show (3) in the nontrivial case X1 6¼ ;. We only have to find a

finite setMðX1Þ � SðX1Þ, and show the inclusion ‘�’ of (3). Then the reverse inclu-

sion is also satisfied. This follows immediately from the definition of SðX1Þ, using

MðX1Þ � SðX1Þ and KðX1Þ;KðYÞ � Q�
0 \ �CC.

Let q1 ¼
P

i niai 2 SðX1Þ. X1 has no component of finite type. Due to the char-

acterizations of [K], Corollary 4.3, there exists at least one element j 2 X1, such thatP
i2X1 ajini 5 0. Therefore one of the following finitely many cases holds:

(a) The case
P

X1 ajini 5 0 for all j 2 X1. Because of
P

X1 ajini 5 0 for all j =2X1,

we have q1 2 Pþ. Together with q1 2 Q�
0 ; suppðq

1Þ ¼ X1, we get

q1 2 KðX1Þ.

(b) There exists a partition X1 ¼ X1 _[[X2, X1 6¼ ;, X2 6¼ ;, and there exists a tuple of

integers m� :¼ ðmjÞj2X1 with 0 > mj 5 �LðhjÞ, such thatX
i2X1

ajini ¼ mj for j 2 X1;
X
i2X1

ajini 5 0; for j 2 X2:

By decomposing the generalized Cartan submatrix belonging to X1 into blocks with

respect to X1;X2, we can write these equations in the form

m� ¼ AX1n� þ Bnþ; 04Cn� þ AX2nþ:

Note that B; C are matrices with nonpositive entries. Every component of X1 is of
finite type, due to AX1ð�n�Þ ¼ �m� þ ð�BÞð�nþÞ > 0, compare [K], Corollary 4.3.

The tuple ð�nþ;Cn� þ AX2nþÞ belongs to the set

ð� ~nnþ;C ~nn� þ AX2 ~nnþÞ 2 NjX2j  N
jX2j
0 j ~nn� ¼ A�1

X1 m� � A�1
X1 B ~nnþ < 0

n o
: ð4Þ

Equip N
2jX2j
0 with the product order of the natural order of N0. It is well known, that

a nonempty subset of N
2jX2j
0 contains only finitely many minimal elements, and every

element of this subset lies over some minimal element. Let ð�nminþ ;Cnmin� þ AX2n
min
þ Þ

be a minimal element of the set (4), which is smaller than, or equal to

ð�nþ;Cn� þ AX2nþÞ. Then we have

nþ � nminþ 4 0; ð5Þ

Cðn� � nmin� Þ þ AX2 ðnþ � nminþ Þ5 0; ð6Þ

AX1 ðn� � nmin� Þ þ Bðnþ � nminþ Þ ¼ 0: ð7Þ
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B has only nonpositive entries. With (5) follows Bðnþ � nminþ Þ5 0. With (7) follows

AX1ðn� � nmin� Þ4 0. Because X1 has only components of finite type, we get from
[K], Theorem 4.3,

n� � nmin� 4 0: ð8Þ

Write q1 as the sum q1 ¼ qmin þ b, with

qmin :¼
X
i2X1

nmini ai; and b :¼
X
i2X1

ðni � nmini Þai:

Due to (5) and (8), we have b 2 Q�
0 . Due to (7) and (6), we have b 2 �CC. Because of

b 2 Q�
0 \ �CC ¼

S
Y special KðYÞ, we find suppðbÞ is special. Due to the definition of b,

we have suppðbÞ � X1.

Due to the conditions defining the set (4), we have nmin� < 0, nminþ < 0. Therefore

suppðqminÞ ¼ X1. Also due the conditions defining the set (4), we find

AX1n
min
� þ Bnminþ � m� ¼ 0 and Cnmin� þ AX2n

min
þ 5 0:

From this follows ðL þ qminÞðhiÞ5 0 for all i 2 X1. We have also LðhiÞþ

ðqminÞðhiÞ5 0 for all i =2X1. Therefore qmin 2 SðX1Þ.

Take asMðX1Þ the finite set of these elements qmin, i.e., the occurring minimal ele-

ments qmin, for all occurring partitions X1 ¼ X1 _[[X2; X1 6¼ ;; X2 6¼ ;, and occur-

ring tuple of integers m� :¼ ðmjÞj2X1 with 0 > mj 5 � LðhjÞ. &

1.7. THE ALGEBRA OF STRONGLY REGULAR FUNCTIONS

For L 2 Pþ; v;w 2 LðLÞ, and hh j ii a nondegenerate symmetric contravariant bilin-

ear form on LðLÞ, call the function fvw : G ! F, given by fvwðgÞ :¼ hhv jgwii; g 2 G,

a matrix coefficient of G. The algebra F½G� generated by all such matrix coefficients

is called the algebra of strongly regular functions on G. F½G� is an integrally closed

domain. It admits a Peter–Weyl theorem: Define an action p of G  G on F½G�, and

an involutive automorphism � of F½G�, which we also call Chevalley involution, by

ðpðg; hÞf ÞðxÞ :¼ fðg�1xhÞ; f �ðxÞ :¼ fðx�Þ; g; x; h 2 G; f 2 F½G�:

For every L 2 Pþ, fix on LðLÞ a nondegenerate symmetric contravariant bilinear

form. Define an action p on LðLÞ � LðLÞ by

pðg; hÞðv � wÞ :¼ ðg�1Þ
�v � hw; g; h 2 G; v;w 2 LðLÞ:

Then the map �L2PþLðLÞ � LðLÞ ! F½G�, induced by v � w 7! fvw, is an isomorph-

ism of G  G-modules. It identifies the direct sum of the switch maps of the factors

with the Chevalley involution.

An embedding of the linear space F½G� into the dual of the universal enveloping

algebra UðgÞ is induced by
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fvwðxÞ :¼ hhv jxwii; v;w 2 LðLÞ; L 2 Pþ; x 2 UðgÞ:

Restricting the functions of F½G� onto G0, resp. Trest gives the algebras F½G0�, resp.

F½Trest�, the first identical with the algebra of strongly regular functions as defined in

[K, P 2], the second the classical coordinate ring of the torus Trest: F½G� is isomorphic

to F½G0� � F½Trest� by the comorphism dual to the multiplication map G0  Trest ! G.

1.8. THE FIELD OF COMPLEX NUMBERS F ¼ C

Some of the above constructions can be modified for the field of complex numbers.

For the sake of simplicity we shall use the same notations.

The compact involution � of g is the involutive anti-linear anti-automorphism

determined by e�i ¼ fi; f
�
i ¼ ei; h� ¼ h; ði 2 I; h 2 HÞ. It induces the compact involu-

tion � on G by expðxaÞ
� :¼ expðx�

aÞ; thðsÞ
� :¼ thð�ssÞ; ðxa 2 ga; a 2 Dre; h 2 H; s 2 C


Þ.

Define the exponential map exp : h ! T by

exp
X2n�l

i¼1

cihi

 !
:¼

Y2n�l

i¼1

thi ðe
ci Þ; ci 2 C

:

For every h 2 h, and every admissible module V, we have

expðhÞvl ¼ elðhÞvl; vl 2 Vl; l 2 PðVÞ

.Define Tþ :¼ expðH � RÞ, and the unitary form K :¼ g 2 G j g� ¼ g�1
� �

. We have

the Iwasawa decompositions G ¼ KTþU� ¼ U�TþK.

For L 2 Pþ, the irreducible highest weight representation ðLðLÞ; pLÞ carries, with

respect to the compact involution, a contravariant positive definite Hermitian form

hh j ii, unique up to a nonzero positive factor. We assume hh j ii to be anti-linear in

the first entry. The algebra of strongly regular functions is also generated by the

matrix coefficients built by using these Hermitian forms.

2. A Version of Looijenga’s Exponential Invariant Theory

In this section, we present a version of Looijenga’s exponential invariant theory

adopted to the ground field F. We restrict to the facts relevant for our purpose.

Starting point is the algebra of strongly regular functions F½G� of a Kac–Moody

group G, restricted onto the torus T. We first describe this restriction:

The group algebra F½P� of the lattice P can be identified with the classical coordi-

nate ring on T, identifying the elements of the natural base ðelÞl2P with the functions

given by

el
Y2n�l

i¼1

thi ðsiÞ

 !
:¼

Y2n�l

i¼1

s
lðhiÞ
i ðsi 2 F

Þ:
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The restriction of the algebra of strongly regular functions on T, which we denote by

F½T �, is in the nonclassical case only a subalgebra of the classical coordinate ring of T:

PROPOSITION 2.1. We have F½T � ¼ F½X \ P�.

A variant of this Proposition has been proved in [M 1]. For the convenience of the

reader, we sketch its

Proof. For vl 2 LðLÞl; wm 2 LðLÞm; l; m 2 PðLÞ; L 2 Pþ, we find by checking

on the elements of T: fvlwm jT ¼ fvlwm ð1Þem: Due to the Peter and Weyl theorem for

F½G�, and due to
S

L2Pþ PðLÞ ¼ X \ P, we get F½T � � F½X \ P�. Due to the non-

degeneracy of hh j ii on the weight spaces, we have even equality. &

Next we construct a formal completion of F½T �. The algebra F½T � is ðX \ PÞ-

graded by F½T �l :¼ Fel; l 2 X \ P. For an element f 2
Q

l2X\P F½T �l denote by fl
the projection of f onto F½T �l. Set

suppð f Þ :¼ fl 2 X \ P j fl 6¼ 0g � X \ P:

Using Theorem 1.2(c) we easily find:

PROPOSITION 2.2.

dF½T �F½T � :¼ f 2
Y

l2X\P

F½T �l

����� 9 k 2 N; 9L1; . . . ;Lk 2 Pþ : suppð f Þ �
[k
i¼1

PðLiÞ

( )

is a commutative associative algebra with unit, the multiplication given by

ð f ~ff Þl :¼
X

l1;l22X\P
l¼l1þl2

fl1
~ffl2 : ð9Þ

Remark. We identify F½T � in the obvious way with a subalgebra of dF½T �F½T �. If A has

only components of finite type, then F½T � ¼ dF½T �F½T �.

It is useful, to introduce a natural limit concept for the algebra dF½T �F½T �. Call a

sequence ðfiÞi2N � dF½T �F½T � convergent to f 2 dF½T �F½T � if:

. There exist k 2 N; L1; . . . ;Lk 2 Pþ, such that for all i 2 N we have

suppðfiÞ � PðL1Þ [ � � � [ PðLkÞ.

. For every l 2 X \ P, there exists an element i0 2 N, such that for all i5 i0 we

have ð fiÞl ¼ fl.

Note that the limit f is uniquely determined by the sequence ðfiÞi2N.
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Call a map dF½T �F½T � ! dF½T �F½T � continuous, if it maps convergent sequences into conver-

gent sequences.

With respect to this limit concept, F½T � is dense in dF½T �F½T �, i.e., every element

f 2 dF½T �F½T � is the limit of a sequence ðfiÞi2N � F½T �. The addition, the multiplication

by a scalar, and the multiplication of the algebra dF½T �F½T � are continuous.

To investigate dF½T �F½T �, it is also useful to generalize the notion of a linear base. We

call a nonempty family ðfjÞj2J � dF½T �F½T � summable, if there exist k 2 N;

L1; . . . ;Lk 2 Pþ, such that[
j2J

suppð fjÞ � PðL1Þ [ � � � [ PðLkÞ;

and for every l 2 X \ P, we have ðfjÞl 6¼ 0 for only finitely many j 2 J. The sum of

such a family is defined as ð
P

j2J fjÞl :¼
P

j2JðfjÞl; l 2 X \ P. Note that there are

only countably many nonzero fj’s. The sum is equal to the series sum, corresponding

to the notion of convergence as above, relative to an arbitrary linear order of these

elements.

For a set 6¼ B � dF½T �F½T �, we call a sum of the form
P

b2B cbb with cb 2 F a s-linear

combination. Call B s-linear independent, if
P

b2B cbb ¼ 0 implies cb ¼ 0 for all

b 2 B. Call B an s-base, if every element of dF½T �F½T � can be written in the formP
b2B cbb with uniquely determined cb 2 F.

The action of the Weyl group W on F½T � extends uniquely to an action on dF½T �F½T �,

by continuous homomorphisms of algebras:

ðsf Þl :¼
X
l

clesl for f ¼
X
l

clel 2 dF½T �F½T �; s 2 W:

In the rest of this section, we investigate the structure of the invariant algebra dF½T �F½T �
W .

First we determine certain s-bases. For every L 2 Pþ, choose an element

SL 2 dF½T �F½T �
W with suppðSLÞ � PðLÞ and ðSLÞL ¼ eL. In particular, we can take the

formal T-character corresponding to LðLÞ:

wL :¼
X

l2PðLÞ

mlel; ml :¼ dimðLðLÞlÞ: ð10Þ

Generalizing the classical case we have:

THEOREM 2.3. The family ðSLÞL2Pþ is an s-base of dF½T �F½T �
W , and its s-linear combi-

nations are given by the sumsX
L2ðPðL1Þ[���[PðLkÞÞ\Pþ

cLSL; ð11Þ

with cL 2 F; L1; . . . ;Lk 2 Pþ; k 2 N.

Proof. First we show, that every sum of the form (11) is well defined, i.e., the

family ðcLSLÞL2ðPðL1Þ[���[PðLkÞÞ\Pþ is summable. Fix l 2 X \ P. Due to Theorem 1.2(b),

ðcLSLÞl 6¼ 0 implies l 2 PðL1Þ [ � � � [ PðLkÞ, and we have L 2 ðPðL1Þ [ � � � [ PðLkÞÞ
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\Pþ with L5l. This is only possible for finitely many L. A sum of the form (11)

is an element of dF½T �F½T �
W , because the elements SL belong to dF½T �F½T �

W , and W acts

continuously.

Let
P

L2Pþ cLSL be a s-linear combination of ðSLÞL2Pþ . Due to the definition of

summable, there exist L1; . . . ;Lk 2 Pþ, such that we have
S

L2Pþ;cL 6¼0 suppðSLÞ

� PðL1Þ [ � � � [ PðLkÞ. Because of L 2 suppðSLÞ, this s-linear combination is of the

form (11).

We only sketch the next part of the proof, because the idea can be extracted

from the proof of Theorem 4.2 in [Loo]: Let f 2 dF½T �F½T �
W with supp ð f Þ

� PðL1Þ [ � � � [ PðLkÞ. We show that f can be obtained as a s-linear combination

of ðSLÞL2Pþ . The family ðFmÞm2N0
defined by

F0 :¼ ðPðL1Þ [ � � � [ PðLkÞÞ \ Pþ;

Fmþ1 :¼ FmnmaxðFmÞ; m 2 N0;

is a filtration of ðPðL1Þ [ � � � [ PðLkÞÞ \ Pþ, in particular
T

m2N0
Fm ¼ ;. Similarly as

in [Loo], define recursively the following sequence: Set gð0Þ :¼ 0. For m 2 N0 set

gðmþ1Þ :¼
X

L2maxðFmÞ

cL SL;

where the cL
0s are obtained from the decomposition

f �
Xm
i¼0

gðiÞ ¼
X

L2maxðFmÞ

cL
X
l2WL

el þ r with suppðrÞ � WFmþ1:

It is not difficult to check that this sequence is well defined, summable, and

f ¼
P

i g
ðiÞ ¼

P
L2F0

cLSL.

To show the s-linear independence of ðSLÞL2Pþ , let

0 ¼
X

L2ðPðL1Þ[���[PðLkÞÞ\Pþ

cLSL ¼
X
m2N0

X
L2maxðFmÞ

cLSL:

The elements of maxðF0Þ are pairwise incomparable, and they are bigger as, or

incomparable with the elements of maxðFiÞ for i > 0. Due to suppðSLÞ � L � Qþ
0 ,

we find cL ¼ 0 for all L 2 maxðF0Þ. Repeating the same argument, we find succes-

sively cL ¼ 0 for all L 2 maxðFiÞ, i 2 N. &

To investigate the structure of dF½T �F½T �
W as an algebra, we choose a family ðSLÞL2Pþ

as above, with SLSL0 ¼ SLþL0 for L;L0
2 Pþ. (Choosing the SL’s for a system of fun-

damental dominant weights determines such a family.)

For an F-algebra B, and a subsemigroup S of the lattice P, denote by B½S� the

semigroup-algebra, i.e., the F-algebra of all finite sums in the symbols ~ssL; L 2 S,

with coefficients in B. If S is contained in the N0-span of a base of P, denote by

B½½S�� the B-algebra of all formal sums in the symbols sg; g 2 S, with coefficients in B.
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Define �CC; :¼ �CC. Let ; 6¼ Y � I be special with connected componentsY1; . . . ;Ym,

and define

�CCY :¼ �CCn ð �FFY1
[ � � � [ �FFYm

Þ:

Note that �CCY \ Pþ consists of the elements L 2 Pþ, for which Y is relevant. �CCY is

obtained from �CC by removing the facets, which are common with the faces

RðY1Þ; . . . ;RðYmÞ of the Tits cone. From this follows �CCY þ �CCY0 � �CCY[Y0 . Because

we have also KðYÞ þ KðY0
Þ � KðY [ Y0

Þ, the sumM
Y special

F½½KðYÞ��½ �CCY \ Pþ�

is a subalgebra of F½½Q�
0 \ �CC ��½Pþ�. We write the elements of F½½Q�

0 \ �CC��½Pþ� in the

form X
L2E; g2Q�

0
\ �CC

cgLsg ~ssL; cgL 2 F; E � Pþ finite:

THEOREM 2.4. We get a surjective homomorphism of algebras

f :
M

Y special

F½½KðYÞ��½ �CCY \ Pþ� ! dF½T �F½T �
W

by putting fð
P

Lg cgLsg ~ssLÞ :¼
P

Lg cgLSgþL. The elements of the kernel are finite sums

of elements X
N2ðL1þKðY1ÞÞ\ðL2þKðY2ÞÞ

cN sN�L1
~ssL1

� sN�L2
~ssL2

� �
ðcN 2 FÞ; ð12Þ

where Y1; Y2 are special, and L1 2 �CCY1
\ Pþ; L2 2 �CCY2

\ Pþ.

Proof. To show that f is well defined, it is sufficient to show, that we

have
P

g2KðYÞ cgLSgþL 2 dF½T �F½T �
W for all Y special, L 2 �CCY \ Pþ; cgL 2 F. Due to

Theorem 2.3, it is sufficient to show KðYÞ þ L � PðLÞ \ Pþ. Because Y is relevant

for L, this follows from Theorem 1.4 and its preceding Equation (1).

Due to Theorem 2.3, f is surjective, if for every L 2 Pþ the set PðLÞ \ Pþ is the

union of finitely many sets of the form N þ KðYÞ, Y special, and N 2 �CCY \ Pþ,

i.e., Y relevant for N.

Due to Theorem 1.4 and its preceding Equation (1), the set PðLÞ \ Pþ is the finite

union of the sets

N þ KðX1Þ with N 2 L þ SðX0Þ; ð13Þ

N þ KðYÞ with N 2 L þ SðX0Þ þ MðX1Þ; ð14Þ

where Y � X1 is special, and X relevant for L. Note that the elements N belong to

PðLÞ \ Pþ.

It is easy to check, that in (13), X1 is relevant for N, because X1 is already rele-

vant for L. In (14), Y ¼ ; is relevant for N. Let Y 6¼ ;, and let Y1; . . . ;Ym be its
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connected components. For every i choose an element gi 2 KðYiÞ. Due to (14) for Yi,

we have N þ gi 2 PðLÞ \ Pþ. Because gi is an imaginary root, and

N;N þ gi 2 PðLÞ \ Pþ, we can apply [K], Corollary 11.9, and find ðNjgiÞ 6¼ 0. This

is equivalent to the condition, that Yi is relevant for N. Therefore Y is relevant

for N.

It is easy to check that f is a homomorphism of algebras. Obviously elements of

the form (12) belong to the kernel of f. Let x be an element of the kernel of f. We
may write x in the form

x ¼
X
N2Pþ

xN; where xN :¼
X

Y special

X
L2EY; g2KðYÞ

Lþg¼N

cYLgsg ~ssL;

with EY � �CCY \ Pþ finite. Applying f, and using the s-linear independence of

ðSNÞN2Pþ , we getX
Y special

X
L2EY; g2KðYÞ

Lþg¼N

cYLg ¼ 0; for all N 2 Pþ: ð15Þ

For every element N 2 Pþ with xN 6¼ 0, choose a special set YN, elements LN 2 EYN
,

gN 2 KðYNÞ, such that N ¼ LN þ gN. Using (15), we get

xN ¼
X

Y special

X
L2EY;g2KðYÞ

Lþg¼N

cYLgðsg ~ssL � sgN ~ssLN
Þ:

By using the formulaX
N2Pþ

X
g2KðYÞ with Lþg¼N

g02KðY0Þ with L0
þg0¼N

aN;g;g0 ¼
X

N2ðLþKðYÞÞ\ðL0
þKðY0ÞÞ

aN;N�L;N�L0 ;

it is easy to see, that x ¼
P

N with xN 6¼0 xN can be written in the form

x ¼
X

Y0;Y special
L0

2EY0 ;L2EY

X
N2ðLþKðYÞÞ\ðL0

þKðY0ÞÞ

cNYY0LL0 ðsN�L ~ssL � sN�L0 ~ssL0 Þ;

where

cNYY0LL0 :¼ cYLN�L if xN 6¼ 0; Y0
¼ YN; L0

¼ LN

0 else

�
: &

The structure of the kernel, and therefore also the structure of dF½T �F½T � is quite com-

plicated, except for the following examples with at most two special sets:

(1) If A has only components of finite type, then dF½T �F½T �
W

¼ dF½T �F½T �
W is isomorphic todF½Pþ�F½Pþ�.

(2) Let A be of affine type. We fix a system of fundamental dominant weights as

described in [K], chapter 6.
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Recall that c denotes the edge of the Tits cone. We have c \ P ¼ Z d=a0. Here d
denotes the minimal positive imaginary root, and a0 ¼ 1, unless A is of type A

ð2Þ
2l ,

in which case a0 ¼ 2. Define the following F-algebra of formal series with coefficients

in F:

Fðc \ PÞ :¼ F Z
d
a0

	 

:¼

X
n2Z

cnsn d=a0

��� cn 2 F; 9 n0 8n5 n0 : cn ¼ 0

( )
:

Using the decomposition Pþ ¼ Pþ
I � ðc \ PÞ, where Pþ

I :¼ PI \ �CC, it is easy to see,

that the invariant algebra dF½T �F½T �
W is isomorphic to the subalgebra

F½c \ P� � Fðc \ PÞ½Pþ
I nf0g�

of Fðc \ PÞ½Pþ
I �. This result is similar to the result of Looijenga [Loo], Theorem 4.2

(ib), whose invariant algebra AW is isomorphic to Zðc \ PÞ½Pþ
I �.

(3) Let A be of strongly hyperbolic type, such that the following condition is satis-

fied: There exist m1; . . . ;mn 2 N such that Q�
0 \ �CC ¼ �n

i¼1N0ðmiNiÞ, where

N1; . . . ;Nn are the fundamental dominant weights.

It is easy to check, that the elements of the kernel are finite sums of elementsX
N2ðaþðQ�

0
\ �CCÞÞ\ðbþðQ�

0
\ �CCÞÞ

cN sN�a ~ssa � sN�b ~ssb
� �

~ssL ðcN 2 FÞ;

with

a; b 2 Q�
0 \ �CC; a 6¼ b; and L 2 M :¼

Xn
i¼1

kiNi

��� ki ¼ 0; . . . ; ðmi � 1Þ

( )
:

Every L 2 Pþ can be written uniquely in the form L ¼ LðmodMÞ þ a, with
LðmodMÞ 2 M and a 2 Q�

0 \ �CC. On the F-linear space F½½Q�
0 \ �CC��½M� the structure

of an algebra is induced by

ðsg ~ssLÞðsg0 ~ssL0 Þ :¼ sgþg0þLþL0
�ððLþL0

ÞmodMÞ ~ssðLþL0
ÞmodM;

and this algebra is in the obvious way isomorphic to dF½T �F½T �
W .

It isn’t difficult to check, that the Dynkin diagrams (as defined in [K], section 4.7)

of the strongly hyperbolic symmetrizable generalized Cartan matrices, which satisfy

the above condition, are:

�1;�5

1 1
m1 ¼ 1; m2 ¼ 1;

�1;�6

1 2
m1 ¼ 2; m2 ¼ 2;

�2;�3

1 2
m1 ¼ 2; m2 ¼ 1;

�2;�4

1 2
m1 ¼ 2; m2 ¼ 2;
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1 2 3 m1 ¼ 2; m2 ¼ m3 ¼ 1;

1 2 3 m1 ¼ 2; m2 ¼ m3 ¼ 1:

One of the main results of the exponential invariant theory of [Loo] is the descrip-

tion of a certain mW-adic completion of the algebra AW in the irreducible, nonfinite

case. In our notation, the result in the affine case is Zðc \ PÞ½½Pþ
I ��, and in the inde-

finite case Z½c \ P�½½Pþ
I ��. (Recall that c denotes the edge of the Tits cone X, and

Pþ
I :¼ PI \ �CC.)

Using Theorem 2.3 and Proposition 1.3, it is easy to derive a similar result for the

invariant algebra dF½T �F½T �
W , which we state as a supplement: Because c is a face of X, we

get an ideal of dF½T �F½T �
W by

mW :¼ f 2 dF½T �F½T �
W
��� suppðf Þ � Xnc

n o
:

Choose a family ðSLÞL2Pþ as above, with SLSL0 ¼ SLþL0 for L;L0
2 Pþ. For l 2 Pþ

set hðlÞ ¼
Pn

i¼1 lðhiÞ.

PROPOSITION 2.5. Let the generalized Cartan matrix A have no component of finite

type. Then the mW-adic completion of dF½T �F½T �
W , described as inverse limit, is given by

F½c \ P�½½Pþ
I �� together with the maps

F½c \ P�½½Pþ
I �� ! dF½T �F½T �

W=ðmWÞ
p;X

l1l2

cl1l2sl1 ~ssl2 7!
X

l1l2; hðl2Þ<p

cl1l2Sl1þl2 þ ðmWÞ
p; p 2 N:

3. A Formal Chevalley Restriction Theorem

We first describe a formal completion of the algebra of strongly regular functions

F½G� of a Kac–Moody group G. Its construction is similar, but not completely par-

allel to the construction of the completion in the last section:

Let F : �L2PþLðLÞ � LðLÞ ! F½G� be the isomorphism of the Peter–Weyl theo-

rem. The algebra of strongly regular functions is ðX \ PÞ  ðX \ PÞ-graded by

F½G�lm :¼
M
L2Pþ

F LðLÞl � LðLÞm
� �

; ð16Þ

(l; m 2 X \ P). For an element f 2
Q

l;m2X\P F½G�lm, we denote by flm :¼ prlmðf Þ its

projection onto F½G�lm. Set

suppð f Þ :¼ ðl; mÞ 2 ðX \ PÞ  ðX \ PÞ j flm 6¼ 0
� 

:

Denote by prLðflmÞ the projection of flm onto the L-summand of (16). Define

prLðf Þ :¼
Q

l;m2X\P prLðflmÞ, and set

Suppð f Þ :¼ L 2 Pþ j prLðf Þ 6¼ 0
� 

� Pþ:
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PROPOSITION 3.1.

dF½G�F½G� :¼ f 2
Y

l;m2X\P

F½G�lm

����� 9 k 2 N; 9L1; . . . ;Lk 2 Pþ : Suppð f Þ �
[k
i¼1

PðLiÞ

( )

is a commutative associative algebra with unit, the multiplication given by

f ~ff
� �

lm
:¼

X
l1;l22X\P; l¼l1þl2
m1;m22X\P; m¼m1þm2

fl1m1
~ffl2m2 : ð17Þ

Proof. We only show that the multiplication map (17) is well defined, all other

things are obvious. Let

Suppð f Þ �
[k
i¼1

PðLiÞ; Suppð ~ff Þ �
[~kk
j¼1

Pð ~LLjÞ:

.
Theorem 1.2(b) implies

suppð f Þ �
[k
i¼1

PðLiÞ  PðLiÞ; suppð ~ff Þ �
[~kk
j¼1

Pð ~LLjÞ  Pð ~LLjÞ;

therefore the sum (17) is finite. To show f ~ff 2 dF½G�F½G�, we write a summand of (17) as the

finite sum

fl1m1
~ffl2m2 ¼

X
L2Suppð f Þ

~LL2Suppð ~ff Þ

prLð fl1m1Þpr ~LLð ~ffl2m2Þ:

Due to Theorem 1.2(a), (b), and (c), we find

M 2 Pþ
��prM prLðfl1m1Þpr ~LLðfl2m2 Þ

� �
6¼ 0

� 
� PðL þ ~LLÞ ¼ PðLÞ þ PðL0

Þ:

Using Theorem 1.2(b) and (c) once more, we find Suppðfl1m1
~ffl2m2 Þ �

S
i;j PðLi þ

~LLjÞ.

Therefore also Suppð f ~ff Þ �
S

i;j PðLi þ
~LLjÞ. &

Remark. We identify F½G�, in the obvious way, with a subalgebra of dF½G�F½G�. If A

has only components of finite type, then dF½G�F½G� ¼ F½G�.

It is useful, to introduce a natural limit concept for dF½G�F½G�. This is done in a similar

way as for dF½T �F½T �, but ‘supp’ being replaced by ‘Supp’. Call a sequence ðfiÞi2N � dF½G�F½G�

convergent to f 2 dF½G�F½G� if:

� There exist k 2 N, L1; . . . ;Lk 2 Pþ, such that SuppðfiÞ � ðPðL1Þ [ � � � [ PðLkÞÞ

\Pþ for all i 2 N.

� For every l; m 2 X \ P, there exists an element i0 2 N, such that for all i5 i0 we

have ðfiÞlm ¼ flm.

It is obvious how to define ‘dense’ and ‘continuous’, also if maps between different

spaces, as dF½G�F½G� and dF½T �F½T �, are involved. Note that the addition, multiplication with a
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scalar, and the multiplication of the algebra dF½G�F½G� are continuous, as well as the pro-

jections prlm; prL, and that F½G� is dense in dF½G�F½G�. It is also obvious, how to define

‘summable’, ‘s-linear independent’, and ‘s-base’.

THEOREM 3.2. ð1Þ The action p of G  G on F½G� extends uniquely to an action p ondF½G�F½G�, by continuous homomorphisms of algebras.

ð2Þ The Chevalley involution � of F½G� extends uniquely to a continuous involution �

of dF½G�F½G�.

Proof. Let g; h 2 G and f 2 dF½G�F½G�. If there exist extensions with these continuity-

properties, then, due to f ¼
P

l;m flm, they are uniquely determined, and satisfy:

ðpðg; hÞ f Þ~ll ~mm ¼
X
l;m

pr~ll ~mmðpðg; hÞflmÞ;
~ll; ~mm 2 X \ P; ð18Þ

ð f �Þlm ¼ ð flmÞ
�; l; m 2 X \ P: ð19Þ

It’s easy to see, that (19) defines a continuous involution of dF½G�F½G�. It remains to show,

that (18) defines an action of G  G on dF½G�F½G� by continuous homomorphisms.

Note that for f 2 dF½G�F½G� with Suppð f Þ � ðPðL1Þ [ � � � [ PðLkÞÞ \ Pþ; we can fix a

decomposition

PðL1Þ [ � � � [ PðLkÞð Þ \ Pþ ¼
_[

i¼1;...;k

[
i¼1;...;k

Ci with Ci � PðLiÞ;

and write f in the form f ¼
Pk

i¼1 f
ði Þ with f ði Þ :¼

P
L2Ci

prLð f Þ 2 dF½G�F½G�.

To check that (18) gives a well defined continuous linear map, we therefore may

restrict to elements f 2 dF½G�F½G� with Suppð f Þ � PðLÞ; L 2 Pþ. Fix ~ll; ~mm 2 X \ P. Write

g; h 2 G in the form:

g ¼ ua1 . . . uap t with uai 2 Uai ; t 2 T;

h ¼ ub1 . . . ubq ~tt with ubi 2 Ubi ; ~tt 2 T:

For Z; Z0 2 PðLÞ, a 2 Dþ
re, denote the relation Z0 2 Z þ N0a by Z�!

a
Z0. For

N 2 PðLÞ \ Pþ we have, due to Theorem 1.2(b), PðNÞ � PðLÞ. In particular, every

a-string of PðNÞ is contained in a unique a-string of PðLÞ. Therefore,

pr~ll ~mmðpðg; hÞflmÞ 6¼ 0 is only possible for such l; m, from which ~ll; ~mm can be reached

by a sequence of directed parts of strings in PðLÞ of the form

l �!
�ap

� �!
�ap�1

� � � � � �!
�a1 ~ll; m �!

bq
� �!

bq�1
� � � � � �!

b1
~mm:

This is only possible for finitely many l; m, because a real root string in PðLÞ contains

only finitely many elements. If we denote by S~ll the set of all such l’s, and by T ~mm the

set of all such m’s, then (18) can be written as

ðpðg; hÞf Þ~ll ~mm ¼
X

ðl;mÞ2S ~llT ~mm

pr~ll ~mmðpðg; hÞflmÞ;
~ll; ~mm 2 X \ P: ð20Þ
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To check the continuity of pðg; hÞ, let ðfiÞi2N be a sequence convergent to f with

Suppð fi Þ; Suppð f Þ � PðLÞ, L 2 Pþ. Applying pðg; hÞ to fi and f doesn’t change their

Supp-sets. Using (20), we find that pðg; hÞfi is convergent to pðg; hÞf.
To show that pðg; hÞ is a homomorphism of algebras, let f; f 0 2 dF½G�F½G�. Choose

sequences ð fi Þi2N; ð f 0
i Þi2N � F½G� with limits f; f 0. We have

pðg; hÞðfif 0
i Þ ¼ ðpðg; hÞfiÞðpðg; hÞf 0

i Þ ði 2 NÞ:

Due to the continuity of pðg; hÞ, and of the multiplication map, we get

pðg; hÞð ff 0Þ ¼ ðpðg; hÞf Þðpðg; hÞf 0Þ ði 2 NÞ:

In a similar way, the action property of p transfers from F½G� to dF½G�F½G�. &

The adjoint action of G on F½G� extends uniquely to an action c on dF½G�F½G� by con-

tinuous homomorphisms. It is given by cðgÞ :¼ pðg; gÞ, g 2 G. Next we determine the

corresponding invariant algebra dF½G�F½G�
G.

Let L 2 Pþ. For every l 2 PðLÞ choose hh j ii-dual bases

ðalkÞk¼1;...;ml
; ðblkÞk¼1;...;ml

of LðLÞl. The formal G-character of LðLÞ is defined by

TrL :¼
X

l2PðLÞ

Xml

i¼1

falibli 2 dF½G�F½G�:

It is independent of the chosen dual bases. In the classical case, it coincides with the

G-character of LðLÞ.

THEOREM 3.3. The family ðTrLÞL2Pþ is an s-base of dF½G�F½G�
G. Its s-linear combinations

are given by the sumsX
L2ðPðL1Þ[���[PðLkÞÞ\Pþ

cLTrL; ð21Þ

with cL 2 F, L1; . . . ;Lk 2 Pþ, k 2 N.

Proof. We only show, that every element of dF½G�F½G�
G is of the form (21). Then the

rest of the theorem can be proved similar to the corresponding parts of Theorem 2.3.

For every L 2 Pþ, the projection prL : dF½G�F½G� ! dF½G�F½G� is G-invariant. Since for

f 2 dF½G�F½G�
G we have

f ¼
X

L2Suppð f Þ

prLð f Þ with prLð f Þ 2 prLð dF½G�F½G�Þ

� �G
;

it is sufficient to show prLð dF½G�F½G�Þ

� �G

¼ FTrL.

We first show the inclusion ‘'’. Define an action c of G on EndðLðLÞÞ by

cðgÞf :¼ gfg�1; g 2 G; f 2 EndðLðLÞ:

Note, that due to [K], Lemma 9.3, we have EndðLðLÞð Þ
G
¼ FidLðLÞ. Since jh ih i is non-

degenerate, we get an injective linear map C: EndðLðLÞÞ ! prLð dF½G�F½G�Þ by
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CðfÞlm :¼
X
ij

falibmj amjjfbli
� �� �

; l; m 2 X \ P; f 2 EndðLðLÞÞ:

We show, that it is also G-invariant. The group G is generated by the groups UaT,

a 2 Dre. Therefore it is sufficient to show the UaT-invariance for all a. Let
u 2 UaT, let ~ll; ~mm 2 PðLÞ, and denote by R resp. S the a-string through ~ll resp. ~mm.
We have

cðuÞCðfÞð Þ~ll ~mm ¼
X

ðl;mÞ2RS

pr~ll ~mm cðuÞðCðfÞlmÞ
� �

:

Insert the definition of CðfÞlm in the expression on the right. After some transforma-

tions, it is equal to

pr~ll ~mm

X
ðl;mÞ2RS

X
ij

f
ðu�Þ

�1aliubmj
ðu�Þ

�1amj j ufu�1ubli
� �� � !

: ð22Þ

The pairs

ððu�Þ
�1aliÞl2R; i¼1;...;ml

; ðubliÞl2R; i¼1;...;ml
; ð23Þ

ððu�Þ
�1amjÞm2S; j¼1;...;mm

; ðubmjÞm2S; j¼1;...;mm
ð24Þ

are pairs of jh ih i-dual bases of �l2RLðLÞl resp. �m2SLðLÞm. Expression (22) does

not change, if we use other pairs of jh ih i-dual bases. In particular, we can use

the pairs of dual bases (23) and (24) with u replaced by 1, and obtain C cðuÞfð Þ~ll ~mm.

We find

prLð dF½G�F½G�Þ

� �G
' CððEndðLðLÞÞÞ

G
Þ ¼ FCðidLðLÞÞ ¼ FTrL:

To show equality, let f 2 prLð dF½G�F½G�Þ

� �G

. Because C is injective and G-equivariant,

it is sufficient to find an element ff 2 EndðLðLÞÞ, such that f ¼ CðffÞ. Define

ff 2 EndðLðLÞÞ by

ff bli :¼
X
k

clkiblk; l 2 PðLÞ; i ¼ 1; . . . ;ml;

where the coefficients clki are given by fll ¼
P

ij clji faliblj . Using the definition of C, it
is easy to check, that we have ðCðffÞÞll ¼ fll, and ðCðffÞÞlm ¼ 0 for l; m 2 X \ P,

l 6¼ m.
To prove f ¼ CðffÞ, it remains to show flm ¼ 0 for l 6¼ m. For t 2 T we have

cðtÞf ¼ f. Therefore

elðt
�1ÞemðtÞflm ¼ flm; l; m 2 PðLÞ:

For l 6¼ m there exists an element t 2 T, such that elðtÞ 6¼ emðtÞ. Using the last equa-

tion, we find flm ¼ 0. &

Due to the explicit descriptions of the invariant algebras dF½T �F½T �
W and dF½G�F½G�

G, it is

now easy to derive the formal Chevalley restriction theorem:

146 CLAUS MOKLER

https://doi.org/10.1023/A:1021739615180 Published online by Cambridge University Press

https://doi.org/10.1023/A:1021739615180


COROLLARY 3.4. The restriction map r : F½G� ! F½T � extends uniquely to a con-

tinuous surjective homomorphism of algebras r : dF½G�F½G� ! dF½T �F½T �. This extension induces

an isomorphism of the invariant algebras dF½G�F½G�
G and dF½T �F½T �

W .

Proof. The restriction map r : F½G� ! F½T � has been given explicitely in the proof

of Proposition 2.1. It is easy to check, that the map r : dF½G�F½G� ! dF½T �F½T � defined by

rðfÞ :¼
P

l fllð1Þel, f 2 dF½G�F½G�, is an extension with the properties stated in the cor-

ollary. It is also obvious, that rðTrLÞ ¼ wL, where wL is the formal T-character

defined in (10). Due the last theorem and Theorem 2.3, the restricted map

r : dF½G�F½G�
G

! dF½T �F½T �
W is bijective. &

Remark. The G  G-algebra dF½G�F½G� has been defined using the Cartan subalgebra h.

Let h0 be another Cartan subalgebra with corresponding G  G-algebra dF½G�F½G�
0. By

using the transitivity of the adjoint action of G on the Cartan subalgebras, it is not

difficult to see, that the identity map of F½G� can be extended uniquely to a con-

tinuous, continuously invertible isomorphism of G  G-algebras between dF½G�F½G� anddF½G�F½G�
0. This isomorphism maps G-characters to G-characters. Thus, we may identify

the G  G-algebras belonging to different Cartan subalgebras.

4. A Convergent Chevalley Restriction Theorem in the Affine Case

In this section, we restrict to a generalized Cartan matrix of affine type, and to the

ground field of complex numbers F ¼ C.

We replace the Chevalley involution of G by the compact involution. We replace

the nondegenerate contravariant symmetric bilinear forms on the modules LðLÞ,

L 2 Pþ, by the contravariant positive definite Hermitian forms. But for the sake

of simplicity, we shall use the same notations. Note that C½G�lm is also spanned by

the matrix coefficients of elements v 2 LðLÞl, w 2 LðLÞm, L 2 Pþ, relative to these

forms.

The algebra dC½G�C½G� is equipped with the adjoint action c, and with the involution �,

induced by the compact involution of C½G�.

Denote by Gtr the set of elements g 2 G, such that for all L 2 Pþ, the linear map

pLðgÞ on LðLÞ can be extended to a trace class operator on the Hilbert space comple-

tion of LðLÞ. Note that Gtr is invariant under the compact involution. For a subsetM

of G set Mtr :¼ M \ Gtr.

Choose a system of fundamental dominant weights as in [K], chapter 6. Denote by

d the minimal positive imaginary root, denote by d the scaling element. Due to [B],

Lemma 3 and Theorem 1, we have

T tr ¼ fexpðhÞ j h 2 h with ReðdðhÞÞ > 0g

¼ th1 ðc1Þ � � � thnðcnÞtdðcnþ1Þ j
c1; . . . ; cn 2 C

;

cnþ1 2 C with jcnþ1j > 1

� �
;

Gtr ' G0ðTrestÞ
tr

¼ U�NtrU� ¼ K ðT þÞ
trU�: ð25Þ
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G. Brüchert conjectured equality in (25). Note that T tr is invariant under the W-

action on T, and G0ðTrestÞ
tr is invariant under the conjugation action of G on itself.

For L 2 Pþ, we get an orthonormal base of LðLÞ, by choosing an orthonormal

base ðvliÞi¼1;...;ml
of every weight space LðLÞl, l 2 PðLÞ. This base is a complete

orthonormal system of the Hilbert space completion of LðLÞ. The trace function

of the semigroup of trace class operators of the Hilbert space completion of LðLÞ

induces functions on T tr and Gtr, which can be described by the following absolutely

convergent series:X
l2PðLÞ

mlelðtÞ; t 2 T tr: ð26Þ

X
l2PðLÞ

Xml

i¼1

hhvli j g vliii; g 2 Gtr: ð27Þ

Clearly (26) is aW-invariant function. G. Brüchert showed in [B], Theorem 3(a), that

(27) restricted to G0ðTrestÞ
tr is a G-invariant function.

THEOREM 4.1. In ð25Þ we have equality, i.e.,

Gtr ¼ G0ðTrestÞ
tr

¼ U�NtrU� ¼ K ðTþÞ
trU�:

Proof. Due to the Iwasawa decomposition we have G ¼ KTþU. The group K

gives rise to groups of unitary operators on the Hilbert space completions of LðLÞ,

L 2 Pþ. Therefore we get Gtr ¼ KðTþUÞ
tr. Due to (25) we have ðTþÞ

trU � ðTþUÞ
tr.

To show the reverse inclusion, let t 2 Tþ, u 2 U with tu 2 ðTþUÞ
tr. Fix an element

L 2 Pþ with LðhjÞ > 0 for some j 2 I, and choose an orthonormal base of LðLÞ as

above. We have

1 >
X

l2PðLÞ

Xml

i¼1

j vli j tu vlih ih ij ¼
X

l2PðLÞ

ml jelðtÞj:

Using [K], Proposition 11.10 and Equation (11.10.1), we find t 2 T tr. &

Next we define an appropriate notion of convergence for the elements of dC½T �C½T � anddC½G�C½G�, such that the formal characters wL and TrL are convergent, and give rise to the
functions (26) and (27). (For this note, that TrL ¼

P
l2PðLÞ

Pml
i¼1 fvlivli , where the

matrix coefficient fvlivli is built with the Hermitian form.) As part of the following

theorem, we extend Theorem 3(a) of [B] to all functions corresponding to convergent

elements of dC½G�C½G�.

Call an element f 2 dC½T �C½T � convergent, if
P

l jflðtÞj < 1 for all t 2 T tr. Call an ele-

ment f 2 dC½G�C½G� convergent, if
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X
lm

j cðhÞfð ÞlmðgÞj < 1

for all h 2 G and g 2 Gtr. This notion is independent of the chosen Cartan subalge-

bra.

Assigning to t 2 T tr (resp. g 2 Gtr) the value
P

l flðtÞ (resp.
P

lm flmðgÞ), we get a

function on T tr (resp. Gtr), which we also denote by f.

THEOREM 4.2. (1) The set of convergent elements of dC½T �C½T � forms a W-invariant

subalgebra of dC½T �C½T �. It can be identified with the corresponding algebra of functions on

T tr, which we denote by C½T tr�, the W-action being induced by the conjugation action

of W on T tr.

ð2Þ The set of convergent elements of dC½G�C½G� forms a G and �-invariant subalgebra ofdC½G�C½G�. It can be identified with the corresponding algebra of functions on Gtr, which we

denote by C½Gtr�, the G-action being induced by the conjugation action of G on Gtr, and

the involution � being induced by the compact involution of Gtr.

Remark. The algebras C½T �, C½G� contain only convergent elements. They can be

identified with the corresponding subalgebras of C½T tr�, C½Gtr�.

Proof. We only show (2). The arguments in the proof of (1) are easy, or similar to

some arguments in the proof of (2).

The definition of ‘convergent’ implies, that the set of convergent elements of dC½G�C½G�

is a G-invariant subspace of dC½G�C½G�. It is �-invariant, due to cðhÞf � ¼ ðcððh�Þ
�1

Þf Þ�.

It is also a subalgebra. Obviously the unit of dC½G�C½G� is convergent. If f1; f2 2 dC½G�C½G� are

convergent, a Cauchy summation argument shows the convergence of f1f2.

Next, we prove, that the algebra of convergent elements can be identified with its

corresponding algebra of functions on Gtr. Let f 2 dC½G�C½G� be convergent, withP
lm flmðgÞ ¼ 0 for all g 2 Gtr. Due to [K,P 2], Lemma 2.1(d), which is also valid

for the algebra of strongly regular functions of the slightly bigger Kac–Moody

group, the condition flm jU�TUþ¼ 0 for all l, m, is sufficient for f ¼ 0.

Fix an element g 2 U�TUþ ¼ U�UþT, and write g in the form

g ¼ expðyb1 Þ � � � expðybpÞ expðxg1 Þ � � � expðxgqÞe
h

with p; q 2 N, bi, gj 2 Dþ
re, ybi 2 g�bi

, xgj 2 ggj , and h 2 h. To show flmðgÞ ¼ 0, it is suf-

ficient to show

flm yk1b1 � � � y
kp
bp
xl1g1 � � � x

lq
gq

� �
¼ 0; ð28Þ

for all k1; . . . ; kp; l1; . . . ; lq 2 N0.

To abbreviate the notation, for c 2 C set

ybiðcÞ :¼ expðcybiÞ; xgjðcÞ :¼ expðcxgjÞ:
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Due to U�UþT tr � Gtr, and the description of T tr given at the beginning of this sec-

tion, we have for all ri; sj 2 C, c1; . . . ; cn 2 C
, cnþ1 2 C with jcnþ1j > 1:

0 ¼
X
l;m

flm yb1 ðr1Þ � � � ybp ðrpÞxg1 ðs1Þ � � � xgqðsqÞth1 ðc1Þ � � � thn ðcnÞtdðcnþ1Þ
� �

¼
X
m

X
l

X
k1;...;kp
l1;...;lq

flm yk1b1 � � � y
kp
bp
xl1g1 � � � x

lq
gq

� � rk11
k1!

� � �
s
lq
q

lq!

0B@
1CAcmðh1Þ1 � � � c

mðdÞ
nþ1:

This expression is a Laurent series in c1; . . . ; cnþ1, its coefficients vanish. Due to the

orthogonality of the weight spaces, Equation (28) is valid for

l 6¼ m þ l1g1 þ � � � þ lqgq � k1b1 � � � � � kpbp:

Therefore the coefficients of the Laurent series are power series in

r1; . . . ; rp; s1; . . . ; sq. The vanishing of the coefficients of these power series proves

(28) for l ¼ m þ l1g1 þ � � � þ lqgq � k1b1 � � � � � kpbp.
Obviously, the involution on the set of convergent elements identifies with the

involution induced by the compact involution on Gtr. To check the corresponding

thing for the G-actions, we may restrict to convergent elements f 2 dC½G�C½G� with

Suppð f Þ � PðLÞ \ Pþ, L 2 Pþ. Note that due to Theorem 1.2(b), suppð f Þ

� PðLÞ  PðLÞ.

Since G is generated by the groups UaT, a 2 Dþ
re, it is sufficient to consider only

UaT-actions. Let u 2 UaT. Because f and cðuÞf are convergent, and Gtr is invariant

under conjugation, we find for all g 2 Gtr:

ðcðuÞ f ÞðgÞ ¼
X

s1;s2 a�strings
of PðLÞ

X
l12s1; l22s2

0BB@
1CCA X

m12s1; m22s2

ðcðuÞfm1m2Þl1l2ðgÞ

 !

¼
X

s1;s2 a�strings
of PðLÞ

X
m12s1; m22s2

ðcðuÞfm1m2ÞðgÞ ¼ fðu�1guÞ: &

Due to the last proposition, the invariant algebras C½Gtr�, C½T tr�
W consist of the

functions induced by the convergent elements of dC½G�C½G�
G; dC½T �C½T �

W . In particular,

C½Gtr�
G contains the functions given by the formal G-characters TrL, L 2 Pþ, and

C½T tr�
W contains the functions given by the formal T-characters wL, L 2 Pþ.

We can now formulate the convergent Chevalley restriction theorem:

THEOREM 4.3. The restriction map r : dC½G�C½G� ! dC½T �C½T � induces the restriction map of

functions r : C½Gtr� ! C½T tr�, which induces an injective homomorphism of the invar-

iant algebra C½Gtr�
G into C½T tr�

W .

Proof. The restriction map r : dC½G�C½G� ! dC½T �C½T � is given by

rð f Þl ¼ fllð1Þel; f 2 dC½G�C½G�; l 2 X \ P:
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If f 2 dC½G�C½G� is convergent, then for t 2 T tr we findX
l

jrð f ÞlðtÞj ¼
X
l

jfllðtÞj4
X
lm

jflmðtÞj < 1:

Therefore rðfÞ 2 dC½T �C½T � is also convergent.

The restriction map r : dC½G�C½G� ! dC½T �C½T � induces the restriction map of functions

C½Gtr� ! C½T tr�, because due to the orthogonality of different weight spaces, we

have rðfÞðtÞ ¼
P

l fllðtÞ ¼
P

lm flmðtÞ ¼ fðtÞ for all t 2 T tr. The remaining statements

follow easily from Corollary 3.4, using rðTrLÞ ¼ wL, and Theorem 4.2. &

Remark. It remains open if the restriction map is surjective. If not, a full analogue

of the Chevalley restriction theorem can be obtained by replacing C½T tr� by the

image rðC½Gtr�Þ.
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[B] Brüchert, G.: Trace class elements and cross-sections in Kac–Moody groups, Canad.
J. Math. 50(5) (1998), 972–1006.

[E,F,K] Etingof, P. I., Frenkel, I. B., and Kirillov, A. A.: Spherical functions on affine Lie

groups, Duke Math. J. 80 (1995), 59–90.
[K] Kac, V. G.: Infinite Dimensional Lie Algebras, Cambridge Univ. Press, 1990.
[K,P 1] Kac, V. G. and Peterson, D. H.: Infinite flag varieties and conjugacy theorems, Proc.

Natl. Acad. Sci. USA 80 (1983), 1778–1782.
[K,P 2] Kac, V. G. and Peterson, D. H.: Regular functions on certain infinite-dimensional

groups, In: Arithmetic and Geometry, Progr. in Math. 36, Birkhäuser, Boston,
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