THE RANGE SEQUENCE OF AN OPERATOR

BY

F.-H. VASILESCU

Let T be a linear operator on a Banach space X and consider the sequence of ranges

 $X \supset TX \supset T^2X \supset \cdots \supset T^nX \supset \cdots,$

where the inclusions are not necessarily proper. The linear subspaces $X_n = T^n X$ (n > 0) are, in general, not closed but they have some remarkable properties [1], [2]. Let $X_0 = X$ and denote by $|x|_0$ ($x \in X_0$) the norm of X_0 .

PROPOSITION 1. For every $n \ge 0$ there is a norm $|x|_n$ on X_n such that $(X_n, |x|_n)$ is a Banach space and the topology of X_n induced by $|x|_n$ is stronger than the topology induced by the inclusion $X_n \subseteq X_{n-1}$ $(n \ge 1)$.

Proof. We construct $|x|_n$ by recurrence. Note that the space X_1 is algebraically isomorphic with X/K(T), where K(T) is the kernel of T. Indeed, if $y \in X_1$ then there is an $x \in X$ such that y=Tx and the map

$$y \rightarrow x + K(T)$$

is such an isomorphism. Then we can define

$$|y|_1 = \inf_{z \in K(T)} |x+z|_0$$

and $(X_1, |y|_1)$ becomes a Banach space, as X/K(T) is a Banach space. This topology is stronger than the topology induced by X. Indeed, with the same notations,

$$|y|_0 = |Tx|_0 \le |T|_0 |x+z|_0$$
 for any $z \in K(T)$.

hence

$$|y|_0 \le |T|_0 |y|_1.$$

We need the following

LEMMA. Let A be a continuous linear operator on X and X_1 a subspace of X, continuously embedded in X, such that $AX_1 \subset X_1$. If A_1 is the restriction of A to X_1 then A_1 is continuous for the topology of X_1 .

This result is well known and follows easily by applying, for example, the closed graph theorem.

Returning to our proposition, we get that T_1 (i.e. the restriction of T to X_1) is continuous on X_1 . Hence the kernel $K(T_1)$ of T_1 is closed in X_1 and this method can be continued.

In what follows we denote by T_n the restriction of T to X_n $(n \ge 0)$.

PROPOSITION. 2. The sequence of spectra $\sigma(T_n)$ $(n \ge 0)$ is decreasing.

Proof. It is sufficient to show that $\sigma(T_1) \subset \sigma(T)$ because the proof of the other inclusions is similar. Notice that for $\lambda \notin \sigma(T)$ the operator $(\lambda - T)^{-1}$ leaves invariant the space X_1 since it commutes with T. By the lemma in the proof of Proposition 1 its restriction is continuous. It is easy to check that $(\lambda - T)_1^{-1} = (\lambda - T_1)^{-1}$. Consequently $\lambda \notin \sigma(T_1)$.

As an application of the above remarks we give a different proof of the main result contained in [3]. First we need further information.

LEMMA. 1. If TX = X then T^* is bounded below.

Proof. By the closed graph theorem, there is an M > 0 such that for any $y \in X$ we may choose an $x \in X$ such that Tx = y and $|x|_0 \le M |y|_0$. Therefore we can write

 $|T^*f|_0 = \sup_{|x|_0 \le 1} |f(Tx)| \ge \sup_{|y|_0 \le M^{-1}} |f(y)| = M^{-1} |f|_0.$

LEMMA. 2. If T is quasinilpotent then T cannot be bounded below.

Proof. Indeed, if T is quasinilpotent then there is a sequence $x_n \in X$ such that $|x_n|_0 = 1$ and $Tx_n \rightarrow 0$.

PROPOSITION 3. Let T be a quasinilpotent operator. Then either $T^k=0$ for a certain k or T^nX properly contains T^{n+1} , for any $n \ge 0$.

Proof. Suppose $T^n \neq 0$ for any $n \geq 1$. By Proposition 2 we have $\sigma(T_n) \subset \sigma(T) = \{0\}$, hence T_n is quasinilpotent for any $n \geq 1$. Since T_n^* is also quasinilpotent then, according to Lemma 2, T_n^* cannot be bounded below. Then Lemma 1 implies $T_n X_n = X_{n+1} \neq X_n$.

This last result has a very elegant proof in [3], depending upon formal power series. However, our method might be an explanation of its existence. The author is grateful to the referee for some improvements.

[March

References

1. P. A. Fillmore and J. P. Williams, On operator ranges, (preprint), Advances in Math. 7 (1971), 254-281.

2. C. Foias, Invariant para-closed subspaces, Indiana Univ. Math. J. 20 (1971), 897-900.

3. S. Grabiner, Ranges of quasinilpotent operators, Illinois J. Math. 15(1971), 150-152.

Institute of Mathematics, Bucharest, Rumania Queen's University Kingston, Ontario