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ON THE MAGNUS-SMELKIN EMBEDDING

by J. McCOOL*

(Received 10th August, 1985)

1. Introduction

The generalization of the Magnus embedding [7] proved by Smelkin [9] may be
stated as follows. Let L be a free group freely generated by the set x^iel) , and let R be
a normal subgroup of L with G = L/R. If V is any variety of groups and n is the F-free
group with free generating set the symbols [g,xj (geG, iel), then L/V(R) is embedded
in the semidirect product II xi G (where the action of G on II is given by h • [g, x;] = [hg, x j ,
for h,geG).

In addition to the considerable number of direct applications of the Magnus-Smelkin
embedding that are now known, the Magnus embedding itself may be used to obtain
representations of certain subgroups of the automorphism group of a free group, for
example the Burau representation of Artin's Braid Group (see e.g. [1]). In the present
paper we give an extension of the Magnus-Smelkin embedding to the situation where
the free group L is replaced by an arbitrary group F. The embedding result is stated in
Section 2. We then show, in Section 4, that this generalised embedding also gives rise to
representations of automorphism groups, in the same way as does the Magnus
representation.

Our approach to these results may be summarized as follows. Let F be a group with
normal subgroup R, and let G = F/R, where n is the natural map F->G with kernel R.
Then there is a natural homomorphism rc, from the free product F * G to G (where 7̂  is
induced by the identity map on G and by n on F). Let IT be the kernel of nv Since
r i n G = l , and fn(f)~y belongs to II for each feF, it is clear that F*G can be
described as the semidirect product II x G (where G acts on n by conjugation). The
embedding result arises by factoring out suitable G-invariant normal subgroups of n
from this product (the basic properties of n required for this are given in Theorem 1
below). The results on representations of automorphisms are then obtained from the
following observation: let H be the subgroup of AutF consisting of those
automorphisms <x of F such that a(R) = R. Each such a induces an automorphism a, of
G, and hence an automorphism of F*G (namely a on F, a.x on G). The subgroup II of
F*G is easily seen to be generated by all fn(f)~l (feF) and it follows that each aeH
induces an automorphism of II. We thus obtain a homomorphism H-*k\xtT\ and hence
a homomorphism J/-»Aut(Il/N), for N any characteristic subgroup of II.

•This paper forms part of the Proceedings of the conference Groups-St Andrews 1985.
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134 J. McCOOL

We note that the idea of using F * G to prove an embedding result for F goes back to
Artin [11], and has been used by Dunwoody [3] to give a short proof of the Magnus-
Smelkin embedding. Another short proof has been given by Smelkin [10]. Also, in the
proof of Theorem 1 we use the idea of attaching a cone to a covering space; this idea is
used in Comerford's work [2] on subgroups of small cancellation groups and, as he
notes, also occurs (at least implicitly) in the work of Fox [4].

2. The embedding

We have the group F with normal subgroup R, quotient group G = F/R and n the
natural homomorphism from F to G. The group FT is the kernel of the homomorphism
nt above from F* G to G. We take F to have presentation <x, (iel); Sj (JeJ)} and put
gi = n(x,). AS above, L denotes the free group on the xt.

We take P to be the free group on the symbols [g, x,] (geG, iel). It will be
convenient to denote [g, x,] ~1 by [ggh x;~']. Note that there is an obvious action of G
on P. We define a map 4* from L to P by

vwixi;... *?;) = fl Or?,1 • • .*?:;. xjj] (2.i)

(where each nt is ± 1). We then have

Theorem 1. With the above notation,

(1) II has presentation

£,*,] (geG.ie/); g-^Sj) (geGJeJ)).

(2) The identification ofTlas given by (1) with IT as a subgroup of F * G is induced by

[g,xi']=gxln(xi)-
ig-1

(so that, in particular, the G action on II is gu=gug~1).

(3) The map *F above induces a map (again denoted by 4*) from F to II, satisfying

4'(a) = a7t(a)-1 and *(«)?) = 4'(a){7t(a)T()8)}

for alia, 0eF.
(4) Let S be a coset representative system of R in F, with leS, and write x for the

representative ofxeF. Let ti = xn(x)~1 ( = *P(x)) for xeS. Then

n = R*FG_u

where FG_! is the free group freely generated by the t^s,for xeS— 1.
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(5) In terms of the description of II given in (4), the action of G is given by

where n(x)=g, x,yeS, reR.

The proof of Theorem 1 will be given in the next section. In order to derive the
generalized embedding from this result, we need to recall some notation.

Let A be a G-group, so that we have an action ga of elements of G on elements of
A (via a homomorphism G->Aut/4). A map 0 from F to A is called a G-derivation if
0(a/?) = 0(a){7t(<x)-0(J9)} for all <x,/?eF. The kernel of a G-derivation 0 is the set
{aeF;0(a) = l}. We have the following easily checked result (see e.g. [5], p. 196).

Lemma 2. Let A be a G-group and 6:F->A a G-derivation. Then the map
g:F-*A » G given by

is a homomorphism, with ker r\ = ker % n ker 0.

We can now state

Lemma 3. Let N be a G-invariant normal subgroup of II, and p the natural
homomorphism from IT to 11/N. Then the map :̂F—>II//V * G given by

) = (p«F(a),»t(a))

is a homomorphism, with kerri = RnkerpT.

Proof. From (3) of Theorem 1 we know that T is a G-derivation, and it is then clear
that pT is also a G-derivation. The result now follows from Lemma 2.

We now use Lemma 3 to obtain the generalized form of the Magnus-Smelkin
embedding. For convenience, we restate the notation required.

Theorem 4. Let F be a group with presentation

<x,(i6/); S; 0 £•>)>•

R a normal subgroup of F,G = F/R, n the natural map F-*G.
Let the group W have presentation

Sb (geGJeJ))

where *¥ is defined as in (2.1).
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Then, for any variety V of groups, *P induces a map 4V:F
nv:F/V(R)^n/V{n) x G defined by

>n/F(II), and the map

is an embedding.

Proof. If V is the variety consisting of the trivial group we merely recover the
natural homomorphism n:F-*G. Thus we assume that V is a non-trivial variety. We can
apply Lemma 3 with N=V(Il). We then have to establish that ker*¥v = V(R), where
*FK:F-»n/F(Il) is given by Vv=p*¥, p being the natural homomorphism from II to

). Now, using Theorem 1, we have

Since = R*FG-1, we note that xx~1tieV(n) implies that xx~1eV(R) and
^j). Since tx belongs to a free generating set of FG_! if xj=\, the latter

condition implies x = l, and then the former condition becomes xeV(R). Thus kerp*P =
V(R) as required.

3. Proof of Theorem 1

We use the complex K, with fundamental group F*G = n1(K,q), given as

where KF is the complex for F consisting of the single vertex p, a directed loop labelled
Xi for each i e I, and with attached two-cells corresponding to the relations Sj. KG is the
corresponding complex for G, consisting of a copy of KF with two-cells ru (ueU) added,
where R is the normal closure in F of the set ru (u e U).

The covering complex Kn of K corresponding to the subgroup II of F * G may be
realised as follows: the covering complex KR of KF for the subgroup R of F has vertices
geG and edges (g,x;) {geG,ieI), where (g,x,) has initial vertex g and terminal vertex
gg(. We denote the inverse of this edge by (ggh x,"1). For each vertex g of KR we have a
lift map O9 acting on paths in KF, given by

W • • • XV=UU

(where n(= ± 1), and the two-cells of KR are just all 4>g{Sj). (We note, for future use, that
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Og* cin be regarded as a map from F to equivalence classes of paths in KR, or even as a
map from the free group L on the xt to the free group P on the (g, xf).) Now take a
copy of KR and add two-cells corresponding to all Q>g(rt) (r e T). Call the resulting
complex KG. Thus KG is just the universal cover of the complex KG. To distinguish
vertices of KG from those of KR, let us agree that if geG then g denotes the
corresponding vertex of KG. Now join each vertex g of KR to the corresponding vertex
g of KG by a (directed) edge labelled tg. The resulting complex is Kn.

The subcomplex KG of Kn is simply connected, and it follows easily, from the
description of Kn, that if we shrink this subcomplex to a point v to obtain a complex
~ - which is just KR "with a cone attached", then KR will have fundamental group equal
io° I. Formally, we define KR by adding the new vertex v to KR and joining each vertex
g of KR to v by a (directed) edge labelled tg. There is a natural action of G on KR

(induced by that on Kn), satisfying, for g,heG,

gh=gh g-(h,Xi)=(gh,xd

g-v = v g-th = tgh.

We note that the G action on KR and the lift maps <S>g are related by

and

where g,heG, a,/?eF and <&=<&,.
We now modify the maps <D9 so as to become maps from F to II (induced by

corresponding maps L-*P) by defining

Regarding a as a loop in KF, this merely adds tails to the corresponding path <t>g(a) in
KR, making it into a loop at v. We then obtain immediately, from the corresponding
properties of the <D9, that

where [fc,xj denotes the element t^Y{h,x)thg. of n = 7t,(KR,u), and that

where g,heG, a,fieF and 4/ = 4'1.
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Now KR has two-cells the set of all Q>J(Sj); this set may clearly be replaced by the set
of all ^VgiSj) without altering the fundamental group. Choosing the set of all tg as a
maximal tree in KR, it then follows that n has presentation

<[S.xJ (geG.ie/ ) ; g-V(S) (geG,jeJ)>

(where *P here is regarded as a map from L to the free group on the symbols [g, x,].)
This verifies (1) of Theorem 1.

We next note that if xeF and n(x)=g, then the loop 4/(x) = tr1«D(x)^ in KR

translates into the loop tj"1<l)(x)t9p(x)"1 in Kn, where p(x) is the path in KG from T to g
corresponding to the path O(x) in KR. Projecting this loop of Kn to a loop in K clearly
gives the element x;t(x) ~* of F * G. This verifies part (3) of the theorem. Part (2) may
also be verified by translating into Kn. Alternatively, if n(x)=g, we have

,) ~1g~i =gx-1{xxin(xxi) ~l}

as required.
Now let X be the projection map from KR to KF. Choose a maximal tree in W in KR.

The choice of W gives a coset representative system St for R in F as follows. If we
regard the vertices of KR as being the cosets Rx of R in F, and let T(RX) be the unique
reduced path in W from /? to Rx, then AT(RX) is the element of St representing Rx. We
write x for this element of Su and note that T=l . Using the maximal tree W1 of KR

obtained by adding the edge tt to W, we see that II is the free product of R and the free
group on the symbols ts (xeSi — 1), and ts represents the loop t^v%{Rx)tg of KR, where
n(x)=g. Now T(RX) = <D(X), SO that t i =

 xP(x) = x7i(x)~1. This verifies (4) of the theorem
for the particular representative system Sj. For an arbitrary representative system S, we
have t i = 4/(x) = *F(rJt.x) for some rxeR, so that

(since *P(rx) is identified with rx), and it follows that II is the free product of R and the
free group on the t^'s (x^ 1).

It remains to check part (5). Let x,yeF,reR and g=7r(x). Then

gr=grg-1 =gx(xrx-1)xg-1 ='¥(x)-1(xrx-imx) = t;i(xrx-i)tx

and

g • t9 = gyn(f) ~lg~1= n(x)yn{y)" M*) ~ l = n(x)x" ̂ yxjT l5cyn{xy)"x = t j '

as required. This concludes the proof of the theorem.
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In the particular case of Theorem 4 where V is an abelian variety, so that IT < V(Yl),
it is clear that n/F(II) is the quotient of the direct sum (£)ielZGzi of copies ZGz( of the
group ring ZG (where z, = [l,x,]). In the special case where F is free and V = A is the
variety of all abelian groups, U/A{U) = U/Tl', is precisely Q)i€lZGzh and a comparison
of (2.1) with the usual definition of the Fox derivatives dx/dxt shows immediately that
T(x) is Yjiei(dx/dxi)*zh where (dx/dx,)* denotes the image of the element dx/dxj of ZF
under the homomorphism from ZF to ZG induced by n. Thus we recover the Magnus
embedding of F/R' into ( © i e / ZGZJ) xs G given by

In the case where F has presentation <x; (iel); S,- (jeJ)} and V = A, we see that II/IT is
the quotient of @ieiZGzi by the submodule generated by all Xj6/(dSydx,)"Zj (JeJ). In
this situation it follows immediately from Theorem 1 that the restriction of *F to R/R' is
a G module embedding of R/R' into IT/IT', and that the quotient of II/IT by ^(R/R1) is
isomorphic to the augmentation ideal IG of ZG (by the map ts^n{x) — 1). A
straightforward computation shows that II/IT here is in fact ZG (X)F IF, and we have
the well-known short exact sequence of G modules

(see, e.g. [5]).
In the context of the situation of Theorem 4, Yabanzhi ([6], page 91, question 7.58)

has asked (for the case F free on the xt) if there is a criterion to determine those
elements of FI/J^IT) xi G which belong to (the embedded image of) F/V(R), and notes
that such a criterion is well known in the case V is the variety A of all abelian groups.
In other words, given (w,g)en/V(YT) * G, where w is specified as a word on the [g,xj,
can it be determined if (w,g)eF/V(R). Now (w,g)eF/V(R) iff (w,g) = (yVv(x),n(x)) for
some xeF. Choosing x'eF so that g=n(x'), we then have

(w, g) e F/V(R)ow = Tu(rx') = «P

for some reR. Thus the problem reduces to the question: given a word u (equal to
wT.XxV1) in n/K(II), is there a criterion to determine if ueR/V{R)l Now if n(x)=g
then in II we have

= V(x) [g, x J,

so that
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and it is then easy to check that for n = +1 we have

[?.*n = «J1xx?»i?"1^. (3.1)

Let IVG denote the free group of the variety V freely generated by the set sg (geG — 1).
From the structure of TT as R *FG-i it is d e a r that there is a homomorphism fiv from
n/K(IT) to IVG such that nv(ti) = sg {g = n(x)) and ker/i0 is the normal closure of R/V(R)
in n/K(n). From (3.1) it follows that nv[g,xi'] = s;1sgg.. Thus if " = n*=i \-K*%\> then

j j ^ ^ ^ (3.2)

in IVG. Hence (3.2) is a necessary condition that ueR/V(R); in case V = A it is also
sufficient, since then kerfiv = R/R', and translating into additive notation gives the
known result in this case (see e.g. [8]). It does not seem likely that a general algebraic
characterization of ueR/V(R) can be given, since such would seem to require knowledge
of a normal form for elements of free V groups. However, under appropriate conditions,
an algorithmic answer can be given. We have

Corollary 5. Given F free and G = F/R. Then the generalised word problem is solvable
for F/V{R) and R/V(R) in n/F(IT) x G, provided that

(1) the word problem is solvable for G, and

(2) the word problem is solvable for the standard presentation of the free group of
countably infinite rank of the variety V.

Proof. We give an informal sketch. Condition (1) means that the index set / is at
most countably infinite, and that R is a recursive subset of F. Thus we can construct
(any required finite part of) a Schreier coset representative system S of R in F, and (any
required finite part of) the corresponding free generating set Y of R. Using (3.1) it
follows that given a word u on the [g, x,] generators of IT, we can express u as a
reduced word on the free generating set Yu{ts;xeS — 1} of II. Condition (2) then
ensures that we can determine, in T\/V(Tl), whether or not ueR/V(R). The result then
follows easily from the discussion above.

The special case of Corollary 5 when V = A has been proved in [8].

4. Representations of automorphisms

Let F, G, R, V be as in Theorem 4, and let H be the subgroup of Aut F consisting of
those automorphisms y of F such that y(R) = R. Each yeH induces an automorphism y
of G, and hence an automorphism y of F * G (equal to the original y on F, and to y on
G). Now, for xeF,

= y(xn(x) ~') = y(x)y(n(x)"») = y(x)n(y(x))"»
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Thus

It follows that y induces an automorphism of n, and therefore we obtain a
homomorphism n':H->Aut(n/V(Tl) xi G) and (by restriction) a homomorphism
n:H->Autn/V{U), where n(y)[g,xd = y{g)x¥v(y{xi)). Now n/F(II) x G is generated by
F/V(R) and G, and it follows that ker// consists of those yeH which induce the identity
on F/V(R) (since such y also induce the identity on G).

Now suppose yeH induces the identity on n/F(II). Then

so that

in n/K(II). From the free product structure of II it now follows that y(x,) = Xj for iel,
and hence that y induces the identity on G. Now for xeF/V(R), we have
x7i(x)"1en/F(II), and since y fixes X7c(x)"' and 7t(x), it must also fix x. Hence
ker // = ker fi. We summarise as

Theorem 6. With the notation of Theorem 4, let H be the subgroup of Aut F consisting
of those automorphisms y of F such that y(R) = R, and let K consist of the yeH such that
y induces the identity on F/V(R). Then the map ̂ :H-^Autn/F(II) given by

is a homomorphism with ker fi = K.

Let H1 be the subgroup of H consisting of those yeH which induce the identity on G.
In the case F is free on the xi( the theorem yields a representation of Ht (with kernel K)
as a group of G-automorphisms of the free V group n/K(II); the special case of this
with V = A yields the representations studied in chapter 3 of [1]. In this special case, as
we noted previously, n/K(II) is Q)ieIZGZi and thus we obtain matrix representations;
in fact, since z, = [l,xi], we have

so that if M(y) is defined to be the matrix over ZG whose jith entry is (dy(xt)/dxj)', we
have that the mapping y-*Tl(y) is a homomorphism with kernel K (note that we obtain
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the transpose of the representation of [1] since we apply our automorphism y on the
left).
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