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ON CONJUGACY CLASSES OF CONGRUENCE SUBGROUPS
OF PSL(2, R).

C. J. CUMMINS

Abstract

Let G be a subgroup of PSL(2,R) which is commensurable
with PSL(2,Z). We say that G is a congruence subgroup of
PSL(2,R) if G contains a principal congruence subgroup I'(V)
for some N. An algorithm is given for determining whether two
congruence subgroups are conjugate in PSL(2,R). This algo-
rithm is used to determine the PSL(2,R) conjugacy classes of
congruence subgroups of genus-zero and genus-one. The results
are given in a table.

1. Introduction.

The principal congruence subgroups of I' = SL(2,Z) are defined as follows:

o =((4 p)escen (4 5)=(y 1) oan,

for N = 1,2,3,.... The image of I'(N) in T = PSL(2,Z) = SL(2,Z)/{£12} is
denoted by T'(N). A subgroup of T is called a congruence subgroup if it contains
some I'(NV). The level of a congruence subgroup G of T is the smallest N such that
T(N) is contained in G.

It is natural to extend this definition to subgroups of PSL(2,R). A subgroup of
PSL(2,R) is commensurable with T if G NT has finite index in both G and T. In
this case, we say that G is a congruence subgroup if it contains some (V).

It was originally conjectured by Rademacher that there are only finitely many
congruence subgroups of given genus in I'. This problem was studied by several
authors. Cox and Parry [3, 4] gave effective bounds and computed a list of genus-
zero congruence subgroups of I'. Independently, Thompson [9] showed that, up to
conjugation, there are only finitely many congruence subgroups of PSL(2,R) of
fixed genus. Motivated by Thompson’s result, and using bounds due to Zograf [10],
a list of congruence subgroups of PSL(2,R) of genus-zero and genus-one was found
in [5] and fundamental domains for these groups were found in [6].

The strategy of [5] was, following Thompson, to use a result of Helling which
states that every group commensurable with T is conjugate to a subgroup of a cer-
tain class of maximal discrete subgroups of PSL(2,R). Thus to find all congruence
subgroups of genus-zero and genus-one, it suffices to compute all the conjugacy
classes of such subgroups inside these “Helling Groups”. Further work, however, is
required to find the resulting PSL(2,R) conjugacy classes. In this paper we supply
the necessary algorithm and the resulting conjugacy classes are given in Table 1.
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In Section 2 background definitions are given. The algorithm for the computation
is described in Section 3 and some concluding comments are given in Section 4.

2.  Background

If G is a discrete subgroup of PSL(2,R) which is commensurable with T', then
G acts on the extended upper half plane H* = H UQ U {oo} by fractional linear
transformations and the genus of G is defined to be the genus of the corresponding
Riemann surface H*/G.

From a computational point of view, it is easier to work with subgroups of I and
SL(2,R), rather than I' and PSL(2,R). There is a 1-1 correspondence between the
subgroups of PSL(2,R) and the subgroups of SL(2,R) which contain —1s, where
15 is the identity of SL(2,R). Thus in [5] and in this paper we consider subgroups
of SL(2,R) which contain —15. If G is subgroup of SL(2,R) and G is its image in
PSL(2,R), then when we refer to geometric invariants such as the genus or cusp
number of G, we mean the corresponding invariants of G.

We recall the following definition.

DEFINITION 2.1.

ro(nt = (e (4 ) €SLeR |abadecz cllf ela cld

fle ad—bec=e},
where e || f means e | f and ged(e, f/e) = 1.

By the following theorem, the study of groups commensurable with I" is essen-
tially the study of subgroups of the groups I'y(f)*, where f is a square-free integer.

THEOREM 2.2. (Helling [7]. See also Conway [2]). If G is a subgroup of SL(2,R)
which is commensurable with T, then G is conjugate to a subgroup of To(f)T for
some square-free f.

As noted in the introduction, we many define the notion of a congruence subgroup
for subgroups of T'o(f)™ using the same definition as for subgroups of I'. However, it
turns out to be equivalent, and more convenient, to introduce, following Thompson,
the appropriate generalization of I'(IV). Recall that

To(N) = {<‘j Z) €SL2,Z) [¢=0 (mod N)).

DEFINITION 2.3. G(n, f) =To(nf)NT(n).
Note that G(n, f) is a normal subgroup of I'g(f)* and that G(n,1) = I'(n).

DEFINITION 2.4. Call a subgroup G of To(f)™ a congruence subgroup if G(n, f) C G
for some n.

The following proposition shows that Definition 2.4 is equivalent, for subgroups
of To(f)™, to the standard definition of a congruence subgroup given in the intro-
duction.
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PROPOSITION 2.5. A subgroup G of SL(2,R) contains a subgroup G(n, f) for some
n and some f if and only if G contains T'(m) for some m.

Proof. Suppose G contains I'(m). Then I'(m) = G(m, 1) and so G contains G(m, 1).
Conversely, if G contains G(n, f), then we have I'(nf) C I'g(nf)NI'(n) and so I'(n f)
is contained in G. O

We may also extended the notion of the level of a congruence subgroup.

DEFINITION 2.6. If G is a congruence subgroup of To(f)™, then let n = n(G, f) be
the smallest positive integer such that G(n, f) C G. We call n(G, f) the level of G.

If f =1, then To(f)* =T and this definition of level coincides with the usual
definition, since G(n,1) = I'(n). However, if G is a subgroup of I'o(f)* and f # 1,
then it is not necessarily the case that n = n(G, f) is the smallest n such that I'(n)
is contained in G. Moreover, if G is a congruence subgroup of both T'o(f1)" and
To(f2)™, with fi # f2, then n(G, f1) and n(G, f3) are not necessarily equal.

3. The Algorithm

By Helling’s Theorem, every subgroup of SL(2, R) which is commensurable with
SL(2,Z) is conjugate to a subgroup of T'y(f)™ for some square-free, positive integer
f- Thus to tabulate all conjugacy classes of congruence subgroups of genus-zero and
genus-one, it is sufficient to list the genus-zero and genus-one subgroups of To(f)™
for the (finite) set of values of f such that T'g(f)" is genus-zero or genus-one. This
was done in [5]. However, in [5] the groups were found up to conjugacy in each
To(f)T. If a class occurred for two different values of f, then this was recorded in
the tables, but the full SL(2,R) conjugacy classes were not computed.

In this section we give an algorithm to find these classes. Table 1 records the
results.

Suppose that K; and K, are subgroups of To(f;)T and To(f2)" respectively,
and that K; and K5 represent two of the classes in Table 2 of [5]. We want to
test K7 and K for conjugacy in SL(2,R). It would initially seem that we have to
consider the case fi # fo. It turns out, however, that we do not need to consider
such cases, since we can find a square-free integer f,,;n» such that K; and K, are
both subgroups of To(fmin) ™"

PROPOSITION 3.1. Suppose K1 and Ks are congruence subgroups of To(f1)* and
To(f2)™ respectively. If K1 and Ks are conjugate in SL(2,R), then there is some
positive, square-free integer fumin, such that K1 and Ky are subgroups of To(fmin)™-

Proof. First note that if m~'K;m = K" = K, for some m in SL(2,R), then m is
a multiple of a primitive integer matrix, since K; and Ks are commensurable with
SL(2,Z). (This follows easily from the fact that K; and K3 both have Q* = QU{oco}
as the set fixed by parabolic elements and so m must map Q* to Q*. ) Next, for
any element m of SL(2,R) which is equal to AA, where A is a primitive integer
matrix, we define the normalized determinant {(m) to be the determinant of A. It
is not difficult to verify that (m) is well defined.

If B € SL(2,Z), then (mB) = (m). So the set of normalized determinants of
the elements of K is finite, since K7 contains some I'(N) with finite index. Let
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{e1,...,er} be the set of normalized determinants of the elements of K. These
must be square-free, since K is contained in T'o(f1)", so the normalized determi-
nants divide f;. Then fi,;, = lem(ey, ..., ex) is the smallest square-free integer such
that K is contained in To(fimin)t. The matrices of Ky have the same normalized
determinants as K; up to squares, since they are obtained by conjugating by a
multiple of a primitive integer matrix. But K5 is contained in some Helling group
and so the normalized determinants of its elements must also be square-free. So the
set of its normalized determinants is also {e1, ..., er}. Thus Ks is also contained in
FO(fmin)+~ O

So to find all SL(2,R) conjugates of the congruence subgroups of interest, we can
first find all SL(2,R) conjugates within Io(f)" for each f. Then the full SL(2,R)
classes are obtained using the known intersections of classes for different values of
f already computed in Table 2 of [5].

The area of a fundamental domain is invariant under conjugation in SL(2,R)
and so if Ky and K3 are subgroups of T'o(f)* which are conjugate in SL(2, R), they
have the same index in T'o(f)*. Also, the number of classes of elliptic fixed points
of given order and the cusp number are invariant under SL(2,R) conjugation. Thus
when testing K7 and K for SL(2,R) conjugacy these invariants are first tested for
equality. Also, by [5] Corollary 4.8, the set of primes dividing the levels of K; and
K5 are equal if the groups are conjugate in SL(2, R).

Given two groups which pass these initial tests, we now want to bound the
number of conjugating matrices m which have to be considered. As To(f)™ acts
transitively on Q U {oco}, by replacing K» by a conjugate group in Tg(f)T we can

p q
= A 0 r
ged(p,q,7) = 1, pr > 0 and X\ = (pr)~'/2. By [5] Proposition 4.7 we have the
following constraints: p | £1, 7 | (¢1/p) ged(f,p), 0 < q¢ < p and also £s | ged(pr, £1)41,
where /; is the level of K;, i = 1,2. This assumes that we fix K7 and conjugate Ks
in To(f)*. If we also allow conjugations of Kj in T'o(f)", then we can also impose

0 < g < ged(p, r), since we can then conjugate K; by <(1) i . As Kg’fl = K; we

can apply the same arguments to get the conditions: r | £ and p | (¢2/7) ged(f, ),
but again this assumes we allow a conjugation of K; in T'o(f)*. This produces a
finite list of possible conjugating matrices m.

To summarize: given K1 and Kj, subgroups of To(f)*, we first test the obvious
invariants for equality. Then, given the levels of the two groups, we can find a
finite list of possible conjugating matrices with the property that, if K7 and K» are
conjugate in SL(2,R), then there is some m in the list and some conjugate K| of K
in Do(f)* and some conjugate K5 of Ky in Tg(f)™ such that m conjugates K; to
K. Since there are only finitely many conjugates Ki and K}, this leads to a finite
number of cases to test and so we have an algorithm for finding all the SL(2,R)
conjugacy classes of congruence subgroups of a given genus.

Since the groups are infinite there is still the problem of giving an algorithm
to perform the test for equality. This can be done as follows. It is not difficult to

verify that if m = A (g 7‘{) as above, then mG(préy, fym=! C G(fy, f) C K;. Let
(3 = lem(prty,£), then since G(¢3, f) C G(prty1), we have mG({3, fym~—* C Kj.

arrange for m to have the form m , with p,q,r integers such that
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Moreover, G({3, f) € G({2, f) C Ks. Thus to test if mKom ™! is equal to K7, it
is sufficient to test if msm ™! is in Ky, for all s € S for some set of generators S
of Ky over G({3, f). (The fact that G(¢s, f) and G(¢3, f) are normal subgroups of
K, and that Ky/G({3, f) was constructed as a permutation group in [5] simplifies
the computation of the cosets). Thus we are finished if we have an algorithm for
testing when an element g in To(f)" is in Kj, but as the group K1/G ({1, f) was
constructed as a subgroup of To(f)*/G(¢1, f) in [5], we can simply test to see if
the image of g in To(f)T/G(¢1, f) is in K1/G (41, f).
In summary we have the following algorithm.

The Algorithm

Input: A square-free integer f, and two congruence subgroups K; and Kj of
To(f)T, of levels £1 and £5 respectively.

Output: Return true if K7 and K5 are conjugate in SL(2, R) and false otherwise.

e [{ «— invariants of Ky

e [, «— invariants of Ko

If I; # I, then return false
e Else

C1 « conjugates of K7 in To(f)"

Cy « conjugates of Ko in T'o(f)"

M « list of possible conjugating matrices
For K in Cy

° Form:(p q> in M
0 r

o (3« lem(préy,ts).

e S «— a set of generators of K over the normal
subgroup G(¢3, f).
o 5 «— mSm~!
If S’ is not a subset of To(f)" then move to the next m
For each L in Cy
o If the image of S’ in T'g(f)™/G (41, f) is contained in
L/G(¢1, f) then return true

o If after testing all elements of Cs we have not returned true then return false

4. Conclusions

In the previous section an algorithm was given for determining whether two
subgroups of T'o(f)* are conjugate in SL(2,R). Table 2 of [5] records when the
conjugacy classes of subgroups C; of To(f;)*, i = 1,2, are such that f; # f; and
C1 N Cs is not empty. As explained in the last section, combining these two pieces
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of information yields the SL(2,R) conjugacy classes of congruence subgroups of
genus-zero and genus-one.

The algorithm of the previous section was programmed in MAGMA [1]. The
results are presented in Table 1. Each entry in this table is a list of the To(f)™
conjugacy classes from Table 2 of [5] which are subsets of one SL(2,R) conjugacy
class. Cases with a single T'g(f)T conjugacy class have been omitted. The notation
is as in Table 2 of [5]: each class has a label level(letter)}™"*, where f is a square-
free integer such that the group is contained in T'o(f)*; level is the level of the
group with respect to this f (as defined in Definition 2.4); genus is its genus; and
letter is a letter labelling the group amongst all groups of the same level and genus.

Sebbar [8] has shown that there are 15 SL(2,R) conjugacy classes of torsion-
free congruence subgroups of genus-zero. As a test of the results of this paper,
using the additional data from Table 2 of [5], we also find 15 SL(2,R) conjugacy
classes of torsion-free, genus-zero congruence subgroups. Moreover, these give rise
to 33 classes of subgroups of the modular group, again in agreement with Sebbar’s
results.
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Table 1: PSL(2,R) conjugacy classes of congruence subgroups of genus-zero and

genus-one.
Classes Classes Classes Classes
0 0 0 0 0 0 0 0 0
2BY 1B 8c?  4D) 14cY  2DY%| 4H) 419 8C%
2Ly 41§
6 6
plesy 4B 2D§ 819 4K§ 14D9 1409
47y 8D§  4JQ
3 3 6
0 0 0 0 0 0 0
3BY 1B | 8J¢ 8K{ 16E? 150y 3¢9
0 0 0 0 0 0
8L 8US  8Vj 4K 8FY aM
3DY 9By 3DJ 15D9 15E9
8LY  16F) 8w 6ES 3C§
4¢? 209 16C)  8J9
0 0 0 0
- - - 8MY  8NJ - - 7TAS 109,
4EY 8D 2F20 - - - 18CY  6FY - -
4F) | 8Py 8QY 16HY 7By 7BY,
1619 3249 8ABY) 2449 12E9
4Fy 8EY 4G | 8YY 829 16EY 12F)  24BY 12DQ
26A7 26C7,
0 0 0 0 0 0 0 0
4GY  sHY 16D 8RY 8AAj 12GY  12HY 1219
479 8MY 28A0 2800 | 2445 1243 12BQ
9cy  3Cy 12C9
1 3 6
0 0 < 0 4 0
5By 1B - - - 3047 3007 - -
- - 9HY 915 27A1) - - 12N9  6F
0
5D9 5C7 9F)  9GY 3647 1209 - - -
12R 1259 24D
3 3 3
0 0 0 0 0 0 0 0 0 0
5GY 2549 5HY 97y  9Ej 48A0 2409 | 24E9  12M 12N%
120
6
5HY  25BY 510 10BY 10D? 3BY 109
21AJ  21B§ 21BY,
6c? 209 | 10C? 5D 200 | 3HS 9BY  3EQ
0 0 0
- - 1E9, - - 2BY 1BY,
6D9 3CY 5B 1DY,
10F) 5G9 10N? 2D? 4B? 269,
0 250 0 0\) 0 0 ° °
6F] 3Fy ZF% 509, 6D 2EQ - -
1EQ 3Bg 1Bjy
106G 2049 10D9 6MY  2MQ
0 0 0 0 0 0 0
6GY 3GY | 10Q8  20EQ 10GY, - - - 4c? 2DY
9Fy 9GS 9Cy
6HY 12DY 6HJ 12BY 1209 4BY 219,
0 0
10BY 2FQ
61Y 1289 6LY 12¢)  6EY 6B2 2DY
2HS 4Gy 2K§ 10ES 10J9,
0 0 0 0
- - - 12HY 6N - - 8A2 4D?,
6J) 18DY 6GY 12D 4E§
1219 1259 2489 10FY  10GY 549,
5 5
6Ky  18Fp 3I0|12G9 12HY] 12P) 121§ 12LY
9EY 6H? 3GY|12QY 24c9 1210 10H9 2049 10B9
2 3 6 3 3 6 5 5 10
1279 2cy 1D
0 0 0 0 0 0
6L9 1269 609 1010 2082 1049,
1349 1BY; | 2E3 4BY  2HQ
0 0 0 0 0
7¢Y 1B - - - - - 100§  20G§ 10Fy,
13BY 13DY, | 2G§ 4CY  2GY
769 7B 10P)  20FY 10E?
1 7 5 5 10
13CY 13EY, 4Dy  2FQ

https://doi.org/10.1112/51461157000001510 Published online by Carftgjidge University Press


https://doi.org/10.1112/S1461157000001510

On Congugacy Classes of Congruence Subgroups

of PSL(2,R).

Classes Classes Classes Classes
0 0 0 1 1 1 1 1 1 1
1507 15DY 5AY9; | 8GT  16G] 8AC; 12L7 6L} 16D] SN,
8V
1562 15HY 1549, 12M} 6K} 16F)  8W3
5 5 5
8HI 161} SAE]
0 0 0 1 1 1 1
20HY 2019 1019, 12N]  6J; 16J{ 8ABj
817  16H] 8AD]
0 0 1 1 1 1 1 1
208 1BY, 120]  24G} 12N} | 16K} 3201 16Q}
8Ki 16M; 32E]
0 0 0 1 1 1 1 1 1 1 1 1
2E9 4A9 2D, |8AH)  8AIy 16W, | 12P]  36B{ 12K;| 16L7 32D7 16R;
0 0 1 1 1 1 1 1 1
6B 3BY, 9A] B3A3| 12Q]  24If 6P 17A} 14l
12V 4H)  8J3
0 0 1 1 1 1 1 1 1
14BY 709, | 9p] 274} 3}3? 2H}  4U} 17B} 174},
9D
3
0 0 1 1 1 1
2BY, 1BY, 1287 1203 17C{ 17B},
9E] 9B;
0 0 1 1 1 1
349, 1BY, 120} 6R} 18D}  6E]
9Ji 27C] 9H;3
0 0 1 1 1 1 1 1
4BY, 2CY, oIy | 12V} 24K! 12V 18E{ 9D}
0 0 1 1 1 1 1 1 1
200, 1EY, 104} 2B} | 12w} 24L] 1240] 1817 9l
12AD) 1273 240}
2EY; 1FY, 10B] 5A3 1205  12V4 18K] 6L}
2Fp; 449y 2DY 10D 10C3 14c  TEj 19A] 1A,
0 0 1 1 1 1 1 1
245, 1BYg 10F]  5C3 14D{  7Bj 19B] 194},
1 1 1 1 1 1 1 1 1 1 1 1
6C{ 12B] 6C3 | 10G] 20E} 10F) | 14E] 7F; 24| 20B]  200] 20E}
2D} 4D} 2H], 1Bj,
6D}  18C{ 6D} 20D}  4C}
1 1 3 1 5
101} 5D | 14L} 7Ny 14C3
6ET 12K] 6M3 7Bi, | 20F} 10E} 4E}
10K]  20J{ 10Lj 2G1,
6F 127] 18J] | 10F} 20w} 10Lj 15B] 5B}
11 11 11 5 5 10 1 3 i 1
36011 6Q3 18F, - - 2017 20V}
1 1 1 1 1
6K3 12P; 6l 114} 14}, | 150] 5C3 3B}
1Bjg | 20K{  20L} 40A]
7Bf  49A7 TA} 11D7 1147, 40B]  20G3 20H;
15Ef  3C} |20AA}  40G} 20Li,
8A] 4B) 1247 4B}
1 2 1 3
15G] 5F; 15E} | 20M] 10K; 20Y}
1 1 1 1 1 1 1
8Bi  16A] 4D§ 12C] 6E; 5A7, 10K7,
SH
2
1 1 1 1 1 1 1 1
12F] 613 4C3 15H] 15F3 | 21A1  21B] 214}
1 1 1
8CI 4B 2G - - - - - -
- - - - - 1517 15D} 15115 2107 TAL 3017
8D}  16C{ 8T 1217 4G} 1541, 1B3,
1 1 1 1 1 1 1 1 1 1 1
8F}  16E] 324} | 12J] 24E] 12H] 16B; 8G3 | 21If 2103 21C%
4Fy 8X3 161 21B},
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Classes Classes Classes Classes
24F] 12F) 13A} 1Bl 8LY 4R} 3D} 9Bl 3Bj,
24J] 12X] 13B} 13B3g 8M3 4T} 4Bl 2ci,
26A7 2Ci, 15D) 3F),| 8Ni 16F] 8P 4F} 8B} 4aK],
26B] 26F], 15E3 5Cg | 803 16GY  8Qg 4G} sCt  aJi,
27B]  9C3 174} 1c03, | 8P] 16H; 8V, 6D} 3D},
30D]  6E} 17B} 17C3, 10BY 5B} 6H: 3Gl, 2FL

1Fg,
30E] 30K} |20B; 2003 200, | 1243  24B) 124}
TAL 1AL
32B] 16G3 20D}  4li, | 12D 24A} 12Bj
7B} 7AL,
39A]  39B; 39A}1, | 2013  20J3 20P)) | 12H}  24G} 12Hg
12K 8AL 4F],
52A7  52B] 52Bj4 | 24J3  24L) 8M}
121} 24H) 121} 8E; 4Nj,
5EY  25A B5Al)|24K; 24M) 24E} 12J5
10D} 20H} 10Ej,
6B; 2B |24N; 2403 24Hj | 12L} 241 24J3
24K} 12Mg§ 12N} | 10E; 201 10F],
60} 18B; 6Eg 24P 8L} 120}
16A; 8F],
7TA} 1A%, 4A} 2D |12M3  24L} 48A}
12LF 24G§ | 20Af  20B; 104},
7GL TAl, 4D; 2B
12Q3  24Nj 12T§ |20AB}  40H} 20M{,
9A} 3Cg | 4E} 8Ci 2F}
aM | 128} 24P 12w | 20ACt 401} 20K7,
9B) 3D}
4F3 8DY 4N} 13A3 1A% | 20J3  20Q% 10I7,
9GL 9D}
413 8K} 16E] 13B] 13F3, 20K} 1001,
9H) 9B} V¢ 80}
1443 2D}, | 20L} 200} 10H{,
9J3  27AL  9H} 5AF 1Al
14B] 2B, | 20M3 20N} 10J{,
10B3 2Bj, 6C3 3B
18J3  9G} 20P) 10D{,
11AY 1A}, | 6F] 12F; 6D§
21A3  21Bj 21A}, | 20R} 4003 20Di,
11B3 11A%, | 6H3 112G} 6Cg
21D]  21Ej 21D}, | 20Si 40D} 20Ej,
12B) 4K} 6J5 3E;
42A3  42B3 42B3, | 20X3  20Z; 10M{,
1205 48§ 8E)  4Jg
2C3 4Al 2El)| 300} 30D} 104},
12W;  4Xg 8Fy AEg
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Classes Classes
1 1 1 1 1 1
3013 30J2 100 | 3341, 33B], 3341,
1 1 1 1 1
40A  40B; 20Bi, 2Bj; 1A3g
1 1 1 1 1
40EY  40F} 20J{, 3al, 1Bl
1 1 1 1
5A5 1C3, 3D, 1F},
1 1 1 1 1
5D} 1D1, | 2B},  4C{; 2M],
1 1 1 1 1
513 5C3,| 2Gi;  4Bj; 2N3,
1 1 1 1 1
TA§ 1C1, | 2H{y; 4Gy 2R},
1 1 1 1
7B} TAL, 4D}, 213,
1 1 1 1 1
2B} 4Bl 28}, 4F}; 2H],
1 1 1 1
3AL 14l 4HL, 2Q},
1 1 1 1
act 2ci, 6D15 3C3,
1 1 1 1
4Dl 2D}, 10D}, 5D3,
1 1 1 1 1
4F] 8AL 261, 24}, 1B},
48],
3Bi, 1A},
1 1 1
6Bl 1241 6Ej,
1 1
- - 2B}y 1ALg
6F} 3Ej,
203, 143,
14D} 28F} 1401,
3B, 1A}
1 1 1
28AZ 281?7 2861‘7 - - -
56A1 28A]1, 28B{, | 203, 4Al; 20}
28C3,
1 1
- - 3AL, 1A},
341, 1Bl
203, 1A},
1 1 1
2Bl, 4B}, 2Bl,
2C3, 1Cgs
2c! aAl 2c)
11 11 22
2ci. 10k,
1 1 1
4D},  8Cl 4cl,
1 1
i 1 3A35 1C‘1()5
5‘411 1A55 1 1
2Fi, 1Blg
5Bl; 5Ag;
1 1
i i 2A47 1A94
6A], 2D}, - -
2055 1AllO
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