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Abstract

Let o4(n) = |{(a, a’) € A%2:a +a’ =n}|, where n € N and A is a subset of N. Erdés and Turdn con-
jectured that for any basis A of N, o4 (n) is unbounded. In 1990, Ruzsa constructed a basis A C N
for which o4 (n) is bounded in square mean. Based on Ruzsa’s method, we proved that there exists a
basis A of N satisfying )", _» aﬁ (n) < 1449757 928N for large enough N. In this paper, we give a
quantitative result for the existence of N, that is, we show that there exists a basis A of N satisfying
anN 0[2‘ (n) <1069 693 154N for N > 7.628 517 798 x 10%7, which improves earlier results of the
author [‘A note on a result of Ruzsa’, Bull. Aust. Math. Soc. 77 (2008), 91-98].
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1. Introduction

For A, BC Zandn € Z, let

oa,8(n) =|{(a,b) € AX B:a+b=nl|,
Sa.p(n) ={(a,b) e A x B:a—b=n}|.

Let 0a(n) =04,4(n) and §4(n) =84, 4(n). A subset A of N is called a basis of N if
oa(n) > 1forn > ng. In 1941, Erd6s and Turan [3] formulated the following attractive
conjecture.

CONJECTURE (Erd6s—Turan). If A CN is a basis of N, then o4(n) cannot be
bounded:

lim sup o4 (n) = +o0.

n—-+4o00

This harmless-looking conjecture seems to be extremely difficult. In 1954, using

probabilistic methods, Erdds [2] proved the existence of a basis of N for which o (n)
satisfies c¢1 logn < o (n) < ¢ log n for all n with certain positive constants ¢y, ¢3. In
1990, Ruzsa [5] constructed a basis A of N for which o4(n) is bounded in mean
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square, that is, he constructed a basis A satisfying >, _» ai(n) = O(N). Based
on Ruzsa’s method, Tang [6] proved that there exists a basis A of N satisfying
Y onenN aﬁ (n) < 1449757 928N for large enough N.

In this paper, improving Ruzsa’s method and employing a result concerning the
function  (x) of Panaitopol, we give a quantitative result for the existence of N and
obtain a stronger version of the above result.

THEOREM 1.1. There exists a set A of nonnegative integers that forms a basis of N,
and satisfies Y, -y 05 (n) <1069 693 154N for N >7.628 517798 x 1077,

Throughout this paper, let p be an odd prime, Z, be the set of residue classes
mod p and G=Z?,. For A, BCG,let A—B={a—b:acA,be B}. Denote
Ok = {(u, ku®) :u € Z,} C G and for a finite set A, let

+00
D(A)=Y oi(m)=|{(a,b,c.d) € A*:a+b=c+d}|.

¢ 1s a mapping
0:G—>7Z, ¢(a,b)y=a+2pb,

where we identify the residues mod p with the integers 0 < j < p — 1.

2. Proofs

LEMMA 2.1. For any real number x > 1342, there exists at least one prime in the
interval (x, 1.0147x].

PROOF. By direct calculation we know that Lemma 2.1 is true for 1342 <x <
1341755571 000.
We now assume that x > 1341755571 000. We employ a result concerning the
function 7 (x) of Panaitopol [4]. That is,
X

Vx > 6.
7)< ogx — 1= (ogm) 05

and
X

logx — 1 + (log x)=9
Thus it suffices to prove that for x > 1341 755 571 000,

T(x) > Vx > 59.

7(1.0147x) — 7w (x)
1.0147x X
> f—
log(1.0147x) — 1 + (log(1.0147x))=9>  logx — 1 — (log x)—0-
> 0.

This is equivalent to showing that

147 log x > 147 + 10* log 1.0147 + 10147 (log x) "% + 10*(log x + log 1.0147) .
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It is easy to verify that the inequality is true for x =1 341755571 000. Hence the
inequality is true for x > 1 341 755 571 000.
This completes the proof of Lemma 2.1. o

LEMMA 2.2 [6, Lemma 2|. For g = (a, b) € G, and fixed k, | € Z, \ {0}, consider
the equation

g=x—y, x€Q0ryeQ.
If k — 1 # 0, this equation is solvable unless

((k — Db+ kla2>
P

=1,

and it has at most two solutions. If k — [ =0, it has at most one solution except for
g =0, when it has p solutions.

LEMMA 2.3. Let p(=11) be prime and m be a quadratic nonresidue of p with
m+1#0mod p, 3m+1#£0modp and m+3#0modp. Put B= Q41U
Omm+1y U Qom. Then 1 <o0p(g) <16 for all g€ G and 1 <6p(g) <11 for all
g§#0.

PROOF. The statement that 1 <op(g) <16 for all g € G is obtained by Yong-Gao
Chen in [1, Lemma 2]. We now show that 1 <ép(g) <11 for all g # 0.

Suppose that there is a ¢ = (a. b) € G, ¢ & Qom — Qut1. & & Q1) — Qo
Note that m is a quadratic nonresidue of p, hence m —1#£0mod p and, by
Lemma 2.2,

p p

I ((m — Db+ 2m(m + 1)a2)2<@) B (@) _
B p p) \p)

This contradiction shows that

<(m — Db+ 2m@m + 1)a2) L <m(m — Db+ 2m*m + 1)a2> _

Thus

G = Q2 — Om+1) U (Qmm+1) — OQ2m),

which is stronger than the required B — B = G.
Let
T={m+1, mm+1),2m}.

If g=(a,b)eG(g+#0), then (m — 1)b cannot equal both 2m(m + a? and
—2m(m + 1)a®. Now we consider the following three cases.

Case 1. (m — 1)b % 2m(m + 1)a®> and (m — 1)b # —2m(m + 1)a®>. Then we have
8 & (Qm+1— Q2m) N (Q2m — Omm+1)) and g & (Q2m — Om+1) N (Qm(m+1) — Q2m)-
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Indeed, if g € (Qm+1 — Qam) N (Q2m — Cmm+1)), by (m — Db # 2m(m + 1)a*

we have
((—m + Db+ 2m(m + 1)a2> 1 <(—m2 + m)b + 2m%(m + 1)a2> 4
p p
Thus

L ((—m + )b+ 2m(m + 1)a2)2(@> B (n_1) _
a p p) \p)

Similarly, by (m — 1)b # —2m(m + 1)a?, we can show that

g ¢ (Qoam — Om+1) N (Qmim+1) — Qo2m)-
Hence, for g ## 0, by Lemma 2.2,

58(8) < ) 80,.0,8)= ) 80,.0,(&)+ ) 80,(8) <2x4+1x3=11

r,seT r,seT reT

r#s
Case 2. (m — 1)b =2m(m + 1)a® and (m — 1)b # —2m(m + 1)a’. Then
8 ¢ (QZm - Qm-‘rl) N (Qm(m+1) - Q2m)
Moreover, if g € Q41 — Qam, then there exists (u, v) € Z?, such that
a=u-—v, b:(m+1)u2—2mv2. (2.1)
Thus
b= (—m~+ Hv>+2(m + Dav + (m + 1)a’.
We have m — 1 £ 0mod p and (m — 1)b =2m(m + Da?, thus
((=m + D)v + (m + Da)*> =2m(m + a® + (—m + 1)b = 0. (2.2)

Thus, there is a unique v satisfying (2.2), hence 8¢,,.,,0,,,(¢) = 1. Similarly, we can
show that if ¢ € Qo — Qm@m+1), then 8¢9, 0,41, (&) = 1. Hence, for g #0, by
Lemma 2.2,

58(8) < Y 80,0, = ) 80.0,@+) S0.(&) 2x3+1x5=11

r,seT r,seT reT

r#s
Case 3. (m — 1)b = —2m(m + 1)a® and (m — 1)b # 2m(m + 1)a’. Then
8 & (Qm+1 — Q2m) N (Qom — Om(m+1))-

Moreover, if g € Q2 — Qm+1, then 89, 0,,.,(8) =15 if g € Qmm+1) — Q2m, then

801y 0am (8) = 1. Hence, for g # 0, by Lemma 2.2,

55() < Y 80,.0.(8)= D 80,.0,(8) + D 80,(8) <2x3+1x5=11L

r,seT r,seT reT

r#s
This completes the proof of Lemma 2.3. O
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REMARK 2.4. Since the number of quadratic nonresidues mod p is (p —1)/2>5
for p > 11, there exists a quadratic nonresidue m such that m + 1= 0mod p,
3m + 1£0mod p and m + 3 % 0 mod p.

LEMMA 2.5. Let p(>11) be prime and m be a quadratic nonresidue of p with
m+1#£0mod p, 3m+1#£0modp and m+3#%0mod p. Put B=Qp4+1 U
Omm+1) Y Qom and B' = @(B). Then op/(n) <16 for all n and $p(n) <11 for
all n # 0. Moreover, for every integer 0 <n < 2p?, at least one of the six numbers
n—p,nn+pn+2p>—p n+2p> n+2p>+pisinB + B

PROOF. Let g, g, h, h' € B. Ttis easy to verify that ¢(g) + ¢(g") = ¢(h) + ¢(h')
is possible only if g + g’ =h + h’ and that ¢(g) — ¢(g’) = ¢(h) — @(I’) is possible
only if g — g’ =h —h'. That is, ¢ cannot increase the values of o and §. By
Lemma 2.3, we have opg/(n) < 16 for all n and §g/(n) < 11 for all n #£ 0.

Now take an arbitrary n € [0, 2 p2) and write it in the form

n=a+2pb, 0<a<2p—-1,0<b<p-1.
We can find (x, y) € B and (x’, y") € B such that
a=x+x'modp, b=y+y modp.
We have
—Qp—-D=<x+x'—a=<2(p-1,
—(p=D<y+y -b<2(p-1,
thusx +x' —a=—p,0,pandy +y —b =0, p.
Casel. x+x' —a=—pandy+y —b=0. Then
n—p=a+2pb—p=x+2py+x'+2py' e B +B.
Case2. x+x'—a=0and y + y' — b =0. Then
n=a+2pb=x+2py+x' +2py eB +B.
Case3. x+x'—a=pandy+y —b=0. Then
n+p=a+2pb+p=x+2py+x' +2pyeB +B.
Case4. x +x' —a=—pandy+y — b= p. Then
n+2pP—p=a+2pb+2p>—p=x+2py+x +2py €B +B.
Case5. x +x' —a=0and y + y — b= p. Then
n+2p*=a+2pb+2p*=x+2py+x'+2py € B +B.
Case6. x +x' —a=pandy+y — b= p. Then
n4+2p*+p=a+2pb+2p*+p=x+2py+x' +2py €B +B.
This completes the proof of Lemma 2.5. O
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LEMMA 2.6. Let p(>11) be prime and m be a quadratic nonresidue of p with
m+1£0modp, 3m+1#0modp and m+3=#0mod p. Put B=Q,,+1 U
Omm+1) U Qom, B'=@(B) and V = B’ + {0, 2p* — p, 2p?,2p> + p}. Then V C
[0, 4p2) is a set with |V| < 12p and satisfies [4p2, 6p2) CV+V,oyn) <256 for
all n and &y (n) < 176 for all n with at most 11 exceptions.

PROOF. Note that B’ C [0, 2p% — p), thus V C [0, 4p?). In addition |V | < 4|B'| =
4B| < 12p.
Since
V+ V=8 +B +1{02p>— p,2p* 2p* + p. 4p* — 2p,
4p* — p,4p*, 4p* + p. 4p* +2p},

by Lemma 2.5, we have [4p2, 6p2) C V + V, and V is the union of four translated
copies of B’, hence

max oy (n) < l6max og(n) <16 x 16 =256.
Since
V-V =8 —B+{0,£Q2p* - p), £2p*, £2p*> + p). £p. £2p}.

by Lemma 2.5,
dy(n) <16 x max §pr(n) <16 x 11 =176,
unless n =0, £(2p% — p), £2p%, £2p* + p), £p, £2p.
This completes the proof of Lemma 2.6. O

LEMMA 2.7. Let X be a finite set of integers and p(>11) be a prime. There is a set Y

such that
Y C (7%2,51)2), Y] < 12p, [6p2, %ﬁ) CY+v, 2.3)
and
D(XUY) < D(X)+ 91'76|X|3 + 864|X|? + 6672p|X| + 73728 p>. (2.4)

PROOF. Let V be the set of Lemma 2.6 and put ¥ = V + ¢ where ¢ is an integer in
(7p%/8, p2. Equation (2.3) holds for any choice of ¢; we show that (2.4) holds for a
suitable choice of .
Let Z = X UY. D(Z) is the number of quadruples (z1, 22, z3, z4) of elements of Z
satisfying
Z1 + 220 =23 + 24. (2.5)
We split Equation (2.5) into the following five classes.

(a) All four unknowns are from X. This gives the term D(X).
(b) One comes from Y, three from X. Equation (2.5) can be written as

t=x1+xx—x3—v, veV.
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Let S; be the number of solutions,

Y Si=12pix.

1p?/8<t<p?
Hence
(p*/8) -min§; <min S, - > 1=12pX],
7p?/8<t<p?
thus
: 96| X |?
min Sy < .
p

(c) Two come from Y, two come from X.

Case 1. The unknowns y; and y, are on the same side. Equation (2.5) can be written
as

yi+y=x1+x2, yi€eY xeX.

By Lemma 2.6, for every pair x1, x7, there are at most 256 solutions which give a total
of 256|X|*>. According to the position of the ys in (2.5), the contribution of this term
is at most 2 x 256|X|* = 512|X|2.

Case 2. The unknowns y; and y, are on different sides, that is,
yi—y2=x1—x2, Yi€Y xi€eX.

By Lemma 2.6, if x; — x3 is none of the 11 exceptional numbers, then the contribution
of this term is at most 2 x 176|X|? = 352| X |?; if x; — x» is one of the 11 exceptional
numbers, then after fixing the value of x| — x;, the numbers x| and y; determine x;
and y; uniquely, thus the contribution of this term is at most 4 x 11 x |X| x |Y]| <
528p|X|.

(d) Three come from Y, one comes from X. Equation (2.5) can be written as
yvitw=y+x, yeYxeX
In this case, the contribution of this term is at most 2 x 256 x | X| x 12p = 6144 p|X]|.

(e) Four unknowns are from Y. The contribution of this term is at most 2 x 256 x
(12p)% = 73728 p>.
Hence

96
D(XUY) < D(X)+ —|X|* + 864|X|*> 4+ 6672p| X | + 73728 p>.
p
This completes the proof of Lemma 2.7. ]

PROOF OF THEOREM 1.1. By Lemma 2.1, for x > 1342, there is a prime p for
which x < p < 1.0147x. Thus we can take a sequence pj, p2, . . . of primes such that
p1=1361 and 1.12p; < p;j+1 <1.0147 x 1.12p; < ,/%pi for all i, that is, 1.12 <

Pi+1,/ Pi < % for all i. This ensures that the intervals [6 piz, % piz) overlap and
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together cover [6p12, +00). Applying Lemma 2.7 to p = p;, we get the set ¥;. Let
Xo =10, 6p%] and X; = X;_1UY;. Then A = U?io X; will be a basis of N.
For N > 7.628 517798 x 10?7 > %(61)12 + 1)%, there exists an i > 1 such that
pl.2 <2N < pl.2+1, SO
|Xi—1l = [Xol +12(p1 + p2+-- -+ pi-1)
= Xol + 12pi (g + -+ 3D
< 101p;.
By Lemma 2.7,
D(X;) = D(Xi-1UY))

<D(Xi-1)+ 9—lei—1I3 + 864X, 11> 4 6672p; | X;_1| + 73 728 p?
< D(X;_1) + 108 470 160p;>.
By induction,
D(X;) < D(Xo) + 108 470 160(p} + - - - + p?)
= D(Xo) + 108470 160p7 (1 + (3)* + - -+ (39
< (6p} + 1)* + 534 846 5767
< 534846 577p?.

Therefore,
> o) < D(X;) < 534846 577p} < 1069 693 154N .
n<N
This concludes the proof. O
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