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CONSTRUCTION OF SIEGEL MODULAR FORMS
OF DEGREE THREE AND COMMUTATION
RELATIONS OF HECKE OPERATORS

YOSHIO TANIGAWA

In connection with the Shimura correspondence, Shintani [6] and
Niwa [4] constructed a modular form by the integral with the theta
kernel arising from the Weil representation. They treated the group
Sp(1) X O2,1). TUsing the special isomorphism of O(2,1) onto SL(2),
Shintani constructed a modular form of half-integral weight from that
of integral weight. We can write symbolically his case as “0O(2, 1) —
Sp(1)’. Then Niwa’s case is “Sp(l) — O(2, 1), that is from the half-
integral to the integral. Their methods are generalized by many authors.
In particular, Niwa’s are fully extended by Rallis-Schiffmann to “Sp(1)
—O0(p, q)”.

In [7], Yoshida considered the Weil representation of Sp(2) X O(4)
and constructed a lifting from an automorphic form on a certain sub-
group of O(4) to a Siegel modular form of degree two. In this note,
under the spirit of Yoshida, we consider Sp(3) X O(4) and construct a
Siegel modular form of degree three. We use Kashiwara-Vergne’s results [2]
for the analysis of the infinite place. Roughly speaking, the representa-
tion (1, V,) of O(4) which corresponds to an irreducible component of the
Weil representation determines the representation (1) of GL(3, C). Then
we can make the V,-valued theta series. By integrating the inner prod-
uct of this theta series and a V,-valued automorphic form, we get a
Siegel modular form (Proposition 1). The main results in this note are
commutation relations of Hecke operators (Theorems 1, 2). By these
formulas we can express the Andrianov’s L-function by the product of
the L-functions of original forms. It is desired that the relations of
Theorems 1 and 2 are computed more naturally.
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§1. Weil representation and the results of Kashiwara and Vergne

Let v be a place of Q. We fix a non-trivial additive character +, of
Q,. For a positive integer n, let Sp(n, Q,) be a symplectic group of

degree n i.e. Sp(n, Q,) = {g € GL(2n, Q,)|'8Jg = J} where J = (_(1) (1)) Let

(E, S) be a k-dimensional quadratic space E with a quadratic form S[x]
= 'xSx. We put X; = M, ,(R) for any ring R. We also put S[x] = ‘xSx
for x € X,,. The function g(x) = (3 tr(S[x])) defines a character of second
degree on X,. The associated self duality on X, is given by (x,y) =
Uo(tr (‘ySx)). We denote by dx the self-dual measure on X, with respect
to ¢ , ). The Fourier transform of @ is defined by

D*(x) = L D(y)x, y)dy.
Qy

Then the Weil representation R, of Sp(n, Q,) is realized on L*(X,,) and
has the following forms for special elements (cf. Weil [9]):

(1) Ry 2)00) = vt bSDOE)  for b = ‘be M,(Q.)
(i) RU<8 tg-,)@(x) — |det ()[*0(xa) for a e GL(n, Q)

(iii) R,,(__(l) é)@(x):(b*(x).

It is well known that for even k, R, is equivalent to a true representa-
tion w, of Sp(n, Q,) (cf. Lion and Vergne [4] p. 212, Yoshida [8]).

Hereafter we choose an additive character so that +.. = €***, xe R
and ¥, = e "® xe @, for each finite place p, where Fr(x) is the frac-
tional part of x ¢ Q,.

In [2], Kashiwara and Vergne decompose the Weil representation R.,
into irreducible components. We will recall briefly their results.

Let (E,S) be a positive definite quadratic space of dimension k.
There are two groups acting on L*Xj), the orthogonal group O(S) of
(E, S) and Sp(n, R). The action of O(S) is defined by

(0D)(x) = D(‘ox) for ¢ € O(S),

and that of Sp(n, R) by the Weil representation. It is easily seen that
they commute with each other. Therefore we can decompose L*(Xpg)
under O(S). Let (2, V,) be an irreducible unitary representation of O(S).
Denote by L*(Xp; 2) the space of all V,-valued square integrable functions
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#(x) on X which satisfies ¢(ox) = A(o)d(x) for o e O(S). Then LX) =
B3, L(Xz; ) ® V, where ¥ is the contragradient representation of 2.

A polynomial Q(x) on Xj is said to be pluriharmonic if 4,,@ = 0 for
all i,j. Here 4,; = > k., (9)dx,,)(@/0x,;). Let § be the space of all such
polynomials. GL(n, C) X O(S) acts on § by Q(x) — Q(oc-'xa) for (a, o) c
GL(n, C) X O(S). For an irreducible representation (1, V,) of O(S), we
denote by §(2) the space of all V,-valued pluriharmonic polynomials
Q(x) such that Q(ox) = A0)Q(x) for e O(S). As above, we have §) =
@ie6® H(A) ® V,. We define =(2) as the representation of GL(n, C) on §(2)
by the right translation.

On the other hand, the special representation of Sp(n, R) is defined
as follows. Let (zr, V) be an irreducible representation of GL(n, C) and
d(a) = det(a) be a one dimensional representation. Let Sp(n, R), be the
two fold covering group of Sp(n, R). Then for hecZ, we define the
representation T(z, h) of Sp(n, R), in O(H,, V), the space of all V-valued
holomorphic functions f(Z) on the Siegel upper half plane H,, by

(T(z, WY& )Z) = 3(CZ + D)"*=((CZ + D))f(AZ + BXCZ + D)™

for ' = (g, (CZ + D)) € Sp(2, R), with g = (é g>'

TaueorEM A (Kashiwara and Vergne). Let the notation be as above.
Suppose that H(2)=~{0}, then

(1) () is irreducible

(1) L¥Xg; 2) is equivalent to (T(z(R), k), C(H,, H(2)).

The correspondence A2— t(4) is also determined explicitly in their
paper.
For any Qe () and Ze H,, we put

fo,2(x) = Q(x)e™v=1t(Zsked,
fo.z is a Vy-valued function on X, We also put r = ¢(1) and V, = §(2).

TueoreM B (Lion and Vergne). Let f, , be as above, then for any
g = (‘é S) € Sp(n, R),

R.(8)fy. 2 = det (CZ + D) **f.uczsmy-ve gz

This theorem is easily proved by checking the above formula for the
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generators of the form <(1) ?), (‘3 tg_,), (_(1) (1)) Especially for g =

(_(1) (1)>, it is obtained by acting the diffierential operator Q((1/27i)(d/ox))

on both sides of the theta formula.

§ 2. Shintani-Yoshida’s construction of Siegel modular form of
degree three

Let D be a quaternion algebra over Q which does not split only at
o and 2. We denote by a— a* the canonical involution of D. Let R
be a maximal order in D and Z the center of D. Let (&, V,) be the
symmetric tensor representation of GL(2, C) of degree v. We put o,(g)
= (&,-0)(g)N(g) " for g e DX, where ¢ is an embedding of DX into GL(2, C).
Let A be the adele ring of rational field @ and DX be the adelization of
D*. Then an automorphic form on D of the type (R, o,) is a V,-valued
function ¢ on D} with the following properties:

(i) ¢(rg) = ¢(g) for any 7€ Dj and ge Dj,

(ii) ¢(gk) = a,(k)p(g) for any ke DX and ge Dj,

(ili) ¢o(gk) = ¢(g) for any ke (R® Z,)* and ge D} where p is any
finite place of @,

(iv) ¢(28) = ¢(g) for any ze Z; and ge D}.

We put (E, S) = (D, norm) as a quadratic space over Q. So the
dimension of E is four. D* X D* acts on E by p(a, b)x = a*xb, (a, b) €
D* x D*., Under this action, the group G’ = {(a, b) e D* X D*|N(a) =
N(b) = 1} operates isometrically on E, and is considered as a subgroup
of O(S).

Let G = Sp(8) be a symplectic group of degree 3. We put K, =
Sp(3, Z,) for any finite place p and K., = the stabilizer of v —1 in G,. We
get the local (true) Weil representation =, of G, corresponding to the
quadratic space E and the additive character +, defined in Section 1.
The global Weil representation = is also defined in the usual way.

We are going to define a lifting from an automorphic form on G’
to that on G,. As before we let X = M,,. For any finite place p, let
f» be the characteristic function of X, . For the infinite place oo, let
g, ®a,, be an irreducible representation of Gy such that n, = n, (mod 2).
We put m, = (n, + n,)/2, m, = |n, — n,|/2 and 2 the irreducible representa-
tion of O(S)p with the signature (m, m,). Then ¢, ®g,, is naturally
included in 2. Let z(2’) be the representation of GL(3, C) which corres-
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ponds to 2. For any Qejh(%), we put fy = [[,uufo X fo,,2e LX)V,
where f, =i = Q(x)e "D, Now we define the theta series by

018, h) = gil (w(8)f)(p(h)x)
weXq
for ge G,, he G,. Then from Theorem B, we get

@1) Orgh, b) = ,,(g, ), for any k= ( g ﬁ) ¢K.,

where @ = (3*® «())("(—BvV—1 + A)H)Q.

Let ¢, and ¢, be automorphic forms on D of type (R, ¢,,) and (R, g,,)
respectively. Then ¢ = ¢, ® ¢, can be regarded as a V,-valued automor-
phic form on G/. Define a function of G, by

@) = | (Orlg ), oidh.
Gé\G;1
Here ( , ) is the natural inner product on V, and V,. Take a basis
B=1{Q, - --,Q,} of %(2) and fix it. The matrix representation of z(%)
with respect to B is also denoted by the same letter. Finally we define
the C™valued function on G, by

(2'2) ij(g) = (d)fql(g)y ] @fqm(g))‘
The next Proposition follows at once by the definitions.

ProposiTiON 1. Let the notation be as above. Then ®,(g) is a Siegel
modular form with respect to the representation & @ =(1'); it satisfies the
following properties,

(1) 04(rg) = Dx(8) for any T e Gy, g€ Gy,

A B)

(i) Dygh) = 2o(&)0* @ (N(—BY=T1 + A)) for any k= (_7 o
eK., geQG,

(ill) @4(gk) = D4(g) for any ke K,, g € G,, where p is any finite place.

To transform into classical notation, we put j(g, Z) = (8*®<(2))-
((CZ + D)) for any Ze H, and g — (‘é g) € Sp(3, R). Then j(g, Z) satis-

fies the cocycle relation j(g.g:, Z) = j(g., 2)j(g,, 8(Z)). For any point
Z e H, we choose an element g€ Sp(3, R) such that g(¥—1) = Z and put
g’ =1,-ge G, where 1, is an element of the finite part of G, such that
all the p-component is equal to 1. Then F(Z) = @,(g")j(g, v—1) satisfies
the transformation formula F(1(Z)) = F(Z2)j(1, Z) for 1 ¢ Sp(3, @ N [] . K,.

https://doi.org/10.1017/5S0027763000000234 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000000234

88 YOSHIO TANIGAWA

§3. Hecke operators

Let G be the group of symplectic similitude of degree 3 i.e.
G = {ge GL(®, F)|'gJg = m(g)J, m(g) ¢ F*}

for any field F. In order to consider Hecke operators we must extend
the function on Gg\G, to the function on G,. For that purpose we will
adopt Yoshida’s standard extension. Put K, = GQPQGL((S, Z,) and G..
= {ge GL(6, R)|'gJg = m(g)J, m(g)>0}. By the approximation theorem,
we have G, = GQ-H#mIzp-Gw,+. Let v be an element of G, such that

1, O .
Yy =(03 /Jp13>’ U, € Z¥, for each finite place p and v.. = p.1, p. € RY, for

the infinite place co. Then by the approximation theorem, any element
g of G, can be written as g = kv with TeGQ and ke [],.. K, X G..
Suppose that @ is a function on G, which is left invariant under G.
We define a function @ on G, by &(g) = O(k) for g = rkv. It is shown
in [7] that this is well-defined and left invariant under GQ.

We put S, = {ge M(Z,)|'gJg = m(g)J, m(g)++0}. For the Hecke pair
(Kp, S,) we denote by OZ’(IZP, S,) the corresponding Hecke ring. It is well
known that the complete representatives of the double cosets K,\S,/K,
is given by

0 o ]
P
where d,<d,<d,<e,<e,<e, and mlx) = p?** for any i. We denote the
element Kpakp of .,?(Izp, S,) by T(p*, p*, p®, p*, p, p**) and put m(KpaKp)
= m(a). For a non-negative integer n, we define the Hecke operator of
degree p* by T(p") = ZIZ',@IZP where the summation is taken over all
distinct double cosets K,«K, with m(K,aK,) = p".
;?(Iz'p, S,) is a polynomial ring generated by T, = T(1, 1, 1, p, p, p),
T,=TQ1,pp,p,p), T, =TQ, p, p, p°, p, p) and T, = T(p, p, p, P, P, D).
Define a local Hecke series by D (s) = > 7, T(p")p~ "

n=0

TreEOREM C (Andrianov). Let the notation be as above and put t = p~°.
Then

6

(3. D) = |3 (- D etmrr| x |3 (—vrme]

n=
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where

e(0) = —1, e()) = 0, e(2) = p(T, + (p* + p* + DTy, e(d) = p'(p + VT,T,,
e(4) = p(T.T, + (p* + p* + DT, e(5) = 0, e(6) = —p“T3; f(0) =1,

fO =1, f) =pT, + p(p* + VT, + (p° + p* + p* + DT,

f@) = p(T,T. + T,T), f¢) = p°TiT, + p°T5 — 2p"T\T, — 2p°(p — DT.T,
— (p" + 2p" + 2p¥ + 2p" — pT3, f(5) = p°T.f(3), f(6) = p“T:if(2),

(D) = pPT3fD), f(8) = p*Ts.

For K,«K,e #(K,, S,), let K,aK, = Ua,K, be a right cosets decom-
position. «; may be considered as an element of G, by the canonical
embedding GQPC——»GA. Let @ be a Siegel modular form and & its standard
extension. We define the action of K podz , on @ by (®| K pa(K (g =3, d(gay),
which does not depend on the choice of representatives «,. Suppose that
@ is an eigenfunction of all Hecke operators: @|T(m) = A(m)d for all
meZ, m>0. Then by the Theorem C of Andrianov, we have

:20 Apn™ = G, o(p™)H, o(p™*),

where G, , (resp. H,,) is the polynomial given by the numerator (resp.
denominator) in (3.1) after replacing the e(n) (resp. f(n)) with the corre-
sponding eigenvalues. We define the Andrianov’s L-function by the Euler
product

L(s, 9) = U H,(p~)"

On the other hand, any odd prime p is unramified in D. Therefore
D, = D® Q, is isomorphic to M,(Q,). Hence we get the p-part of Hecke
operators in the usual way. If ¢ is an automorphic form Df such that
0| T(p) = Z(p)p for all p ++ 2, we define the L-function of ¢ by

1
Ls,o) =1 - >,
(59 IE2 1—-2(p)p~* +p'~%
Note that in this paper we don’t set any normalization in the definitions

of Hecke operators and L-functions.
The following Proposition will be used in Section 4.

PropositioN D (Yoshida). Let V be a vector space over R and f = ] f.,
where f, is a characteristic function of X, for finite p and f. is an element
of #(Xp)® V. Define the theta series by 0.8, h) = 3 .cx,7(8)f(p(M)x) for
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(g, h) e G, X O(S),. For a double coset K,aK, with m(ax) =p=*e, let
K ozK = U, K be a right cosets decomposition.
(i) When d, +e,is odd, d, + e, =2t + 1 (te Z), we put
1 0 ~
2= D t<03 p_113> [S GQ.

Then for any element g e G, we have

> = 1 0

where f,: Hv;—‘pfv Xf;) and f;:Zin.p(zpai)fp' -
(1) When d, + e, is even, d, + e, = 2t(te Z), we put z = p~‘l, e G,
Then for any element g e (~}A, we have

Zi: 5f(gaiy h) = éf’(g’ h)
where [’ = l—[vv&pfv ijlo and f; = Zin-p(zpai)fp'

§4. Local computation of Hecke operators

In this section we will compute the action of Hecke operators on
O, explicitly. It is enough to determine f, = >, 7 (2,2,)f, by Proposition
D. First note that, if we put I" = Sp(8, Z), the left cosets decomposition
I'al’ =\ ); 'a; corresponds to the right cosets decomposition Kpakp =
Uim(oz)ozgllzp. It is well known that the representatives {«;} can be given

by
= (8 B 0)
7 \o D,/\o U7

pl]q,l .
where A, =( 0 pee 0 ), 0<a,<a,<a;, with D, = m(a)A;' integral,
paia
B,, is taken over the complete set of representatives of integral matrices

mod D, with

(‘éi %k) eTal’, and SL(3,Z) = U (SL@3, Z)N A7 'SL(3, Z)A)U,,.

Suppose that m(a) = p or p®. For each i, we define the function on
XQ,, by

fi2(6) = 3 (e (— B D7 S ().
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Then by Proposition D, we have

fix) = 23 milem(@)ai)f,(x)

=2l0” g ) wapelo )

Sy e
X Zk Vp(tr (=B D7 'S[xp A7 D) f(xp A7)

= 2 [det (pAT)F 20 f(xp(A,U»)™).
2 J
Henceforth we write the above f/(x) by (fpllz paKp)(x) to clarify the opera-
tion of K,«K,.
First we deal with the Hecke operator of degree p.

THEOREM 1. We assume that p is an odd prime number. Put

609 =5Al(; D)) A} 912
SR D)) Ao )

Then for an element T, = T(1,1,1, p, p, p) of f(f{'p, S,), we have

4.1) (| T)(x) = P ; L Gyw).

Proof. We will write Y = M,, for simplicity. We prove the above
equality case by case. First note that for any a e GL(3, Z,) both sides of
the equality are invariant under x—xa. We will frequently use this

1 « O
remark for a = permutation matrices, (0 1 0) etc. Now let us write
0 0 1
down all A; and U,;.
(i) A, =1, and {U,;} = {1;}

100 10a /1 7 0 (010
(i) A, =0 1 o) and {Uzj}={o 1 5), (o 0 1), 00 1),
00 p 001 \0-10 \1 0o

Oéa,ﬂ,Tép—l}
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100 1L a p, /01 7, (001
(iii) A3=0p0)and{U3,-}=010,001,100,
00 p 001/ \1t oo \o1o0

Oéa,B,Tép—l}

(iv) A, = pl, and {U,;} = {1,}.
We put S[x] = (u;;) and define the subsets of X, by

Vi={xe X, |u;epZ, for all i and j},
V., ={xe Xy, |u,, u, u,epZ,,
Vi={xeX;,|u,epZ}.
Let ¢, denote the characteristic function of V,. Then we have
9 =Péu [0 =0 [0 =po FP =fn
Therefore for x = (x,, x;, x,) € Xq,, x; € Yq,, we have
(£:1 To) = ¢(px) + p_l{ogaé p_1¢z(px1,px2, —ax, — fX, + X,
+ 2 #px, pxy, T2 — 2) + g P, Py, X))
+p{ 25 ddpx, —ax + 2, —pa + X))
+ 20 flpxs, —Tx 4 Xy, %1) + S(Ps, X4, X))+ ().

osrsp-1
By the above remark, we have only to consider the following cases.

Case 1. We assume xe€ X, . In this case, all the terms occur, so
that (f,| To(x) = 2(p + 1))/p and Gy(x) = 2(p + D).

Case 2. We assume pxe X,,. In this case, all the terms vanish, so
that both sides of (4.1) equal to zero.

Case 3. We assume that x,¢ Y, and px, x, x,€Y;,. Then

20p+ Dlp if u,ep'Z,
0 otherwise.

(F, | T)@) = {

Now let us compute G,(x). By the above remark we may assume that
X, = <“ 0> cep'Z, aeZ,
O /3 p D

Then we have
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B os=6 6 == )
0 1 0 pp 0 p 0 B
(-0 G- 5
0 1 0 B 0 p 0 pp

Note that ge Z, if and only if u,, ep~'Z,. Therefore we have

2 if u, 4
Go<x>={ o ep”Z,

0 otherwise.

Case 4. We assume that x,, x,¢ Y, , px, px,, x,€ Y, and there is no
se Z such that sx, + x,€ Y;,. Then we have

(p+ Dp if uy, uy, uy ep'Z,
T =
(F>1 To)() {0 otherwise.

0 _f(a O _ (7 : .
n the other hand, let x, = 0 8 and x, = P with «eZ,. As in

the Case 3, Gy(x) =0 if u,,ep~'Z,. Hence we can suppose that fecZ,.
We have only to consider the following two terms:

R S e
0 p iy p 0 1 pd
When g’ ¢ Z, we have Gy(x) = 0. On the other hand, if g’ € Z,, the above

condition implies that there does not occur the case that both 7/ and ¢’
belong to Z,. So that we have

1 if7eZ,and §'¢Z,, or '¢Z, and §' € Z,

Go<x>={ 7€ Zy an
0 if7r,depz, — 2,

Anyway, G(x) = lifand only if 8, p'eZ,, 1’0’ ep™'Z,and "¢ Z, or §' ¢ Z,,
which is equivalent to u,, Uy, U, € p~'Z,. Otherwise G,(x) = 0. Therefore
we get the equality (4.1) in this case.

Case 5. We assume that x,¢ Y, , px;e Y;, fori =1, 2, 3, and for any
pair (i,j) there is no reZ such that rx, 4+ x,eY,, and there are no
s,te Z such that sx, + tx, + x,€ Y,,. Then we have (f,|T)(x) = ¢.(px).

We shall see that it is equal to zero. Let x, = (g g), X, = (“ 7)

5/ ﬁ/
4 /!
and x, = (g,, ;,,) with « ¢ Z,. Suppose that u;;ep~'Z, for all i and j.
Then we have peZ, pfeZ, 1'decpZ, p'cZ, 1" ep’'Z, and 7’5" +
8 ep'Z,
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Subcase 1. We assume "¢ Z, We have d'eZ, and §”"€Z, But
then there exist r and s in Z such that rx, 4 sx, + x,€ Y,,, which con-
tradicts our assumption.

Subcase 2. We assume ¢’ ¢ Z,. This is also impossible as above.

Subcase 3. We assume 7/, §’'€ Z,. From x,¢ Y, we have o’ ¢ Z,, but
then there exists r in Z such that rx, 4+ x,€Y,,, which also contradicts
our assumption. Therefore we have (f,| T))(x) = 0.

On the other hand, by the same method as Case 4, we have Gy(x) = 1
if and only if

B g, B eZy

and
Vep'Z2,—Z2, 0eZ, "ep'Z,—Z, §'eZ, or
ez, &dep'Z,—Z, 1"eZ, §'epiZ,— Z,

If this is true, there exist s and ¢ in Z such that sx, 4 tx, + x, ¢ Y,
which also contradicts our assumption, so that we have G(x) = 0. This
completes the proof. q.e.d.

Let ¢, be an automorphic form on D}. We constructed the Siegel
modular form @, of degree 3 for some fixed basis B of §() in Proposition
1. The following corollary is an easy consequence of Theorem 1.

CorOLLARY 1. Let p be an odd prime number. Suppose that ¢, is an
eigenfunction of T(p) with the eigenvalue 2,(p). Then @, is also an eigen-
function of T, with eigenvalue p*(p + 1)(A(p) + AAp)).

Next we deal with the Hecke operators of degree p’. To state the
commutation relations for Hecke operators T; and T,, we introduce two

oo S A0l(2 B E )« SAlz 0
SAC O B a0 )9
1)+ EA(2 )+l )

)+ Al (G )+ ol )}
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THEOREM 2. Let the notation be as above. We assume that p is an
odd prime number. Let T, = T(@, p, p, p*, p, p) and T(p*) be elements of
Hecke ring SK(I@, S,) defined in Section 3. Then

(4.2) (£, TX(px) + f(px) = p*{G(x) + (P* + p + Df(px)}
4.3) (f,] T(P)Npx) = p'(p* + p + 1G(x) + p*(p + 2)G\(%)
+ p*(2p + Df(px).
The proofs of (4.2) and (4.3) are similar to that of (4.1) but more

complicated, so we omit them here.

COROLLARY 2. Let ¢, be an automorphic form on D% for i = 1,2 and
@, be the Siegel modular form constructed by them. Suppose that ¢; be
an eigenfunction of T(1, p) with eigenvalue 2,(p), i = 1,2. Then

(1) 05T, = (P°A(P)2Ap) + P +P° + p* — 1),
() 05| T(P°) = {p'(P* + p + D(A(P) + 2(p)) + P (P + 2)4(p)2Ap)
— p'(2p* + 2p° + 3p + 2)}D;.
In fact, ¢; is also an eigenfunction of T'(1, p®) with the eigenvalue
2" = 2(p)) — (p + 1). Then (i) and the following (ii)) are easy con-
sequences of Theorem 2:

()" 05| T(p") = {P'(P* + p + D((P?) + 1(P?)) + P(p + 2)2(P)2(p)
+ p’(2p + 1)}0;.
We get (i) at once from (ii).
It is clear that the Hecke operator T, = T(p, p, p, p, p, p) acts trivially

on f, so we have @,|T, = @,
By Theorem C of Andrianov, we know the following relation:

pT,=T; —T(p") —p(p* +p+ DT, — p(p°’ + p* + 20 + p* + p + DT
This gives us the eigenvalue of T;:
D, T, = {p'QAAp) + 2Apy) + P(P° + p* + p — DA(P)Ap)
+ pi(p* — p°' — p° — 2p — 1)}0,.

Let f(n) be as defined in Theorem C and i(n) the corresponding
eigenvalue: @;|f(n) = 2(n)@;. Then, using these formulas, we have

H,,@t) = gl(n)t" =[] 1 — 2(p)p°t + p")A — 2 p)p’t + p°t).

i=1
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Therefore we get the following theorem.

THEOREM 3. Let the notation and assumptions be as in Corollary 2.
Define the L-function of ¢, by

L(s, ¢) = I]L (1 —2{pp~* + p¥)N
Then, up to the Euler 2-factor, the L-function of @, can be expressed by

Lis, @) = [ L(s — 3, ¢)L(s — 2, ¢.).
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