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CONSTRUCTION OF SIEGEL MODULAR FORMS

OF DEGREE THREE AND COMMUTATION

RELATIONS OF HECKE OPERATORS

YOSHIO TANIGAWA

In connection with the Shimura correspondence, Shintani [6] and
Niwa [4] constructed a modular form by the integral with the theta
kernel arising from the Weil representation. They treated the group
Sp(ί) X 0(2,1). Using the special isomorphism of 0(2,1) onto SL(2),
Shintani constructed a modular form of half-integral weight from that
of integral weight. We can write symbolically his case as "0(2, 1) ->
Sp(iy\ Then Niwa's case is "Sp(l) -> 0(2, 1)", that is from the half-
integral to the integral. Their methods are generalized by many authors.
In particular, Niwa's are fully extended by Rallis-Schiffmann to "Sp(l)

In [7], Yoshida considered the Weil representation of Sp(2) X 0(4)
and constructed a lifting from an automorphic form on a certain sub-
group of 0(4) to a Siegel modular form of degree two. In this note,
under the spirit of Yoshida, we consider Sp(S) X 0(4) and construct a
Siegel modular form of degree three. We use Kashiwara-Vergne's results [2]
for the analysis of the infinite place. Roughly speaking, the representa-
tion (λ, Vx) of 0(4) which corresponds to an irreducible component of the
Weil representation determines the representation τ(λ) of GL(3, C). Then
we can make the V^-valued theta series. By integrating the inner prod-
uct of this theta series and a Vrvalued automorphic form, we get a
Siegel modular form (Proposition 1). The main results in this note are
commutation relations of Hecke operators (Theorems 1, 2). By these
formulas we can express the Andrianov's L-function by the product of
the L-functions of original forms. It is desired that the relations of
Theorems 1 and 2 are computed more naturally.
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84 YOSHIO TANIGAWA

§ 1. Weil representation and the results of Kashiwara and Vergne

Let υ be a place of Q. We fix a non-trivial additive character ψυ of

Qy. For a positive integer n, let Sp(n, Qυ) be a symplectic group of

degreeni.e.Sp(n,QΌ) = {geGWn,QΌ)\tgJg = J}vrheτeJ=((l JY Let

(E, S) be a ^-dimensional quadratic space E with a quadratic form S[x]

= 'xSx. We put Z β = Mktn(R) for any ring i?. We also put S[x] = 'xSx

for x e XQv. The function q(x) = ψυ(|tr(S[x])) defines a character of second

degree on XQυ. The associated self duality on XQυ is given by (x, y} —

ψvitr^ySx)). We denote by dx the self-dual measure on XQυ with respect

to < , ). The Fourier transform of Φ is defined by

Φ (x)= f

Then the Weil representation Rυ of Sp(n, Qυ) is realized on L\XQ) and

has the following forms for special elements (cf. Weil [9]):

for 6 =

(ii) RΏ(£ ξ.^Φix) = \det(a)rΦ(xά) for α e GL(n, Qυ)

(iii)

It is well known that for even k, Rυ is equivalent to a true representa-

tion πυ of Sp(n, Qυ) (cf. Lion and Vergne [4] p. 212, Yoshida [8]).

Hereafter we choose an additive character so that ψ^ = e2πίx, x e R

and ψp = e~2πίFl(x\ xeQp for each finite place p, where Fr(x) is the frac-

tional part of x e Qp.

In [2], Kashiwara and Vergne decompose the Weil representation i?TO

into irreducible components. We will recall briefly their results.

Let (E, S) be a positive definite quadratic space of dimension k.

There are two groups acting on L\XR), the orthogonal group O(S) of

(E, S) and Sp(n, R). The action of O(S) is defined by

(σΦ)(x) = Φ{ισx) for σ 6 O(S),

and that of Sp(n, R) by the Weil representation. It is easily seen that

they commute with each other. Therefore we can decompose L2(XR)

under O(S). Let (2, Vλ) be an irreducible unitary representation of O(S).

Denote by L2(XR; X) the space of all V^-valued square integrable functions
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φ(x) on XR which satisfies φ(σx) = λ(σ)φ(x) for σ e O(S). Then L\XR) =

©jeocs^CX**; Λ')® ^ where Λ' is the contragradient representation of λ.

A polynomial Q(x) on -X̂  is said to be pluriharmonic if Δ^Q — 0 for

all i, j . Here Δi} = ΣJLi (dldxit)(dldx4j). Let ζ be the space of all such

polynomials. GL(n, C) X O(S) acts on ϊj by Q(x)-> Q{σ~ιxa) for (α, σ) e

GL(rc, C) X O(S). For an irreducible representation (λ, V̂ ) of O(S)y we

denote by §(X) the space of all y rvalued pluriharmonic polynomials

Q(x) such that Q(σx) = ^(σ)Q(x) for σ 6 O(S). As above, we have § =

®^oos)fj(^0® V̂ . We define τ(^) as the representation of GL(n, C) on ζ(Λ)

by the right translation.

On the other hand, the special representation of Sp(n, R) is defined

as follows. Let (τ, V) be an irreducible representation of GL(n, C) and

δ(a) = det (a) be a one dimensional representation. Let Sp(n, R)2 be the

two fold covering group of Sp(n, R). Then for heZ, we define the

representation T(τ, h) of Sp(n, R)2 in Φ(Hn, V), the space of all F-valued

holomorphic functions f(Z) on the Siegel upper half plane Hn, by

(T(τ, h)(g)f)(Z) = δ(CZ + D)-^τ(\CZ + D))f((AZ + B)(CZ

for g-1 = ( ^ <KCZ + D)1^) e Sp(2, R)2 with ^ =

THEOREM A (Kashiwara and Vergne). Let the notation be as above.

Suppose that §(λ)φ{0}, then

(i) τ(λ) is irreducible

(ii) L\XR; X) is equivalent to (T(τ(λ), k), G(Hn9

The correspondence λ->τ(λ) is also determined explicitly in their

paper.

For any Qe§(Z) and ZeHn, we put

fQZ{χ) = Q(Λ)β«V-ltr(ZSCαf])β

fQ)Z is a y rvalued function on XR. We also put τ = τ(/l) and F τ =

THEOREM B (Lion and Vergne). Let fQ,z be as above, then for any

RJg)Uz = det (CZ + D)-^f,iHCZ+m-1)Qyg(z).

This theorem is easily proved by checking the above formula for the
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86 YOSHIO TANIGAWA

generators of the form L A (Q tA-\ ί 1 Λ Especially for g =

(—1 0/' *̂  * s Stained ^ acting the diffierential operator Q{{lj2πi)(djdx))

on both sides of the theta formula.

§2. Shintani-Yoshida's construction of Siegel modular form of
degree three

Let D be a quaternion algebra over Q which does not split only at

oo and 2. We denote by a-+a* the canonical involution of D. Let R

be a maximal order in D and Z the center of D. Let (ξv, Vv) be the

symmetric tensor representation of GL(2, C) of degree ι>. We put σv(g)

= (ξv'c)(g)N(gYv/2 for g e Dx, where < is an embedding of Dx into GL(2, C).

Let A be the adele ring of rational field Q and D% be the adelization of

Dx. Then an automorphic form on DA of the type (R, <τp) is a Vv-valued

function φ on Z)̂  with the following properties:

( i ) φ(rg) = φ(g) for any ϊ e Dx and g e 2)2,

(ii) f̂efc) - σv(k)φ(g) for any fe e Dx and g e Bί,

(iii) φ(gk) = ψ{g) for any ke(R®Z^)x and geD% where p is any

finite place of Q,

(iv) p(2ig) = φ(g) for any z e Z ί and geD*.

We put (1£, S) = (D, norm) as a quadratic space over Q. So the

dimension of E is four. Dx x D x acts on E by ^(α, 6)x = a*xb, (α, 6) e

Dx X D x . Under this action, the group Gr = {(a, b)eDx x Dx\N(ά) =

JV(6) = 1} operates isometrically on £J, and is considered as a subgroup

of O(S).

Let G = S/?(3) be a symplectic group of degree 3. We put Kp =

Sp(3, Zp) for any finite place p and i C = the stabilizer of V —1 in GR. We

get the local (true) Weil representation πv of Gυ corresponding to the

quadratic space E and the additive character ψυ defined in Section 1.

The global Weil representation π is also defined in the usual way.

We are going to define a lifting from an automorphic form on G'A
to that on GA. As before we let X = ikf4j3. For any finite place p, let

fp be the characteristic function of XZp. For the infinite place oo, let

T̂ii ® σn2 be an irreducible representation of Gf

R such that nx = τι2 (mod 2).

We put Tttj = (ftj + n2)/2, m2 = 1^ — 7i2|/2 and λ the irreducible representa-

tion of O(S)R with the signature (mly m2). Then σni (x) σn2 is naturally

included in λ. Let τ(Λ') be the representation of GL(S, C) which corres-
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ponds to λ'. For any Qe W ) , we put fQ = \\VΨJV X fQt vzι e S?(XA) ® Vλ.

where fQy^ι = Q(χ)e"*triSίxl\ Now we define the theta series by

OfQ(g,h)= Σ (<g)fQ)(p(h)x)
X<CXQ

for geGA, he GA. Then from Theorem B, we get

(2.1) θfQ(gk, h) = θfq,(gy ft), for any k =

where Q' = (<52® r ( r ) ) C ( - B / ^ l + A)-1)^.

Let ^i and φ2 be automorphic forms on D% of type (i?, σnι) and (i?? σn2)

respectively. Then φ = <pt (x) φ2 can be regarded as a VVvalued automor-

phic form on GA. Define a function of GA by

= f
1G

, hi φ(h))dh.

Here ( , ) is the natural inner product on Vλ. and Vλ. Take a basis

-B = {QD - , Qm} of W ) and fix it. The matrix representation of τ(λ')

with respect to B is also denoted by the same letter. Finally we define

the Cm-valued function on GA by

(2.2) ΦB{g) = {ΦfQx{g\ - ,ΦfQm

The next Proposition follows at once by the definitions.

PROPOSITION 1. Let the notation be as above. Then ΦB(g) is a Siegel

modular form with respect to the representation δ2<8)z(λ'); it satisfies the

following properties,

( i ) ΦB(ϊg) - ΦB{g) for any TeGQy ge GA,

(ii)

eJBΓc, geGA,

(iii) ΦB(gk) = ΦB(g) for any k e Kp, g e GA, where p is any finite place.

To transform into classical notation, we put j(g, Z) = (δ2® τ(λ'))-

{%CZ + D)) for any Z e Hz and g = (Λ fy e Sp(3, i?). Then i f e Z) satis-

fies the cocycle relation jigigi, Z) = jfe, Z)j(gl9 g2(Z)). For any point

Z eHz we choose an element g 6 Sp(3, R) such that g(V — 1) = Z and put

gr = 1/ ^ e G ,̂ where 17 is an element of the finite part of GA such that

all the p-component is equal to 1. Then F(Z) = ΦB(g')j(g, V —1) satisfies

the transformation formula F(T(Z)) = F(Z)j(ϊ, Z) for r 6 Sp(3, Q) Π ΠP-CO ΐΓp.
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§ 3. Hecke operators

Let G be the group of symplectic similitude of degree 3 i.e.

GF = {g e GL(6, F) I <gjg =

for a n y field F. I n order t o consider Hecke operators we m u s t extend

t h e funct ion on GQ\GA t o t h e function on GΛ. F o r t h a t purpose we will

adopt Yoshida's s t a n d a r d extension. P u t Kp = GQp Π GL(6, Z p ) a n d GL,+

= {g e GL(6, Λ) | ' g J g = m(g)J, m(g)>0}. By t h e approximat ion theorem,

we have GA = GQΎ[p¥z0OKp-GO0t + . Let v be a n element of GA such t h a t

vp =(j - j , μpeZ^, for each finite place p a n d ι^ = μ^le, μTO eR+, for

t h e infinite place oo. T h e n by t h e approx imat ion theorem, a n y e lement

g of GA can be w r i t t e n as g = Γ/̂ v wi th ϊ eGQ and £ e f]p^°o^P X G«,.

Suppose t h a t Φ is a funct ion on GA which is left i n v a r i a n t u n d e r GQ.

We define a funct ion Φ on G^ by Φ{g) = Φ(fe) for ^ = Γfcλ I t is shown

in [7] t h a t t h i s is well-defined a n d left i n v a r i a n t u n d e r GQ.

We p u t Sp = {g e M6(ZP) \ ιgJg = m ( g ) J , m ( ^ ) ^ 0 } . F o r t h e Hecke pair

(Kp, Sp) we denote by <&{KP, Sp) t h e corresponding H e c k e r ing. I t is well

k n o w n t h a t t h e complete representat ives of t h e double cosets KP\SJKP

is given by

p *
Pd* 0

α: =

0

where rfi^c?2^d3^β3^β2^βj and m(a) = pdi + eί for any /. We denote the

element KpaKp of &(Kp9 Sp) by T{pd\pd\pd\pe\pe\peή and put m(KpaKp)

= m(a). For a non-negative integer n, we define the Hecke operator of

degree pn by T(pn) = 2] KnaKp where the summation is taken over all

distinct double cosets KpaKp with m(KpaKp) = pn<

Ĵ CKp, Sp) is a polynomial ring generated by TQ = T(l, 1, 1, p, p, p),

Z = Γ(l, 1, p, p\ p\ p), T2 = Γ(l, p, p, p\ p, p) and Tz = Γ(p, p, p, p, p, p).

Define a local Hecke series by Dp(s) = Σ ^ o ^ p " " .

THEOREM C (Andrianov). Lei ί/iβ notation be as above and put t = p~ s.

x(3.1) DP(S) = \± (-
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where

e(0) = - 1 , e(ΐ) = 0, e(2) = p2(T2 + (p* + p2 + 1)Γ8), e(3) - P4(p + 1)ΓOΓ3,

e(4) - p'(Γ2Γ8 + (p4 + p 2 + 1)Γ3

2), e(5) = 0, e(6) - - p 1 5 ϊ l ; /(0) - 1,

/(I) = Γo, /(2) = pΓx + p(p" + ΐ)T2 + (p5

 +p*+ps+ p)Ti9

/(3) = p3(Γ0T2 + Γ0Γ,), /(4) - p6Γ2Γ3 + p 6 ϊ l - 2p7Γ1Γ8 - 2p6(p - 1)Γ2T3

- (p12 + 2p" + 2p10 + 2p7 - p<)Tl f(δ) - p6Γ3/(3), /(6) = p12Γ2/(2),

f(7) = P19Tlf(ΐ), f(8) = p"Tl.

For KpaKp e J?(KP, Sp), let KpaKp = U QTj-K'p be a right cosets decom-

position. cLi may be considered as an element of GA by the canonical

embedding GQp

 c=—> GA. Let Φ be a Siegel modular form and Φ its standard

extension. We define the action of KpaKp on Φ by (Φ | KpaKp)(g) = 2]ί Φ(g(Xi),

which does not depend on the choice of representatives or*. Suppose that

Φ is an eigenfunction of all Hecke operators: Φ\T(m) — λ(m)Φ for all

meZ, m>0. Then by the Theorem C of Andrianov, we have

ΣKPn)n-n' = GPtΦ(p-)HPtΦ(p-y\
71=0

where Gp>φ (resp. Hpφ) is the polynomial given by the numerator (resp.

denominator) in (3.1) after replacing the e(ή) (resp. f(n)) with the corre-

sponding eigenvalues. We define the Andrianov's L-function by the Euler

product

On the other hand, any odd prime p is unramified in D. Therefore

Dp = D (x) Qp is isomorphic to M2(QP). Hence we get the p-part of Hecke

operators in the usual way. If ψ is an automorphic form D% such that

ψ I T(p) = λr{p)ψ for all p Φ 2, we define the L-function of ψ by

L(s, ω) = Γf .

Note that in this paper we don't set any normalization in the definitions

of Hecke operators and L-functions.

The following Proposition will be used in Section 4.

PROPOSITION D (Yoshida). Let V be a vector space over R and / = Π /»>

where fp is a characteristic function of XZp for finite p and /«, is an element

of 6f(XR)® V. Define the theta series by θf(g, h) = ΣχeχQπ(g)f(p(fr)x) for
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(g,h)eGΛχ0(S)A. For a double coset KpaKp with m(a) = pdl+e\ let

KpaKp = U atKp be a right cosets decomposition.

(i) When d1 + eλ is odd, d1 + ex = 2t + 1 (t e Z), we put

•-'-ft A K
Then for any element g eGΛ we have

Q

f'= Uv*pf,Xf'p andf'p = ΣiπP(
(ii) When d1 + ex is even, dλ + e1 = 2t(t e Z), w β pi/ί 2 = p'1!^ e GQ.

Then for any element g e GA, we have

Σ Of(gai9 h) = θ,.(g, h)
i

where ff = \\υΦpfv X f'p and f'p = Σ^J^P^)U

§ 4. Local computation of Hecke operators

In this section we will compute the action of Hecke operators on

ΦB explicitly. It is enough to determine fp — Σiπ

P(
zpai)fP by Proposition

D. First note that, if we put Γ = Sp(3, Z), the left cosets decomposition

ΓaΓ = Uz Γ°ίz corresponds to the right cosets decomposition KpaKp =

U Ϊ m{a)aϊιKp. It is well known that the representatives {aJ can be given

by

= (Ai Bit\(Ui} 0 \

"k Vo DJ\O
 ιUi})

ίpail o \
where At = ~ pai2 , 0 ^ α i , ^ β i 2 ^ α α with Dt = micήA'1 integral,

BiΊc is taken over the complete set of representatives of integral matrices

mod D< with

i t Dik)eΓaΓ> a n d SL(S,Z) = {J(SL(3,Z)Γ)A;>SL(3,Z)Ai)UiJ.

Suppose that m(a) — p or p2. For each ί, we define the function on

x) = Σ fP(tr(-BikD->S[x]))fp(x).
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Then by Proposition D, we have

= Σ
ijk

(( )).π ((A" ° V 1 -B«DΛ)f (x)
kp\\0 <uj) P\\ 0 mί̂ /pA-vVO 1 )Γ()

X Σ ψpίtrί-B^A
ft

= Σ Idet (pAt-')l! Σ/"'(a

tion of KnaKp.

Henceforth we write the above fp(x) by (fp \ KpaKp)(x) to clarify the opera-

of KnaKp.

First we deal with the Hecke operator of degree p.

THEOREM 1. We assume that p is an odd prime number. Put

Then for an element TQ = Γ(l, 1, 1, p, p, p) of £?(KP, Sp), we have

n i 1

(4.1) 0

Proof. We will write Y = M±Λ for simplicity. We prove the above

equality case by case. First note that for any a e GL(3, Zp) both sides of

the equality are invariant under x->xa. We will frequently use this
(1 a 0\

remark for a = permutation matrices, 0 1 0 etc. Now let us write
\0 0 1/

down all At and U^.

( i ) A, = 1, and {[/„} = {1,}

/I 0 0\ r/1 0 a\ (1 ΐ 0\ /0 1 0\
(ii) A 2 = 0 1 0 and {Ut}} = 0 1 j3 , 0 0 1 , 0 0 1 ,

\0 0 pj {\0 0 1/ \0 - 1 0/ \l 0 0/

0£a, β,ΐ £p- 1
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/I 0 0\ (71 a β\ /0 1 A /0 0 1\
(iii) A , = 0 p 0 and {C78J} = 0 1 0 , 0 0 1 , 1 0 0 ,

\0 0 p] l\0 0 1/ \1 0 0/ \0 1 0/

(iv) A 4 = p l 3 and {C74,} = {18}.

We put S[x] = (uυ) and define the subsets of XZp by

Vi = [x e XZp\ui3 epZp for all i and ;},

V2 = {xe XZp I wπ, w12, u22 epZp],

V3 = {xeXZp\unepZp}.

Let φt denote the characteristic function of V%. Then we have

Therefore for x = (xu x2, x3) e XQp, xt e YQp, we have

(fP I Γo) - Φi(px) +P~'{ Σ Φz{px» P*2, -ocx, - βx2 + x3)

Σ
'{ Σ Φz(px» -ocx, + x2, -βxx + x3)

0fZa,β^p-l

, -rχ2 + χ3, Xί) + Φz(p%3, χi, ^2)} + fP(χ).Σ

By the above remark, we have only to consider the following cases.

Case 1. We assume x e XZp. In this case, all the terms occur, so

that (fp\T0)(x) = (2(p + 1)2)/P and G0(x) = 2(p + 1).

Case 2. We assume px g XZp. In this case, all the terms vanish, so

that both sides of (4.1) equal to zero.

Case 3. We assume that x1 g YZp and pxl9 x29 x3 e YZp. Then

[0 otherwise.

Now let us compute G0(x). By the above remark we may assume that

x ~(a

1 ~ VO

Then we have
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(P υ\* _ (a -υβ\ (1 0\* _ (pa 0\
\0 1/ ' ~ Vθ pβ)' VO p) ' ~ V 0 βΓ

v\_(pa va\ (1 0\ _ (a 0

Note that βeZp if and only if unep'ιZp. Therefore we have

otherwise.

Case 4. We assume that ^ , x2 g YZp, pxl9 px2i xz e YZp, and there is no

s e Z such that sxλ + x2 e YZp. Then we have

(f \τ\( \ - flP + λ^p i f Ulu Ul2> U^£P~1ZP
\Jp I J θ)\X) — ) Λ , ,

[0 otherwise.

On the other hand, let xx — ί ̂  ^) and x2 = (?, o/) with of g Zp. As in

the Case 3, G0(x) = 0 if un&p~1Zp. Hence wτe can suppose that β e Zp.

We have only to consider the following two terms:

(i oy = h»t Pr\ a n d jp o) = (paf r\
\0 p) \ δ' βr I ΛO 1/ \pδ' β'J

When β' e Zp we have G0(x) = 0. On the other hand, if βr e Zp, the above

condition implies that there does not occur the case that both ϊ; and δf

belong to Zp. So that we have

1 if r e Zp and δ' £ Zp, or V & Zp and δ' e Zp

θ if r'f δ'ep'xZp-Zr

Anyway, G0(x) = 1 if and only if β, βf e Zp, W 6p" ! Z p and Γ g Z p or δ' £ Zp?

which is equivalent to un, uί2, u22ep~ιZp. Otherwise G0(x) = 0. Therefore

we get the equality (4.1) in this case.

Case 5. We assume that xt <£ YZp, pxt e YZp for i = 1, 2, 3, and for any

pair (ί, j) there is no reZ such that rxt + xό e YZp and there are no

s,teZ such that sxt + tx2 + xze YZp. Then we have (fp\T0)(x) = φ,{px).

We shall see that it is equal to zero. Let xt = (Q A, x2 = (?, «/)

,̂, o//) with a&Zp. Suppose that uίjep~1Zp for all i and .

Then we have βeZp, β'eZp, ϊ'δf ep~xZp, β"eZp, V'δ" ep~ιZP and r'δ" +
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Subcase 1. We assume ϊ'<£Zp. We have δ'eZp and d/;eZr But

then there exist r and s in Z such that rXj + sx2 + x3e YZp, which con-

tradicts our assumption.

Subcase 2. We assume δ' & Zp. This is also impossible as above.

Subcase 3. We assume ϊ\ δ' e Zp. From x2 g YZp we have a' & Zp, but

then there exists r in Z such that rx1 + x2 e YZp, which also contradicts

our assumption. Therefore we have (fp \ TQ)(x) = 0.

On the other hand, by the same method as Case 4, we have G0(x) = 1

if and only if

and

r'ep-ιZp-Zp, δ'eZp, V ep'*Zp - Zp, δ"eZp, or

ϊ'eZp, δ'ep-'Z.-Z,, ϊ"eZp, δ" ep~'Zp - Zp.

If this is true, there exist s and t in Z such that sxx + tx2 + x3 e YZp,

which also contradicts our assumption, so that we have G0(x) = 0. This

completes the proof. q.e.d.

Let ψι be an automorphic form on D%. We constructed the Siegel

modular form ΦB of degree 3 for some fixed basis B of §(λ) in Proposition

1. The following corollary is an easy consequence of Theorem 1.

COROLLARY 1. Let p be an odd prime number. Suppose that ψi is an

eίgenfunction of T(p) with the eigenvalue ^(p). Then ΦB is also an eίgen-

function of To with eigenvalue p\p + l)(^i(p) + λ2(p))

Next we deal with the Hecke operators of degree p2. To state the

commutation relations for Hecke operators Tx and T2, we introduce two

functions:

X
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THEOREM 2. Let the notation be as above. We assume that p is an

odd prime number. Let T2 = T(l, p, p, p2, p, p) and T(p2) be elements of

Heche ring J¥(KP, Sp) defined in Section 3. Then

(4.2) (fp I T2)(px) + fp(px) = p^G^x) + (p* + p + ΐ)fP(px)}

(4.3) (fpI T(p2))(px) = p\p2 +P + l)G2(x) + p\p + 2)Gλ{x)

+ p\2p + ΐ)fp(px).

The proofs of (4.2) and (4.3) are similar to that of (4.1) but more

complicated, so we omit them here.

COROLLARY 2. Let φt be an automorphic form on D% for i = 1,2 and

ΦB be the Siegel modular form constructed by them. Suppose that φt be

an eigenfunction of T(l, p) with eigenvalue λ^p), i = 1, 2. Then

(i) ΦBI T2 = (P%(p)λ2(p) + p* + p 3 + p2 - 1)ΦB

(ii) ΦBI T(p2) = {p\p2 +p + l)(^(p)2 + λ2(p)2) + p\p + 2)λ1(p)λ2(p)

- p\2p* + 2p2 + Sp + 2))ΦB.

In fact, ψi is also an eigenfunction of T(l,p2) with the eigenvalue

μ.(p2) — λt(p)2 — (p + 1). Then (i) and the following (ii)7 are easy con-

sequences of Theorem 2:

(ii)' ΦBI T(p2) = {p\p* +p + l)(μi(p2) + μ2(p2)) + p\p + 2)λι(p)λ2{p)

+ p\2p + l)}ΦB.

We get (ii) at once from (ii)'.

It is clear that the Hecke operator Γ3 = T(p, p, p, p, p, p) acts trivially

on fp so we have ΦB\T3 = ΦB.

By Theorem C of Andrianov, we know the following relation:

pT, = T\ - T(p2) - p(p2 +p + Ϊ)T2 - p(ps + p* + 2p3 + p 2 + p + ΐ)T,.

This gives us the eigenvalue of T^ .

+ P\P1 - P3 - P2 - 2p -

Let f(n) be as defined in Theorem C and λ(n) the corresponding

eigenvalue: ΦB\f(n) = λ(ri)ΦB. Then, using these formulas, we have

F = Π (1 - Up)P3t + p7f)(l - λApV't + pΨ).
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Therefore we get the following theorem.

THEOREM 3. Let the notation and assumptions be as in Corollary 2.

Define the L-function of φi by

L(s,Ψί)= Π (1 - λt(p)p- + P1-2')-1.

Then, up to the Euler %factor, the L-function of ΦB can be expressed by

Uβ, ΦB) = Π L(s - 3, ψz)L{s - 2, φt).
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