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Abstract. Given a contact form η, there is a one-to-one correspondence between
the Riemannian structures (η, g) and the CR-structures (η, L). It is interesting to study
the interaction between the two associated structures. We approach the geometry of
contact Riemannian manifolds in connection with their associated CR-structures. In
this context, for a contact Riemannian manifold (M; η, g) we consider the Jacobi-type
operator Rγ̇ = R(·, γ̇ )γ̇ along a self-parallel curve γ with respect to the (generalized)
Tanaka connection ∇̂.
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1. Introduction. The contact structure η is a global differentiable one-form on a
smooth manifold M2n+1 such that η ∧ (dη)n �= 0 everywhere on M. It is well-known
that there exists an associated Riemannian structure (metric) g and a (1,1)-type
tensor φ, where g and φ are canonically related. We call the pair (η, g) a contact
Riemannian structure and M = (M; η, g) a contact Riemannian manifold. S. Sasaki
and Y. Hatakeyama [22] defined the normality of the contact Riemannian structure (see
section 2). A normal contact Riemannian manifold is said to be a Sasakian manifold.
In [19] it was proved that a Sasakian manifold which is locally symmetric (∇R = 0)
must have constant curvature +1, where ∇ is the Levi-Civita connection. This fact
means that local symmetry is a very strong condition for a Sasakian manifold. For
this reason, T. Takahashi ([24]) introduced the notion of Sasakian locally φ-symmetric
spaces which may be considered as the analogues of locally Hermitian symmetric
spaces. A contact Riemannian locally φ-symmetric space is defined as a generalization
of a Sasakian locally φ-symmetric space and investigated in [5].

One the other hand, the associated CR-structure of a given contact Riemannian
manifold M = (M; η, g) is given by the holomorphic subbundle

H ={X − iφ̄X : X ∈ D}

of the complexification TM� of the tangent bundle TM, where D is the subbundle of
TM defined by the kernel of η and φ̄ = φ|D, the restriction of φ to D. Then we see that
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each fibre Hx (x ∈ M) is of complex dimension n and H ∩ H̄ = {0}. Furthermore, we
have �D = H ⊕ H̄. We say that the associated CR-structure is integrable if [H, H ] ⊂
H. For H we define the Levi form by

L : D × D → F (M), L(X, Y ) = −dη(X, φY )

where F (M) denotes the algebra of differential functions on M. Then we see that
the Levi form is Hermitian and positive definite, that is, the CR-structure is strongly
pseudo-convex, pseudo-Hermitian CR-structure. In fact, for a contact manifold (M; η),
there is a correspondence between the contact Riemannian structure (η, g) and strongly
pseudo-convex, pseudo-Hermitian CR-structure (η, L) by the relation g = L + η ⊗ η,
where we denote by the same letter L the natural extension of the Levi form to a
(0,2)-tensor field on M. N. Tanaka [25] defined the canonical affine connection on
a nondegenerate integrable CR-manifold. In [27] S. Tanno defined the generalized
Tanaka connection ∇̂ on a contact Riemannian manifold and further, he proved that
for a given contact Riemannian manifold M the associated CR-structure is strongly
pseudo-convex integrable if and only if M satisfies the integrability condition Q = 0 (see
section 2), in which case the connection ∇̂ coincides with the Tanaka connection. Here,
we note that the normality of a contact Riemannian structure implies the integrability
of the associated CR-structure, but the converse does not always hold. The associated
CR-structures of 3-dimensional contact Riemannian manifolds are always integrable
(see [27]). Also, we see that their associated CR-structures are integrable for (contact
Riemannian) (k, µ)-spaces (see [2], [6] or [12]).

It is interesting to study the geometry of a given contact Riemannian manifold
(M; η, g) in connection with the associated CR-structure, particularly with the
generalized Tanaka connection. In this context, we define the Jacobi-type operator
Rγ̇ = R(·, γ̇ )γ̇ along a unit ∇̂-geodesic γ . Here, we observe that the geodesics of
the Levi-Civita connection and the generalized Tanaka connection do not coincide
in general. In the preceding paper [12] the first author has introduced a new class
of contact Riemannian manifolds satisfying the condition (C), i.e., the Jacobi-type
operator field Rγ̇ is diagonalizable by a ∇̂-parallel orthonormal frame field along γ

and its eigenvalues are constant along γ , or equivalently,

(∇̂γ̇ R)(·, γ̇ )γ̇ = 0 (C)

for any unit ∇̂-geodesic γ , where ∇̂ is the generalized Tanaka connection. Further,
in [12] it has been shown that (k, 2)-spaces (k �= 1), including the standard contact
Riemannian structure of the unit tangent sphere bundle T1M of M with constant
curvature −1, are examples that are neither Sasakian nor locally symmetric but satisfy
the condition (C) for any ∇̂-geodesic γ . Also, it is remarkable that a (k, µ)-space with
k = µ = 0 of dimension ≥ 5, which is a product of (n + 1)-dimensional flat manifold
and n-dimensional space of constant curvature 4, is locally symmetric but M fails to
satisfy the condition (C) for any ∇̂-geodesic γ . Continuing the preceding work, in this
paper we develop further the results in [12]. More precisely, in section 3 we prove

THEOREM A. Let M be a (k, µ)-space. Then M satisfies the condition (C) for any
∇̂-geodesic γ if and only if (1) k = 1 and M is Sasakian locally φ-symmetric or (2) µ = 0
in which case M is 3-dimensional, or (3) µ = 2.
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In [12] it was also proved that the standard contact Riemannian structure of the
unit tangent sphere bundle T1M of a 2-dimensional Riemannian manifold M satisfies
condition (C) for any ∇̂-geodesic γ if and only if M has constant Gauss curvature 1,
0 or −1. In section 4, we prove this result for arbitrary dimension. Namely, we prove

THEOREM B. Let M be a (n + 1)-dimensional Riemannian manifold. Then the
standard contact Riemannian structure of the unit tangent sphere bundle T1M satisfies
the condition (C) for any ∇̂-geodesic γ if and only if the base manifold M is of constant
curvature c = 1, n = 1 and c = 0, or c = −1.

REMARK 1. Recently, it was proved in [4] ([20] and [21], respectively) that the base
manifold is of constant curvature c = −1, c = 1 (c = 0, c = 1, respectively) if and only
if the standard contact Riemannian structure on the unit tangent sphere bundle is a
critical point of some functional on the set of associated Riemannian metrics M (η)
of a given contact form η.

Finally, in section 5, we give a local and a global classification of 3-dimensional
contact Riemannian manifolds satisfying the condition (C) for any ∇̂-geodesic γ . More
precisely, we prove

THEOREM C (local classification). Let M be a 3-dimensional contact Riemannian
manifold. Then M satisfies the condition (C) for any ∇̂-geodesic γ if and only if M is
locally isometric to one of the following spaces:

(1) a Sasakian φ-symmetric space;
(2) SU(2) (or SO(3)), SL(2, �) (or O(1, 2)) with a special left-invariant contact

metric which is not Sasakian, respectively;
(3) a flat manifold.

In [7] the authors gave a classification of Sasakian φ-symmetric spaces (complete
and simply connected Sasakian locally φ-symmetric spaces). Together with this
classification we have

THEOREM D (global classification). Let M be a complete and simply connected
3-dimensional contact Riemannian manifold. Then M satisfies the condition (C) for any
∇̂-geodesic γ if and only if M is isometric to one of the following spaces:

(1) the standard unit sphere S3; SU(2), ˜SL(2, �) (the universal covering of SL(2, �))
or the Heisenberg group H with a left-invariant Sasakian metric, respectively;

(2) SU(2), ˜SL(2, �) with a special left-invariant contact metric which is not
Sasakian, respectively;

(3) �3.

2. Preliminaries. We start by collecting some fundamental material about
contact Riemannian geometry and refer to [2] for further details. All manifolds in
the present paper are assumed to be connected and of class C∞.

A (2n + 1)-dimensional manifold M2n+1 is said to be a contact manifold if it
admits a global one-form η such that η ∧ (dη)n �= 0 everywhere. Given a contact form
η, there exists a unique vector field ξ , called the characteristic vector field, satisfying
η(ξ ) = 1 and dη(ξ, X) = 0 for any vector field X . It is well-known that there also exists
a Riemannian metric g and a (1, 1)-tensor field φ such that

η(X) = g(X, ξ ), dη(X, Y ) = g(X, φY ), φ2X = −X + η(X)ξ, (2.1)
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where X and Y are vector fields on M. From (2.1), it follows that

φξ = 0, η ◦ φ = 0, g(φX, φY ) = g(X, Y ) − η(X)η(Y ). (2.2)

A Riemannian manifold M equipped with structure tensors (η, g) satisfying (2.1) is
said to be a contact Riemannian manifold or contact metric manifold and it is denoted
by M = (M; η, g). Given a contact Riemannian manifold M, we define a (1, 1)-tensor
field h by h = 1

2 Lξφ, where L denotes Lie differentiation. Then we may observe that h
is symmetric and satisfies

hξ = 0, hφ = −φh, (2.3)

∇Xξ = −φX − φhX, (2.4)

where ∇ is Levi-Civita connection. From (2.3) and (2.4), we see that each trajectory of
ξ is a geodesic. We denote by R the Riemannian curvature tensor defined by

R(X, Y )Z = ∇X (∇Y Z) − ∇Y (∇X Z) − ∇[X,Y ]Z

for all vector fields X, Y, Z. Along a trajectory of ξ , the Jacobi operator Rξ = R(·, ξ )ξ
is a symmetric (1, 1)-tensor field. We have

(trace Rξ ) = g(Sξ, ξ ) = 2n − (trace h2), (2.5)

Rξ = φRξφ − 2(h2 + φ2), (2.6)

∇ξ h = φ − φRξ − φh2, (2.7)

g(R(X, Y )ξ, Z) = g((∇Yφ)X − (∇Xφ)Y, Z) + g((∇Yφh)X − (∇Xφh)Y, Z) (2.8)

for all vector fields X, Y, Z on M, where S is the Ricci (1, 1)-tensor on M. A contact
Riemannian manifold for which ξ is a Killing vector field is called a K-contact manifold.
It is easy to see that a contact Riemannian manifold is K-contact if and only if h = 0.
For a contact Riemannian manifold M, one may define naturally an almost complex
structure J on M × � by

J
(

X, f
d
dt

)
=

(
φX − f ξ, η(X)

d
dt

)
,

where X is a vector field tangent to M, t the coordinate of � and f a function on
M × �. If the almost complex structure J is integrable, M is said to be normal or
Sasakian. It is known that M is normal if and only if M satisfies

[φ, φ] + 2dη ⊗ ξ = 0,

where [φ, φ] is the Nijenhuis torsion of φ. A Sasakian manifold is also characterized
by the condition

(∇Xφ)Y = g(X, Y )ξ − η(Y )X (2.9)

for all vector fields X and Y on the manifold and this is equivalent to

R(X, Y )ξ = η(Y )X − η(X)Y (2.10)

for all vector fields X and Y .
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For a contact Riemannian manifold M, the tangent space TpM of M at each
point p ∈ M is decomposed as TpM = Dp ⊕ {ξ}p(direct sum), where we denote
Dp = {v ∈ TpM | η(v) = 0}. Then D : p → Dp defines a distribution orthogonal to
ξ . The 2n-dimensional distribution D is called the contact distribution. We see that
the restriction φ̄ = φ|D of φ to D defines an almost complex structure on D, and
furthermore that the associated Levi form, which is defined by L(X, Y ) = −dη(X, φ̄Y ),
X, Y ∈ D, is positive definite and Hermitian. We call the pair (η, φ̄) a strongly pseudo-
convex, pseudo-hermitian structure on M. Since dη(φX, φY ) = dη(X, Y ), we see that
[φ̄X, φ̄Y ] − [X, Y ] ∈ D for X, Y ∈ D. Further if M satisfies the condition

[φ̄, φ̄](X, Y ) = 0

for X, Y ∈ D, then the pair (η, φ̄) is called a strongly pseudo-convex integrable CR-
structure, (associated with the contact Riemannian structure (η, g)). Taking account
of (2.9) we see that for a Sasakian manifold the associated CR-structure is strongly
pseudo-convex integrable (cf. [16]).

Now, we review the generalized Tanaka connection ([27]) on a contact Riemannian
manifold M = (M; η, g). The generalized Tanaka connection ∇̂ is defined by

∇̂X Y = ∇X Y + η(X)φY + (∇Xη)(Y )ξ − η(Y )∇Xξ

for all vector fields X and Y on M. Together with (2.4), ∇̂ may be rewritten as

∇̂X Y = ∇X Y + η(X)φY + η(Y )(φX + φhX) − g(φX + φhX, Y )ξ (2.11)

and we see that the generalized Tanaka connection ∇̂ has the torsion T̂(X, Y ) =
2g(X, φY )ξ + η(Y )φhX − η(X)φhY . We put

A(X, Y ) = η(X)φY + η(Y )(φX + φhX) − g(φX + φhX, Y )ξ (2.12)

for all vector fields X and Y on M. Then A is a (1,2)-tensor field on M and ∇̂X Y =
∇X Y + A(X, Y ). In particular, for a K-contact Riemannian manifold we get

A(X, Y ) = η(X)φY + η(Y )φX − g(φX, Y )ξ, (2.13)

where X and Y are vector fields. For a given contact Riemannian manifold M the
associated CR-structure is strongly pseudo-convex integrable if and only if M satisfies
the integrability condition Q = 0, where Q is a (1,2)-tensor field on M defined by

Q(X, Y ) = (∇Xφ)Y − g(X + hX, Y )ξ + η(Y )(X + hX) (2.14)

for all vector fields X, Y on M (see [27, Proposition 2.1]). Further, the following result
was proved.

PROPOSITION 2.1 ([27]). The generalized Tanaka connection ∇̂ on a contact
Riemannian manifold M = (M; η, g) is the unique linear connection satisfying the
following conditions:

(i) ∇̂η = 0, ∇̂ξ = 0;
(ii) ∇̂g = 0;

(iii(a)) T̂(X, Y ) = 2dη(X, Y )ξ , X, Y ∈ D;
(iii(b)) T̂(ξ, φY ) = −φT̂(ξ, Y ), Y ∈ D;

(iv) (∇̂Xφ)Y = Q(X, Y ), X, Y ∈ TM.
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The Tanaka connection ([25]) on a nondegenerate integrable CR-manifold is defined as
the unique linear connection satisfying (i), (ii), (iii(a)), (iii(b)) and ∇̂φ = 0. The metric
affine connection ∇̂ is a natural and proper generalization of the Tanaka connection.
In fact, in [1] the authors deal with the use of ∇̂ in the non-integrable case.

Let γ be a ∇̂-geodesic parametrized by the arc-length parameter s, where a ∇̂-
geodesic means a geodesic with respect to ∇̂. From (2.11) we see that a ∇̂-geodesic does
not coincide with a ∇-geodesic. Define the Jacobi operator Rγ̇ by Rγ̇ = R(·, γ̇ )γ̇ along
γ , where γ̇ is the unit tangent vector field of γ . Then Rγ̇ is a symmetric (1, 1)-tensor
field along γ . Moreover, from (i) of Proposition 2.1 we observe that η(γ̇ ) is constant
along γ , and thus a ∇̂-geodesic whose tangent initially belongs to D remains in D. We
call such a ∇̂-geodesic which is tangent to D a horizontal ∇̂-geodesic.

We recall the definition of a Sasakian locally φ-symmetric space ([24]).

DEFINITION 2.2. A Sasakian manifold M = (M; η, g) is said to be locally φ-
symmetric if φ2(∇V R)(X, Y )Z = 0 for all vector fields V, X, Y, Z ∈ D.

As a generalization of the above Sasakian one, a contact Riemannian locally φ-
symmetric space is defined in [5] by the same condition and is called ([8]) a locally
φ-symmetric space in the weak sense. In [12] we have the following characterization of
a Sasakian locally φ-symmetric space.

THEOREM 2.3. A Sasakian manifold M is locally φ-symmetric if and only if M
satisfies the condition (C) for any horizontal ∇̂-geodesic γ , or if and only if M satisfies
the condition (C) for any ∇̂-geodesic γ .

3. A contact Riemannian (k, µ)-space. In [6], the (k, µ)-nullity distribution of a
contact Riemannian manifold M, for the pair (k, µ) ∈ �2, is defined by

N(k, µ) : p → Np(k, µ) = {z ∈ TpM|R(x, y)z = k(g(y, z)x − g(x, z)y)

+µ(g(y, z)hx − g(x, z)hy) for any x, y ∈ TpM}.

A (k, µ)-space is a contact Riemannian manifold with ξ belonging to the (k, µ)-nullity
distribution, that is,

R(X, Y )ξ = k(η(Y )X − η(X)Y ) + µ(η(Y )hX − η(X)hY ). (3.1)

It was shown in [6] that the (k, µ)-spaces are invariant under a D-homothetic
deformation. As mentioned in the introduction, the associated CR-structures of the
(k, µ)-spaces are integrable, that is, Q = 0. This class contains Sasakian manifolds
(k = 1 and h = 0). The unit tangent sphere bundle is a (k, µ)-space if and only if the
base manifold is of constant curvature c with k = c(2 − c) and µ = −2c ([6]). (By virtue
of the result of Y. Tashiro [29], we know that for c �= 1, the unit tangent sphere bundle is
non-Sasakian.) Very recently, E. Boeckx [9] presented explicit examples for all possible
dimensions and all possible (k, µ).

THEOREM 3.1 ([12]). Let M be a (k, µ)-space. If M satisfies the condition (C) for
any ∇̂-geodesic γ , then we have:

(i) k = 1 and M is a Sasakian locally φ-symmetric space;
(ii) µ = 0 and M is a 3-dimensional locally φ-symmetric space in the weak sense;

(iii) µ = 2 and M is a locally φ-symmetric space in the weak sense.
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In [8] it has been proved that all (k, µ)-spaces are locally φ-symmetric in the strong
sense, i.e., the characteristic reflections are local isometries, and hence also in the weak
sense. Thus, we have

PROPOSITION 3.2. A (k, µ)-space (k < 1) is locally φ-symmetric in the weak sense.

Therefore, together with Proposition 3.2 and the proof of Theorem 3.1 (see [12]), we
have Theorem A.

REMARK 2. An example of a contact flat Riemannian structure on �3(x1, x2, x3) is
given by η = 1

2 (cos x3dx1 + sin x3dx2) and gij = 1
4δij. For dimension at least 5 a contact

manifold cannot admit a contact Riemannian structure of vanishing curvature (cf.
[2]). Also, it was proved that a contact Riemannian manifold M2n+1 which satisfy
R(X, Y )ξ = 0 for all vector fields X and Y (i.e., ξ belonging to the (0,0)-nullity
distribution) is locally a product of a flat (n + 1)-dimensional manifold and an n-
dimensional manifold of positive constant sectional curvature equal to 4. Hence, we
see that a contact Riemannian manifold M2n+1 (n ≥ 2) satisfying R(X, Y )ξ = 0 is
locally symmetric but it does not satisfy the condition (C) for any ∇̂-geodesic.

4. The unit tangent sphere bundles. The basic facts and fundamental formulas
about tangent bundles are well-known (cf. [13], [17], [32]). We briefly review of notations
and their definitions. Let M = (M, G) be a (n + 1)-dimensional Riemannian manifold
and TM denote its tangent bundle with the projection π : TM → M, π (x, u) = x.
For a vector X ∈ TxM, we denote by XH and XV , the horizontal lift and the vertical
lift, respectively. Then we can define a Riemannian metric g̃, Sasaki metric, on TM in
a natural way. That is,

g̃(XH, Y H) = g̃(XV , Y V ) = G(X, Y ) ◦ π, g̃(XH, Y V ) = 0

for all vector fields X and Y on M. Also, a natural almost complex structure tensor J
of TM is defined by JXH = XV and JXV = −XH . Then we easily see that (TM; g̃, J)
is an almost Hermitian manifold. We note that J is integrable if and only if (M, G) is
locally flat ([17]). Now we consider the unit tangent sphere bundle (T1M, g′), which is
isometrically embedded hypersurface in (TM, g̃) with unit normal vector field N = uV .
For X ∈ TxM, we define the tangential lift of X to (x, u) ∈ T1M by

XT
(x,u) = XV

(x,u) − G(X, u)N(x,u).

Clearly, the tangent space T(x,u)T1M spanned by vectors of the form XH and XT where
X ∈ TxM. We put

ξ ′ = −JN, φ′ = J − η′ ⊗ N.

Then we find g′(X, φ′Y ) = 2dη′(X, Y ). By taking ξ = 2ξ ′, η = 1
2η′, φ = φ′, and g =

1
4 g′, we get the standard contact Riemannian structure (φ, ξ, η, g). Indeed, we easily
check these tensors satisfy (2.1). Here, we notice that ξ determines the geodesic flow.
The tensors ξ and φ are explicitly given by

ξ = 2uH,

φXT = −XH + 1/2G(X, u)ξ, (4.1)

φXH = XT
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where X and Y are vector fields on M. From now, we consider T1M = (T1M; η, g)
with the standard contact Riemannian structure. We list fundamental formulas, which
are needed for the proof of our Theorem, without proofs (cf. [2], [3], [10], [28], [29]). We
denote by ∇ and R, the Levi-Civita connection and the Riemannian curvature tensor
associated with g, respectively.

∇XT Y T = −G(Y, u)XT ,

∇XT Y H = 1/2(K(u, X)Y )H,
(4.2)∇XH Y T = (∇X Y )T + 1/2(K(u, Y )X)H,

∇XH Y H = (∇X Y )H − 1/2(K(X, Y )u)T ,

and

R(XT , Y H)ZH = −1/2{K(Y, Z)(X − G(X, u)u)}T

+ 1/4{R(Y, K(u, X)Z)u}T − 1/2{(DY K)(u, X)Z}H,

R(XH, Y H)ZH = (K(X, Y )Z)H + 1/2{K(u, K(X, Y )u)Z}H (4.3)

− 1/4{K(u, K(Y, Z)u)X − K(u, K(Y, Z)u)Y}H

+ 1/2{(DZK)(X, Y )u}T

for all vector fields X , Y and Z on M, where we denote by D and K , the Levi-Civita
connection and the Riemannian curvature tensor associated with G, respectively. From
(4.1) and (4.2), we have

∇XT ξ = −2φXT − (KuX)H, ∇XH ξ = −(KuX)H, (4.4)

where Ku = K(·, u)u is the Jacobi operator associated with the unit vector u. From (2.4)
and (4.4), it follows that

hXT = XT − (KuX)T ,
(4.5)

hXH = −XH + 1/2G(X, u)ξ + (KuX)H .

Using the formula (4.3), we get

Rξ XT = (
K2

u X
)T + 2(K ′

uX)H,
(4.6)

Rξ XH = 4(KuX)H − 3
(
K2

u X
)H + 2(K ′

uX)T ,

where K ′ = (DuK)(·, u)u and K2 = K(K(·, u)u, u)u. By using (2.7), (4.1) and (4.3) we
obtain

(∇ξ h)XT = −2(KuX)H + 2
(
K2

u X
)H − 2(K ′

uX)T ,
(4.7)

(∇ξ h)XH = −2(KuX)T + 2
(
K2

u X
)T + 2(K ′

uX)H .

The above formulae (4.4)–(4.7) are also found in [10]. Finally, from (4.2) and (4.6) we
compute

R′
ξ XT = 4(K ′

uKuX + KuK ′
uX)T + 4

(
K ′′

u X + K2
u X − K3

u X
)H

,
(4.8)

R′
ξ XH = 8(K ′

uX − K ′
uKuX − KuK ′

uX)H + 4
(
K ′′

u X + K2
u X − K3

u X
)T

.
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Now, we prove Theorem B. Suppose that T1M = (T1M; η, g) with the standard
contact Riemannian structure satisfies the condition (C) for any ∇̂-geodesic γ . Since the
geodesic flow vector field ξ also determine ∇̂-geodesic flow, we consider the condition

(∇̂ξ R)(·, ξ )ξ = 0. (4.9)

Then from (2.10) and (4.9), we see that (4.9) is equivalent to the condition

R′
ξ = Rξφ − φRξ . (4.10)

From (4.10), together with the (4.1), (4.6) and (4.8), we have

(K ′
uKuX + KuK ′

uX)T + (K ′
uX)T = 0,

(4.11)(
K3

u X − KuX − K ′′
u X

)T = 0,

and

2(K ′
uKuX + KuK ′

uX)H − (K ′
uX)H = 0,

(4.12)(
K3

u X − KuX − K ′′
u X

)H = 0.

On the other hand, differentiating (2.6) covariantly with respect to ξ , then taking
account of (4.10) we have

(∇ξ h)h + h(∇ξ h) = 0. (4.13)

From (4.5), (4.7) and (4.13), we obtain

(K ′
uKuX + KuK ′

uX)T − 2(K ′
uX)T = 0

and (K ′
uKuX + KuK ′

uX)H − 2(K ′
uX)H = 0,

hence it follows that

K ′
uKuX + KuK ′

uX − 2K ′
uX = 0. (4.14)

Thus, from (4.11) and (4.12), together with (4.14) we have

K ′
uX = 0 (4.15)

and

K3
u X − KuX = 0 (4.16)

for all vector field X on M. Here, we note that M satisfies the condition (4.15) if
and only if M is locally symmetric (see [15], [31]). Further, from (4.16) we see that
the eigenvalues of Ku are constant and −1, 0 or 1, that is, M is a globally Osserman
space (i.e., the eigenvalues of Ku depend neither on the point p nor on the choice of u).
But, we know that a locally symmetric globally Osserman space is locally flat or locally
isometric to rank one symmetric space (cf. [14]). Thus, we see that the base manifold M
is a space of constant curvature c = 1, 0 or −1. As we have mentioned before, the unit
tangent sphere bundle is a (k, µ)-space if and only if the base manifold is of constant
curvature c with k = c(2 − c) and µ = −2c. Therefore, together with Theorem A, we
have proved Theorem B.
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5. Three dimensional contact Riemannian manifolds. In this section we prove
Theorem C and Theorem D. It was proved in [27] that a 3-dimensional contact
Riemannian manifold always satisfies the condition Q = 0, i.e.

(∇Xφ)Y = g(X + hX, Y )ξ − η(Y )(X + hX). (5.1)

From (2.8) and (5.1) we have

R(X, Y )ξ = η(Y )(X + hX) − η(X)(Y + hY ) + φ((∇Y h)X − (∇X h)Y ) (5.2)

for all vector fields X and Y . We have already noted that a K-contact manifold is
characterized by the condition h = 0 and it is easily seen and well-known that a 3-
dimensional K-contact manifold is Sasakian. Hence, we have

LEMMA 5.1. A 3-dimensional contact Riemannian manifold is Sasakian if and only
if h = 0.

Let (M3; η, g) be a 3-dimensional contact Riemannian manifold satisfying the
condition (C) for any ∇̂-geodesic γ . It is well-known that the curvature tensor R of a
3-dimensional Riemannian manifold is expressed by

R(Y, X)Z = ρ(X, Z)Y − ρ(Y, Z)X + g(X, Z)SY − g(Y, Z)SX

− 1
2τ {g(X, Z)Y − g(Y, Z)X} (5.3)

for all vector fields X, Y, Z, where ρ(Y, X) = g(SY, X) and τ is the scalar curvature of
the manifold. From (5.3) and the assumption we have

0 = (∇̂xR)(y, x)x

= (∇̂xρ)(x, x)y − (∇̂xρ)(y, x)x + g(x, x)(∇̂xS)y − g(y, x)(∇̂xS)x

− 1
2 (xτ ){g(x, x)y − g(y, x)x}, (5.4)

for any x, y ∈ TpM and any p ∈ M. For any unit v orthogonal to ξ , let
{v, φv, ξ} be an adapted orthonormal basis of TpM(p ∈ M). Then from (4.4) we
get g((∇̂xR)(v, x)x, v) = 0, g((∇̂xR)(φv, x)x, φv) = 0 and g((∇̂xR)(ξ, x)x, ξ ) = 0, and
summing up these three equalities, we have

(∇̂xρ)(x, x) = 0. (5.5)

Also, from (5.4) we get (∇̂vR)(φv, v)v = 0, (∇̂vR)(ξ, v)v = 0 and thus we have

(∇̂vρ)(φv, φv) = (∇̂vρ)(ξ, ξ ). (5.6)

From (2.12), we have

A(x, y) = η(x)φy + η(y)(φx + φhx) − g(φx + φhx, y)ξ (5.7)

for x, y ∈ TpM and p ∈ M. From (2.11) and (5.7) we have the formulas (5.8) and (5.9)
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which are equivalent to (5.5) and (5.6), respectively:

(∇xρ)(x, x) = 4η(x)ρ(φx, x) + 2{η(x)ρ(φhx, x) − η(Sx)g(φhx, x)}, (5.8)

(∇vρ)(ξ, ξ ) − (∇vρ)(φv, φv) = 2{(2 + g(hv, v))ρ(ξ, φv) + ρ(φhv, ξ )}, (5.9)

for any unit x ∈ TpM and unit vector v orthogonal to ξ .
Let W be the subset of M on which the number of distinct eigenvalues of h

is constant. Then W is an open and dense subset of M. We fix any point q in W .
Then, from (2.3), there exists a C∞ function λ and a local orthonormal frame field
{e1, e2 = φe1, e3 = ξ} on a neighborhood N(q)(⊂ W ) containing q such that he1 = λe1,
he2 = −λe2, hξ = 0. We denote Γijk = g(∇ei ej, ek), ρij = ρ(ei, ej), ∇iρjk = (∇eiρ)(ej, ek)
and ∇hRijkl = g((∇hR)(ei, ej)ek, el) for h, i, j, k, l = 1, 2, 3. Then we get at once

Γi j j = 0.

Further from (2.4) we get

Γ132 = −Γ123 = −(1 + λ), Γ231 = −Γ213 = 1 − λ (5.10)

and

Γ113 = Γ223 = Γ331 = Γ332 = 0. (5.11)

Also, from (2.7) and taking account of (2.5) and (5.2), we have

ξλ = ρ12 (5.12)

and

4λΓ312 = ρ22 − ρ11. (5.13)

Moreover, from (5.8) we get

∇1ρ11 = 0, ∇2ρ22 = 0 (5.14)

and

∇3ρ33 = 0. (5.15)

Differentiating (2.5) covariantly in the direction ξ and taking account of (5.15) we
obtain that ξλ = 0. Thus, from (5.12) we have

ρ12 = 0. (5.16)

If we substitute x = 1√
2
(e1 + e2) and x = 1√

2
(e1 − e2), respectively in (5.8) and take

account of (5.14), we have

2∇1ρ12 + 2∇2ρ12 + ∇1ρ22 + ∇2ρ11 = −4λ(ρ31 + ρ32)

and

−2∇1ρ12 + 2∇2ρ12 + ∇1ρ22 − ∇2ρ11 = 4λ(ρ31 − ρ32).
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By summing these two equalities, we have

∇1ρ22 + 2∇2ρ12 = −4λρ23 (5.17)

and subtracting from the preceding one, we have

∇2ρ11 + 2∇1ρ12 = −4λρ13. (5.18)

If we substitute x = 1√
2
(e1 + e3) and x = 1√

2
(e1 − e3), respectively in (5.8) and take

account of (5.15) and (5.16), we have

2∇1ρ13 + 2∇3ρ31 + ∇1ρ33 + ∇3ρ11 = 2(λ + 2)ρ23

and

−2∇1ρ13 + 2∇3ρ31 + ∇1ρ33 − ∇3ρ11 = 2(λ + 2)ρ23.

Summing these two equalities we have

∇1ρ33 + 2∇3ρ13 = 2(λ + 2)ρ23. (5.19)

A similar calculation for x = 1√
2
(e2 + e3) and x = 1√

2
(e2 − e3) gives

∇2ρ33 + 2∇3ρ23 = 2(λ − 2)ρ13. (5.20)

On the one hand, by applying the second Bianchi identity in (5.3), then taking account
of (5.14) we have

2∇2ρ12 + 2∇3ρ13 − ∇1ρ22 − ∇1ρ33 = 0. (5.21)

2∇1ρ21 + 2∇3ρ23 − ∇2ρ11 − ∇2ρ33 = 0. (5.22)

From (5.17), (5.19) and (5.21) (resp. (5.18), (5.21) and (5.24)), we have (5.23) (resp.
(5.24)):

∇1ρ22 + ∇1ρ33 = −(λ − 2)ρ23, (5.23)

∇2ρ11 + ∇2ρ33 = −(λ + 2)ρ13. (5.24)

On the other hand, from (5.9) we have

∇1ρ33 − ∇1ρ22 = 4(λ + 1)ρ23 (5.25)

and

∇2ρ33 − ∇2ρ11 = 4(λ − 1)ρ13. (5.26)

Thus, from (5.23)–(5.26) we have

∇1ρ33 = 3
2

(λ + 2)ρ23, ∇2ρ33 = 3
2

(λ − 2)ρ13 (5.27)

and

∇1ρ22 = −1
2

(5λ + 2)ρ23, ∇2ρ11 = −1
2

(5λ − 2)ρ13. (5.28)
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Also, from (5.17), (5.18) and (5.28), we have

∇1ρ12 = −1
4

(3λ + 2)ρ13 and ∇2ρ21 = −1
4

(3λ − 2)ρ23. (5.29)

Differentiating (2.5) covariantly in the directions e1 and e2 and taking account of (5.10),
(5.11) and (5.27), we have

(λ − 2)ρ23 = 8λ(e1λ) (5.30)

and

(λ + 2)ρ13 = 8λ(e2λ), (5.31)

respectively.
If we also differentiate (5.16) covariantly in the direction ξ , then we have

∇3ρ12 = Γ312(ρ11 − ρ22). (5.32)

Substituting x = ξ in (5.4), we get ∇̂3ρ12 = 0, and from (5.7) we get ∇̂3ρ12 = ∇3ρ12 +
ρ11 − ρ22. Thus, we obtain

∇3ρ12 = ρ22 − ρ11. (5.33)

We prove

LEMMA 5.2. λ is locally constant.

Proof. We set N(q) = N0(q) ∪ N1(q), where N0 = {p ∈ N(q)|ρ11(p) �= ρ22(p)} and
N1 = {p ∈ N(q)|ρ11(p) = ρ22(p)}. We divide our arguments into three cases: (i) N = N0,
(ii) N = N1 or (iii) N0 and N1 are both non-empty. (i) N = N0. Then ρ11 �= ρ22 on
N, and from (5.33) we get Γ312 = −1 on N. Thus (5.13) becomes 4λ = ρ11 − ρ22 on
N. Differentiating this covariantly in the directions e1 and e2 and taking account of
(5.10) and (5.11), we have ∇1ρ22 = −2(λ + 1)ρ23 − 4(e1λ) and ∇2ρ11 = −2(λ − 1)ρ13 +
4(e2λ). Thus taking account of (5.28), we have

(λ − 2)ρ23 = 8(e1λ),
(5.34)−(λ + 2)ρ13 = 8(e2λ)

on N. So, from (5.30), (5.31) and (5.34) we have

(λ − 1)(e1λ) = 0,
(5.35)

(λ + 1)(e2λ) = 0.

From (5.35) we see that λ is locally constant on N. We consider the case (ii) N =
N1. Then ρ11 = ρ22 on N. Differentiating ρ12 = 0 covariantly in the direction e1 and
e2, then from the assumption, (5.10) and (5.11), we have ∇1ρ12 = −(1 + λ)ρ13 and
∇2ρ21 = (1 − λ)ρ23, respectively. Thus from (5.29) taking account of (5.30) and (5.31),
we have

(λ + 2)ρ13 = 0,
(5.36)

(λ − 2)ρ23 = 0.
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So, from (5.30), (5.31) and (5.36) we have

λ(e1λ) = 0,
(5.37)

λ(e2λ) = 0.

From (5.37) we see that λ is locally constant on N. In case (iii), that is, N0 and N1

are non-empty, then in view of the above cases (i) and (ii) and by using a continuity
argument, we see that λ is constant. �

Thus, from (5.30) and (5.31) we have

(λ − 2)ρ23 = 0 and (λ + 2)ρ13 = 0. (5.38)

If λ = 0, then by Lemma 4.1 M is a Sasakian manifold, and further by Theorem 2.3
we see that M is locally φ-symmetric. From now, we suppose that λ �= 0 and we argue
by three cases: (I) λ �= ±2, (II) λ = 2 and (III) λ = −2.

(I) λ �= ±2. Then from (5.38) we get

ρ13 = ρ23 = 0,

which yield R(e1, e2)ξ = 0. Hence by using (5.2), we have

λ(Γ212e1 − Γ121e2) = 0,

which gives

Γ212 = Γ221 = Γ121 = Γ112 = 0. (5.39)

Since λ is constant, we see that ρ11 = ρ22 at each point on N or ρ11 − ρ22 = 4λ at each
point on N. We first suppose that ρ11 = ρ22 on N. Then from (5.13) we get Γ312 = 0.
Thus, together with (5.10), (5.11) and (5.39), we have

[e1, e2] = 2e3, [e2, e3] = (1 − λ)e1, [e3, e1] = (1 + λ)e2. (5.40)

By virtue of a well-known result of the theory of Lie groups (see [30, Proposition 1.9])
and with the help of J. Milnor’s classification for 3-dimensional unimodular Lie groups
([18]), we see that M is locally isometric to one of the following spaces:

(i) SU(2) (or SO(3)) with a left-invariant metric when 0 < λ < 1;
(ii) SL(2, �) (or O(1, 2)) with a left-invariant metric when λ > 1;

(iii) flat when λ = 1. In fact, if λ = 1, then from (5.10), (5.11), (5.39) and (5.40) we
see that R = 0.
Next, we suppose that ρ11 − ρ22 = 4λ on N. Then from (5.13) we get Γ312 = −1. Thus,
together with (5.10), (5.11) and (5.39), we have

[e1, e2] = 2e3, [e2, e3] = −λe1, [e3, e1] = λe2. (5.41)

By similar arguments as in the former case, we see that M is locally isometric to
SL(2, �) (or O(1, 2)) with a special left-invariant metric.

If we differentiate (5.16) covariantly in the directions e1 and e2, then we have

∇1ρ12 = Γ121(ρ22 − ρ11) − (1 + λ)ρ13,

∇2ρ12 = Γ212(ρ11 − ρ22) + (1 − λ)ρ23.
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Together with (5.29), we have

4Γ112(ρ11 − ρ22) = (λ + 2)ρ13 and 4Γ221(ρ22 − ρ11) = (λ − 2)ρ23. (5.42)

We now consider the case (II) λ = 2. Then from (5.38) we get ρ13 = 0.
Differentiating this covariantly in the directions e2 and e3, we obtain

∇2ρ13 = (1 − λ)(ρ11 − ρ33) and ∇3ρ13 = −Γ312ρ23. (5.43)

From (5.19), (5.27) and (5.43) we have

(Γ312 + 1)ρ23 = 0.

If there are interior points where ρ23 = 0, then in the same way as the case (I) we see
that M is locally isometric to SL(2, �) (or O(1, 2)) with a special left-invariant metric.
So, we restrict ourselves to the place Γ312 = −1. Then from (5.13) we get ρ11 − ρ22 = 8.
Hence from (5.42) we have Γ212 = Γ221 = Γ121 = Γ112 = 0, and thus we have the same
conclusion.

Finally, we consider the case (III) λ = −2. From (5.28) we get ρ23 = 0. Differ-
entiating this covariantly along e1 and e3, we obtain

∇1ρ23 = (1 + λ)(ρ22 − ρ33) and ∇3ρ23 = Γ312ρ13. (5.44)

From (5.20), (5.27) and (5.44) we have

(Γ312 + 1)ρ13 = 0.

In a similar way as in λ = 2 we see that M is locally isometric to SL(2, �) (or O(1, 2))
with a special left-invariant metric. We note that ρ11 �= ρ22 in the case λ = −2.

Conversely, by Theorem 2.3 we see that a Sasakian locally φ-symmetric space
satisfies the condition (C) for any ∇̂-geodesic γ . Also, we easily see that a locally flat
manifold always satisfies the condition (C) for any ∇̂-geodesic γ . Now, we consider a
3-dimensional Lie group with the Lie algebra structure

[e1, e2] = c1e3, [e2, e3] = c2e1, [e3, e1] = c3e2, (5.45)

for some constants c1( �= 0), c2, c3. Let {ωi} be the dual 1-forms of the vector fields
{ei}. By using (5.45) we get dω3(e1, e2) = −dω3(e2, e1) = − c1

2 and dω3(ei, ej) = 0 for
(i, j) �= (1, 2), (2, 1). Further we easily check that ω3 ∧ dω3(e1, e2, e3) = − c1

6 ( �= 0), and
hence ω3 is a contact form and e3 is the characteristic vector field. Define a Riemannian
metric g and a (1,1)-tensor field φ by

g(ei, ej) = δij, dω3(ei, ej) = g(ei, φej)

for i, j = 1, 2, 3. Then, since (φ,ω3, g) has to be a contact Riemannian structure, we
must have g(φei, φej) = g(ei, ej) − ω(ei)ω(ej) for i, j = 1, 2, 3, and hence we have c1 = 2.

We recall the Koszul formula

2g(∇X Y, Z) = Xg(Y, Z) + Yg(Z, X) − Zg(X, Y )

+ g(Y, [Z, X ]) + g(Z, [X, Y ]) − g(X, [Y, Z])
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where X, Y, Z are smooth vector fields on the manifold. Then we have

∇e1 e1 = 0, ∇e2 e2 = 0, ∇e3 e3 = 0, ∇e3 e1 = 1
2

(c2 + c3 − 2)e2,

(5.46)
∇e1 e3 = 1

2
(c2 − c3 − 2)e2, ∇e2 e3 = 1

2
(2 + c2 − c3)e1.

Further, from (5.46) and by the definition of the curvature tensor R, we can compute
R(ei, ej)ek (i, j, k = 1, 2, 3). In particular, we get

R(e1, e2)e1 = −1
4

{
c2

3 + c2
2 − 2c2c3 + 4(c2 + c3) − 12

}
e2,

R(e1, e3)e1 = 1
4

{
3c2

3 − c2
2 − 2c2c3 + 4(c2 − c3) − 4

}
e3,

R(e2, e3)e2 = 1
4

{
3c2

2 − c2
3 − 2c2c3 + 4(c3 − c2) − 4

}
e3,

R(e1, e3)e3 = −1
4

{
3c2

3 − c2
2 − 2c2c3 + 4(c2 − c3) − 4

}
e1, (5.47)

R(e2, e3)e3 = −1
4

{
3c2

2 − c2
3 − 2c2c3 + 4(c3 − c2) − 4

}
e2,

R(ei, ej)ek = 0 for i �= j �= k �= i,

etc.

From (2.4) and (5.46) we obtain

he1 = c3 − c2

2
e1, he2 = −c3 − c2

2
e2. (5.48)

Also, from (2.11) and (5.48) we have

∇̂e3 e1 = 1
2

(c2 + c3)e2, ∇̂e3 e2 = −1
2

(c2 + c3)e1, all other ∇̂ei ej = 0. (5.49)

In view of (5.40) and (5.41), we consider the two possible cases: (i) c2 + c3 = 0, (ii)
c2 + c3 = 2.

Case (i). From (5.49) it follows that ∇̂ei ej = 0 for i, j = 1, 2, 3. Thus we see that
∇̂R = 0.

Case (ii). Then from (5.47) we get

R(e1, e2)e1 = (1 − (c2 − 1)2)e2,

R(e1, e3)e1 = R(e2, e3)e2 = c2(c2 − 2)e3,

R(e1, e3)e3 = −c2(c2 − 2)e1, R(e2, e3)e3 = −c2(c2 − 2)e2, (5.50)

R(ei, ej)ek = 0 for i �= j �= k �= i,

etc.

After some long but straightforward computations, we can check that the manifold
satisfies (∇̂xR)(y, x)x = 0 for all tangent vector x and y.
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