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THE VOLUMES OF SMALL GEODESIC BALLS
AND GENERALIZED CHERN NUMBERS
OF KAEHLER MANIFOLDS

NOVICA BLAZIC

§1. Introduction

In this paper we study a connection between global and local prop-
erties of Kaehler manifolds, more specifically we study a connection
between the volumes of small geodesic balls of a manifold M and some
generalized Chern numbers. We use the standard power series expansion
for V,.(r).

In Theorem 3.1 we give characterizations of a flat compact Kaehler
manifold in terms of the volumes of small geodesic balls and generalized
Chern numbers o"~'c,(M) and o™ *ci(M). In Theorem 4.1 similar questions
for complex space forms are considered. So we prove one particular case
of the Conjecture (IV) stated by Gray and Vanhecke [6].

In Section 5 we introduce geodesically-Einstein manifolds and then
generalize some well known results about Einstein-Kaehler manifolds.
Chen and Ogiue [3] obtained the following inequality for a compact
Einstein-Kaehler manifold (M, g)

j 20 + ey — ne} A2 > 0.
M

So in Theorem 5.1 we prove that the same inequality also holds for
geodesically-Einstein compact Kaehler manifolds. Then, some conse-
quences of this inequality for complex surfaces are given. Also, we give
examples of some complex surfaces which admit no geodesically-Einstein
Kaehler metrics.

I wish to thank N. Bokan and M. Djoric for useful comments.

§2. Preliminaries

In this paper we use the notations given in [6] and [3]. Let M be
Received October 14, 1988.
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an n-dimensional analytic Riemannian manifold. Let r, > 0 be so small
that the exponential map exp, is a diffeomorphism on a ball of radius r,
in the tangent space M,. We put

S,.(ry) = volume of {exp, (x)|x e M,, ||x| = r,},
V(o) = volume of {exp, (x)|xe M, ||x|| < r}.

Here we mean the (n — 1)-dimensional volume for S,(r,) and the n-dimen-
sional volume for V,(r,).

In [6] it is shown (Theorem 3.3) that for V,(r) and S,(r) the follow-
ing power series expansions hold

2.1 Vau(r) = Q,r"(1 — Ar® + Br* + O(@?))
where

A=_%

6(n+2)

B = ooy YIEI + Slelt + 52t — 1840
and
(2.2) Sn(r) = C,r*-(1 — Cr* 4+ Dr* + O(r%)
where

C=n+2A, D=n+4B
n n

(Here 2, is the volume of the unit ball in R* and C, is the (n — 1)-dimen-
sional volume of the unit Euclidean sphere S™-'. In this case C, = nf,
= nz"*A/T'(nf2 + 1).)

Suppose that M is a Kaehler manifold of complex dimension n. Let
g, -..,6™ be a local field of unitary coframes. Then the Kaehler metric
is written as g = X, (6* ® 6% + 6* ® 6°) and the fundamental 2-form ¢(X, Y)
= g(X,JY) is given by ¢ =+ — 1>, 6 AG°. Here, in Section 2, we use
the ranges «,f$,7,0,--- =1,---,n. The form ¢ is closed. The funda-
mental class w of M is the de Rham cohomology class determined by ¢.
The curvature tensor R of M is the tensor field with local components
R,z Then the (1, 1)-forms 23, defined by Q3 = >, Rs:6" A&, are closed.
The Ricci tensor p and the scalar curvature r are given by p.; = 2 R,z
and = 2 p,,. We denote by (| R| and ||p| the length of the curvature
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tensor and the Ricci tensor respectively, so that

[RIF =421 RepsRourr and ol = 2 22 0up054 -
We need the following general result.
LemmA 2.1 ([3]). Let M be an n-dimensional Kaehler manifold. Then

D R 2 2nolf 2 7

The first equality holds if and only if M is a complex space form and the
second equality holds if and only if M is Einstein.

We define a closed 2k-form 7, by

(— ]’),C y | Saiccea
= i) FESQB N L N Q8
Ta (27.5«/__ l)kk' ZJ B1 Br

It is well known that k-th Chern class ¢, is determined by the form 7,.
In particular, the first two Chern forms are given by

2nr, = v/ — 13 0¢
and
— 8%, = (e N Q5 — Q5N 2D

respectively.
Then we have

(2.3) Ag =g,
nr

1
2‘ % n-2 2 2) A
2.4) AP = e @ — 2ol
and

1
2. y n-2 2 __ 2 R 2y a1 .
@.5) RAGT = e & = 4l + IR

The generalized Chern numbers o” ¢, (M), o" (M) and " %c,(M) are
defined by f IEWAY A f T A ¢"% and J 7. /\ ¢"~* respectively.
M M M

§3. Characterization of flat Kaehler manifolds

THEOREM 3.1. Let (M, g, J) be a compact, Kaehler manifolds of com-
plex dimension n. Suppose that generalized Chern numbers o™ ‘¢, and
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o™t are nonnegative. Then, if M satisfies one of the following conditions,
@) or (i),

(1) Vu(r) = Q0™

(i) 2nV,(r) < rS,@r)
M is biholomorphically covered by C™.

Proof. We will show first that 0" '¢,(M) >0, 0" *c(M) > 0 and the
condition (i) imply the result. Because of (i)

3.1) <0 on M.
Then " 'c;,(M) > 0, 0" %cX(M) > 0 and the relations (2.3) and (2.4) give

(3.2) [rng= | a0
and
2 n-2 __ 1 2 __ 2) tn
(33 [ine =t [ = 2lone 2 0.

Since 7 is nonpositive, (3.2) implies r =0 on M. Because of (3.3), p =0
on M and from (i) we have

— 3||R|F + 8|lpl* + b¢* — 1847 = — 3||R|F > 0.
So R =0 on M and M is biholomorphically covered by C™.
If we take the condition (ii) instead of (i) the proof will go in a
similar way.
CoRrOLLARY 3.1. Let M be a Kaehler manifold as in the Theorem 3.1.

If the first Chern class ¢,(M) vanishes and if it satisfies one of the two
conditions, (i) or (ii), then M is biholomorphically covered by C™.

§4. Characterization of Kaehler spaces of constant holomorphic

curvature

Let M(y) be a Kaehler manifold with complex dimension n and con-
stant holomorphic sectional curvature g #+ 0. Then for all p € M(y) the
volume function for M(y) is given by;

n - 2n
V(r, ﬂ) = (iﬂ:)_._{sin _l/ﬁ.r}
nly 2

or

_ (47{)" . @ 2n
Vor, W) = Tl {smh 2 r}
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according to whether ;> 0 or ¢ <0 (see [4]). In [6] the following con-
jecture was stated;

(V) Let M be a Kaehler manifold with complex dimension n and
suppose that for all me M and all sufficiently small r >0, V,(r) is the
same as that of an n-dimensional Kaehler manifold with constant holomor-
phic sectional curvature p. Then M has constant holomorphic sectional
curvature.

In the following theorem we will prove one particular case of the
conjecture (IV).

TueoreM 3.2. Let M be a compact Kaehler manifold with complex
dimension n, and suppose that for all me M and all sufficiently small
r>0, V.(r) is the same as that of an n-dimensional compact Kaehler
manifold M(p) with constant holomorphic sectional curvature p. Let o and
w, denote the fundamental classes of M and M(y) respectively. If the fol-
lowing conditions

4.1 o™ 'e(M) = o) e(M(p),
(4.2) 0" (M) > o (M)

are satisfied, then M has constant holomorphic sectional curvature p.

Proof. Let z,, |lp,|f and ||R,|f denote the appropriate functions for
M(y). Since V,(r) = V(r, ) we have

4.3) T =r,
and
(4.4) (IR, — | R[P) = 8(lp. I — llelf) < 0.

The hypotheses (i) and (ii) imply that

(4.5) JMTqSﬂ - .[M(p) “ul
and
(46) [,@=2ems = [, @ =210

For p =0, from (4.3), (4.6) and (4.4) it follows that ¢ = |p|| = ||[B|| = 0 on
on M. So, in this case M is flat as we want to show. For u #+ 0 for-
mulas (4.3) and (4.5) imply that
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=],

M(p)

Then, using (4.4) and (4.6), we obtain
[ toresr < [ lo.iee.
M M
This inequality, Lemma 2.1 and (4.4) give

[ (BE = —ter)e = 2(-2 = 2) [ Qe F — lomg- <.

So ||R|F = (4/(n + 1))|lp|* on M and the required result follows from
Lemma 2.1.

CoroLLARY 4.1. Let (M(p), 8,, J.) be a compact n-dimensional Kaehler
manifold with constant holomorphic sectional curvature p, fundamental
2-class o, and almost complex structure J, Suppose that (M(p),g) is a
Kaehler manifold with fundamental 2-class w and almost complex structure
J.If

(1) Vu(r) = V(r, p) for all me M(y) and all sufficiently small r > 0,

(ii) o=o0,

(i) J =4,
then M has constant holomorphic sectional curvature p.

§5. Geodesically-Einstein Kaehler manifolds

DerintTION 5.1. Let M and M, be Riemannian manifolds of the same
dimension. We say that M is geodesically-Einstein with respect to the
Einstein manifold M, if there exists a map f: M — M, such that

(51) Vm(r) = Vf(m)(r)

for all m € M and for all sufficiently small r > 0.

It is to expect that geodesically-Einstein manifolds have some similar
properties as Einstein manifolds. So, in this section we establish an in-
equality between Chern classes of geodesically-Einstein Kaehler manifolds.
Also geodesically-Einstein Kaehler surfaces are considered.

THEOREM 5.1. Let M and M. be compact, n-dimensional, n > 2,
Kaehler manifolds as it was supposed in the Definition 5.1. If M is geo-
desically-Einstein with respect to M,, then
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5.2 f { _n } >0,
(5.2) A 50 4 1) ¢

For n > 3 the equality holds if and only if M is a complex space
form. For n =2, if M, is a homogeneous manifold, the equality holds if
and only if M, is a complex space form.

Proof. Let |R.|}, ||p.|} and z, denote the appropriate functions for
the Einstein-Kaehler manifold M,. Since z, is constant on M,, Lemma
2.1, (2.1) and (5.1) imply

(5.3) T =7,
and
(5.4) UIRIF — B = 8(lel* — llplf) = 0.
Thus
2 n n-2
8n(n — )= JM<7’2 — ———-———2( ) ) ¢
_ 2 2\ 1 2(n —2) 2 2\ 17
= [ (R = Sl E)g + 222 [ GlolF =l g™ = 0.

If the equality holds, then (n + 1)||R.|f = 4]p.|} on f(M) and for
n>3, ol =lp.l*. Then (n + D|R|f = 4o} on M by (5.4). Hence, for
n > 3, M is a complex space form because of Lemma 2.1.

Remark. The proof of this result utilizes only the first three non-
trivial terms in the power series expansion of V,(r).

ExampLE. Here we will give example of non-Einstein Kaehler mani-
fold M for which

(5.5) V.(r) = V(r, M) + O(r***%)

holds for all me M and all small enough r > 0. Here M, is a complex
space form of complex dimension 2p, p > 2, and V(r, M,) is the volume
of a geodesic ball of radius r in M,. So let M, and M, be complex space
forms of complex dimension p, with scalar curvatures equal to r, and 7,
respectively. Let M, have scalar curvature 7z, + 7,. Suppose that r, = ar,
where (1 — p)1 + 4p)a® — 2(1 4+ p)(1 — 4p)a = (p — 1)(1 + 4p). Then for
M = M, X M, we have (56.5). Since r, = 7,, M, X M, is not an Einstein
manifold. Due to last remark inequality (5.2) holds for M = M, X M,.

https://doi.org/10.1017/5S0027763000001768 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000001768

188 NOVICA BLAZIC

We consider now the consequence of this theorem for a compact
Kaehler surface M which satisfies (5.1). Let %, ¢ and a denote its Euler
characteristic, Hirzebruch signature and arithmetic genus respectively.
Then from the Gauss-Bonnet-Chern theorem, the Hirzebruch signature
theorem and the Riemann-Roch-Hirzebruch theorem (see [1], [2], [7] and
[8]), we have

WM) = jM e,
o) = + | (et — 20,
a) = - [ @+
Since
X(M) — 3a(M) = a(M) — o(M) = % j Bo—c)=0

we have the following corollary.

CoroLLARY 5.1. Let M be a compact Kaehler surface satisfying the
hypotheses of the Theorem 5.1. Then

(i) x(M) > 3a(M) and

G) a(M) > o(M).

The equality holds in (i) or (ii) if and only if M, has constant holomor-
phic sectional curvature on f(M)C M..

Remark. This corollary is a generalization of the Theorem 10.4 in [6].

THEOREM 5.2. Let M be a complex surface. Then any surface M ob-
tained from M by blowing up k points of M admits no geodesically-Einstein
Kaehler metric whenever either

k<¢—a or k<i—(30—x)
where a, a and X denote the Hirzebruch signature, the arithmetic genus and
the Euler characteristic of M.

Proof. Since the arithmetic genus is a birational invariant, the sur-
faces M and M have the same arithmetic genus. On the other hand,
topologically, blowing up a point on a surface is ejuivalent to attaching
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CP? with opposite orientation (we denote this by CP?. Since M is ob-
tained from M by blowing up % points of M, M is diffeomorphic to the
direct sum M#kCP%. Here § denotes the direct sum of topological spaces.
Since we have

o(M#kCP?) = o(M) — k,
and
X(MHERCP?) = X(M) + k,
this theorem then follows from Corollary 5.1.
Now we can apply Corollary 5.1 on M = CP*#n = CP*} --. §CP~

CorOLLARY 5.2. The manifold M = CP*$n does not admit a geodes-
ically-Einstein Kaehler metric for n > 1.

Proof. We have o¢(M) = n and ¥(M) = n + 2. Hence
(M) — 36(M) = — 2(n — 1) <0 for n>1.

If the required metric exists, then we obtain a contradiction with Corol-
lary 5.1. We should notice that for even n, M does not admit almost
complex structure because X -+ ¢ is not multiple of 4.

REFERENCES

[1] M. F. Atiyah and I. M. Singer, The index of elliptic operators, III, Ann. of Math.,
87 (1968), 546-604.

[2] B.-Y. Chen, Some topological obstructions to Bochner-Kaehler metrics and their
applications, J. Differential Geom., 13 (1978), 547-558.

[31 B.-Y. Chen and K. Ogiue, Some characterizations of complex space forms in terms
of Chern classes, Quart. J. Math. (Oxford), (3) 26 (1975), 459-464.

[4] B.-Y. Chen and L. Vanhecke, Differential geometry of geodesic spheres, J. Reine
Angew. Math., 325 (1981), 28-67.

[5] A. Gray, The volume of a small geodesic ball in a Riemannian manifold, Michigan
Math. J., 20 (1973), 329-344.

[ 6] A. Gray and L. Vanhecke, Riemannian geometry as determined by the volumes of
small geodesic balls, Acta Math.,, 142 (1979), 157-198.

[ 7] F. Hirzebruch, Topological methods in algebraic geometry, Springer, Berlin 1966.

[ 81 R. S. Palais, Seminar on Atiyah-Singer index theorem, Annals of Math. Studies,
No. 57, Princeton University Press, Princeton, 1965.

Faculty of Mathematics
University of Belgrade
Studentski trg 16, p.p. 550
11000 Beograd
Yugoslavia

https://doi.org/10.1017/5S0027763000001768 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000001768



