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Abstract

In this paper a stochastic failure model for a system with stochastically dependent
competing failures is analyzed. The system is subject to two types of failure: degradation
failure and catastrophic failure. Both types of failure share an initial common source:
an external shock process. This implies that they are stochastically dependent. In our
developments of the model, the type of dependency between the two kinds of failure will
be characterized. Conditional properties of the two competing risks are also investigated.
These properties are the fundamental basis for the development of the maintenance
strategy studied in this paper. Considering this maintenance strategy, the long-run average
cost rate is derived and the optimal maintenance policy is discussed.
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1. Introduction

The mathematical sophistication of preventive maintenance models has increased in parallel
to the growth in the complexity of the stochastic models under study. Surveys on various
maintenance models from a practical point of view can be found in, e.g. Sherif and Smith
(1981), Valdez-Flores and Feldman (1989), and Wang (2002). An overview on the maintenance
theory from a theoretical point of view can be found in Nakagawa (2005). More theoretical
and sophisticated models have also been developed (see Mi (1994), Aven (1996), Cha (2001),
Ebrahimi (1997), and Aven and Jensen (1999)).

It is well known that most systems degrade physically over time. This degradation is due
to the irreversible accumulation of damage through life and may involve corrosion, material
fatigue, wearing out, and fracturing (Bogdanoff and Kozin (1985)). Such degradation process
can be modelled by using a stochastic process and, frequently, the system is regarded as failed
when its degradation first reaches a critical threshold level. In the literature on degradation-
based stochastic failure models, frequently the degradation process is considered the only cause
of failure (see, e.g. Castanier et al. (2003), Grall et al. (2002), Park and Padgett (2006), and
Liao et al. (2006)). However, in many practical situations the systems can fail due to more
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Dependent competing risks model and condition-based maintenance 559

than one cause. Furthermore, the types of failure can stochastically be dependent due to many
different reasons.

In this paper we develop a stochastic failure model and perform subsequent analysis for
the lifetime of a system working in a dynamic random environment with two ‘stochastically
dependent’ competing risks: degradation and catastrophic failures. The analysis performed in
this paper gives new insight into the structure of the stochastic dependency of the model and
it provides a general theoretical basis for developing a maintenance policy under dependent
competing risks. Then based on this insight, we develop a detailed preventive maintenance
policy for the system. The topic will be discussed under a general setting, i.e. under a general
stochastic process for the degradation process, not specifying it. Therefore, the results obtained
in this paper are very general and this is one of the important contributions of this paper.

The structure of this paper is as follows. In Section 2 a stochastic failure model for a system
under a dynamic random environment with two types of failure is developed. The joint survival
function for the two competing risks will be derived and the type of dependency is characterized.
In Section 3 the conditional properties of the two competing risks will be discussed, and the
basis for the development of the preventive maintenance policy to be analyzed will be built. In
Section 4, considering a maintenance policy for the system, we derive the long-run average cost
rate function, and discuss the optimal maintenance policy based on it. In Section 5 we present
a numerical example of this maintenance strategy. Finally, concluding remarks are given in
Section 6.

2. Stochastic model and dependency

We start this section by suggesting a stochastic failure model for the system lifetime with
two dependent competing risks. The system is operated under a random external shock process
{N(t), t ≥ 0}, where N(t) denotes the number of shocks by the time t . The sequential arrival
points of the shocks are denoted by 0 ≤ T1 ≤ T2 ≤ · · · , where Ti is the arrival time of the
ith shock, i = 1, 2, . . .. Throughout this paper, we will assume that the external shock process
{N(t), t ≥ 0} follows a nonhomogeneous Poisson process with intensity function λ(t). As
mentioned above, there are two types of failure. Let Y be the time to a catastrophic failure
(Type I) and let Sc be the time to a degradation failure (Type II).

Before describing the lifetime of the system under study, the introduction of the conditional
failure rate ‘under a general setting’ is needed. We refer the reader to, e.g. Kalbfleisch and
Prentice (1980), Aven and Jensen (1999), and Finkelstein and Cha (2013). Assume that a
system, whose lifetime is denoted by T , is operating in a random environment described by
a certain (covariate) stochastic process {Z(t), t ≥ 0}. For example, the stochastic process
{Z(t), t ≥ 0} can represent the randomly changing time-dependent external temperature,
electric or mechanical load, or some other randomly changing external stress. Then the
conditional failure rate can formally be defined as (see Kalbfleisch and Prentice (1980))

r(t | z(u), 0 ≤ u ≤ t) ≡ lim
�t→0

P{t < T ≤ t + �t | Z(u) = z(u), 0 ≤ u ≤ t, T > t}
�t

,

where P is the probability measure. Note that this conditional failure rate can be specified
for a realization of the covariate process. With the covariate process not fixed yet, it is also
obviously a stochastic process, which is usually referred to as the ‘failure (hazard) rate process’
(or random failure rate). For details, see, e.g. Kebir (1991) and Aven and Jensen (1999). Then
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based on the failure (hazard) rate process the conditional survival function is given by

P{T > t | Z(u) = z(u), 0 ≤ u ≤ t} = exp

{
−

∫ t

0
r(s | z(u), 0 ≤ u ≤ s) ds

}
.

We will now describe the lifetime distribution of our system. First, we will describe the
conditional survival function of Y given the shock process {N(t), t ≥ 0}. We assume that an
external shock at time t provokes an immediate catastrophic failure with probability p(t), or,
with probability q(t) = 1 − p(t), increases the failure rate function of Y by η. Hence, given
the shock process, the failure rate function of Y is

r(t | n(u), 0 ≤ u ≤ t) ≡ lim
�t→0

P{t < Y ≤ t + �t | N(u) = n(u), 0 ≤ u ≤ t, Y > t}
�t

= r0(t) + ηn(t), (1)

where η > 0 and r0(t) is the ‘baseline failure rate’ which defines the lifetime distribution under
a laboratory environment, i.e. in the absence of external shocks. We interpret (1) as follows:
‘on each shock, the failure rate of Y is increased by η’. Hence, the external shocks increase the
susceptibility to a catastrophic failure. By (1), the conditional survival function of Y at time t ,
given the shock process and given no immediate catastrophic failure before time t , is given by

P{Y > t | N(u), 0 ≤ u ≤ t, Ji = 0, i = 1, . . . , N(t)} = exp

{
−

∫ t

0
r0(s) ds−η

N(t)∑
j=1

(t−Tj )

}
,

where Ji = 1 if the ith shock provokes an immediate catastrophic failure and Ji = 0 otherwise,
i = 1, 2, . . ..

We will now describe the conditional distribution of Sc, given the shock process. We assume
that at the arrival of each shock it instantly initiates an independent degradation process in
the system. Therefore, at time t , N(t) degradation processes are evolving in the system
independently. We assume that the stochastic properties of the degradation process depend
on its starting point v. We denote by {Xv(t), t ≥ 0} the nondecreasing degradation process
initiated at time v, where Xv(t) represents the deterioration level of the degradation process
at t time units after its initiation point v. Thus, degradation processes with different starting
points do not necessarily follow the same type of process. For example, the degradation
rate of the process can be increasing as the starting point increases, which can represent the
effect of the system deterioration. For this kind of modelling specifically, the starting point-
dependent nonhomogeneous gamma process could be employed. However, in the following
discussions the results will be obtained without specifying the probability distribution of the
degradation processes. Throughout this paper, we will only assume that {Xv(t), t ≥ 0} fulfills
the independent increments property, but we will derive all the analytical results in this paper
without specifying any other condition on the degradation process. We assume that the system
fails when one of the degradation processes first reaches a critical threshold level ξc > 0. Let
fXv(t)(x) be the probability density function (PDF) of Xv(t). Define σc(v) as the time from v

until the degradation, initiated at v, reaches the threshold level ξc and

Ḡv(t; ξc) ≡ P{σc(v) > t} = P{Xv(t) ≤ ξc} =
∫ ξc

0
fXv(t)(x) dx.
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Based on the above setting, the conditional survival function of Sc is obviously given by

P{Sc > t | N(u), 0 ≤ u ≤ t} =
N(t)∏
k=1

ḠTk
(t − Tk; ξc),

where, by convention,
∏0

k=1(·) ≡ 1. Finally, at this stage, we point out that, given the shock
process, the two types of failure are ‘conditionally independent’.

The above described model can be applied to complex systems composed of electrical and
mechanical parts. In this case, external shocks can cause a catastrophic failure of the electrical
part, whereas, at the same time, they can provoke the degradation processes of the mechanical
part. As an example, aircraft jet engines are composed of electrical parts, and mechanical parts
such as engine compressor blades. Furthermore, aircraft engines are subject to external shocks
(vibrations) during take off, cruising, and landing.

We are now ready to derive the unconditional joint survival function of Y and Sc.

Theorem 1. The joint survival function of Y and Sc is given by

P{Y > t, Sc > u} = 1{t≥u}
[

exp

{
−

∫ t

0
r0(s) ds

}

× exp

{
−

∫ u

0
(1 − q(x) exp{−η(t − x)}Ḡx(u − x; ξc))λ(x) dx

}

× exp

{
−

∫ t

u

(1 − q(x) exp{−η(t − x)})λ(x) dx

}]

+ 1{t<u}
[

exp

{
−

∫ t

0
r0(s) ds

}

× exp

{
−

∫ t

0
(1 − q(x) exp{−η(t − x)}Ḡx(u − x; ξc))λ(x) dx

}

× exp

{
−

∫ u

t

(1 − Ḡx(u − x; ξc))λ(x) dx

}]
,

where 1{·} denotes the indicator function.

Proof. (i) For the t ≥ u case. Note that, due to the conditional independence of Y and Sc,

P{Y > t, Sc > u | N(s), 0 ≤ s ≤ t}
= P{Y > t | N(s), 0 ≤ s ≤ t}P{Sc > u | N(s), 0 ≤ s ≤ t}
= P{Y > t | N(s), 0 ≤ s ≤ t, Ji = 0, i = 1, . . . , N(t)}

× P{Ji = 0, i = 1, . . . , N(t) | N(s), 0 ≤ s ≤ t}P{Sc > u | N(s), 0 ≤ s ≤ t}

=
N(t)∏
i=1

q(Ti) exp

{
−

∫ t

0
r0(s) ds − η

N(t)∑
j=1

(t − Tj )

} N(u)∏
k=1

ḠTk
(u − Tk; ξc)

= exp

{
−

∫ t

0
r0(s) ds

} N(u)∏
i=1

(q(Ti) exp{−η(t − Ti)}ḠTi
(u − Ti; ξc))

×
N(t)−N(u)∏

k=1

q(Vk) exp{−η(t − Vk)},
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where Vk denotes the arrival time of the kth shock in

(u, t], u < V1 ≤ V2 ≤ · · · ≤ VN(t)−N(u) ≤ t.

Then the joint survival function can be obtained by

P{Y > t, Sc > u}

= exp

{
−

∫ t

0
r0(s) ds

}
E

{N(u)∏
i=1

(q(Ti) exp{−η(t − Ti)}ḠTi
(u − Ti; ξc))

×
N(t)−N(u)∏

k=1

q(Vk) exp{−η(t − Vk)}
}
. (2)

In (2), the expectation can be obtained by

E

{N(u)∏
i=1

(q(Ti) exp{−η(t − Ti)}ḠTi
(u − Ti; ξc))

N(t)−N(u)∏
k=1

q(Vk) exp{−η(t − Vk)}
}

= E

{
E

{N(u)∏
i=1

(q(Ti) exp{−η(t − Ti)}ḠTi
(u − Ti; ξc))

×
N(t)−N(u)∏

k=1

q(Vk) exp{−η(t − Vk)}
∣∣∣∣ N(u), N(t) − N(u)

}}
. (3)

In order to obtain the conditional expectation in (3), it is necessary to derive the conditional joint
distribution of (T1, T2, · · · , TN(u), V1, V2, · · · , VN(t)−N(u) | N(u), N(t) − N(u)). Observe
that the joint distribution of (T1, T2, · · · , TN(u), V1, V2, · · · , VN(t)−N(u),N(u), N(t) − N(u))

is given by

fT1,T2,··· ,TN(u),V1,V2,··· ,VN(t)−N(u),N(u),N(t)−N(u)(t1, , t2, · · · , tn, v1, v2, · · · , vm, n, m)

=
[ n∏

i=1

λ(ti)

]
exp

{
−

∫ u

0
λ(w) dw

}[ m∏
i=1

λ(vi)

]
exp

{
−

∫ t

u

λ(w) dw

}

for 0 ≤ t1 ≤ t2 ≤ · · · ≤ tn ≤ u ≤ v1 ≤ v2 ≤ · · · ≤ t, n ≥ 0, m ≥ 0. As N(u) and
N(t) − N(u) follow independent Poisson distributions with means �(u) ≡ ∫ u

0 λ(w) dw and
�(t) − �(u) = ∫ t

u
λ(w) dw, respectively, the conditional distribution of

(T1, T2, · · · , TN(u), V1, V2, · · · , VN(t)−N(u) | N(u), N(t) − N(u))

is given by

fT1,T2,··· ,TN(u),V1,V2,··· ,VN(t)−N(u) | N(u),N(t)−N(u)(t1, t2, · · · , tn, v1, v2, · · · , vm | n, m)

= n! m!
[ n∏

i=1

λ(ti)

�(u)

][ m∏
i=1

λ(vi)

�(t) − �(u)

]
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for 0 ≤ t1 ≤ t2 ≤ · · · ≤ tn ≤ u ≤ v1 ≤ v2 ≤ · · · ≤ t . Then, we have

E

{N(u)∏
i=1

(q(Ti) exp{−η(t − Ti)}ḠTi
(u − Ti; ξc))

×
N(t)−N(u)∏

k=1

q(Vk) exp{−η(t − Vk)}
∣∣∣∣ N(u) = n, N(t) − N(u) = m

}

=
(∫ u

0
q(x) exp{−η(t − x)}Ḡx(u − x; ξc)

λ(x)

�(u)
dx

)n

×
(∫ t

u

q(x) exp{−η(t − x)} λ(x)

(�(t) − �(u))
dx

)m

.

Then, finally, the result can be obtained from (2) and (3).

(ii) For the t < u case. In this case, by similar arguments to (i), we have the desired result.

From Theorem 1, the survival function of the system is given by

P{Y > t, Sc > t} = exp

{
−

∫ t

0
r0(s) ds

}

× exp

{
−

∫ t

0
(1 − q(x) exp{−η(t − x)}Ḡx(t − x; ξc))λ(x) dx

}
(4)

for t ≥ 0. Since the two competing risks share the common shock process, we will show that
they are stochastically dependent. This dependency will properly constitute the fundamental
basis for the preventive maintenance policy analyzed in the subsequent section. Thus, at this
stage, it is important to characterize the type of stochastic dependency of the two competing
risks. For our discussion, we need to define the concept of positive quadrant dependency.

Definition 1. Two random variables T and U are positively quadrant dependent (PQD) if the
inequality

P{T > t, U > u} ≥ P{T > t}P{U > u}

holds for all t and u.

It can be shown that if T and U are PQD then cov(T , U) ≥ 0 (Lehmann, 1966). Thus, the
PQD is a stronger type of dependency than the positive covariance.

In Theorem 2, we show that the random variables Y and Sc are PQD.

Theorem 2. The random variables Y and Sc are PQD, i.e.

P{Y > t, Sc > u} ≥ P{Y > t}P{Sc > u} for all t and u.
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Proof. (i) For the t ≥ u case. From Theorem 1, we have

P{Y > t, Sc > u} − P{Y > t}P{Sc > u}
= exp

{
−

∫ t

0
r0(s) ds

}
exp

{
−

∫ t

u

(1 − q(x) exp{−η(t − x)})λ(x) dx

}

×
[

exp

{
−

∫ u

0
(1 − q(x) exp{−η(t − x)}Ḡx(u − x; ξc))λ(x) dx

}

− exp

{
−

∫ u

0
[(1 − q(x) exp{−η(t − x)}) + (1 − Ḡx(u − x; ξc))]λ(x) dx

}]
.

In the above equation,

(1 − q(x) exp{−η(t − x)}Ḡx(u − x; ξc))

− [(1 − q(x) exp{−η(t − x)}) + (1 − Ḡx(u − x; ξc))]
= −Gx(u − x; ξc)(1 − q(x) exp{−η(t − x)})
≤ 0 for all 0 ≤ x ≤ u,

where Gx(u − x; ξc) ≡ 1 − Ḡx(u − x; ξc). Therefore, we have

P{Y > t, Sc > u} ≥ P{Y > t}P{Sc > u} for all t ≥ u.

(ii) For the t < u case. In this case, similar to (i), it can be shown without difficulty that
P{Y > t, Sc > u} ≥ P{Y > t}P{Sc > u} for all t < u.

3. Conditional properties of the competing risks

In this section we will analyze some conditional properties of the two competing risks. These
properties constitute the fundamental basis for the preventive maintenance policy applied to
this system. It is clear that the susceptibility to failure of our system increases as the system
suffers more and more external shocks. Therefore, if the shock process can be observed then
this information could be used for determining the preventive maintenance policy. For example,
suppose that the system is currently working at time t , but it is known that it has experienced a
large number of shocks in (0, t]. Then in order to prevent a system failure, it can be replaced
by a new one. However, in most practical cases, the shock process cannot be observed. Then
in order to obtain information on the system status, an inspection can be performed at time t .
In these inspection times, the degradation levels of the degradation processes can be measured.
If the degradation level of a process exceeds a preventive threshold ξp, the system is replaced
by a new one. Otherwise, the system continues working without being replaced.

Note that the above procedure utilizes the information directly related with Type II
(degradation failure) and, accordingly, it would contribute to the prevention of a failure due
to Type II. However, as the two types are stochastically dependent (positively dependent),
this procedure would also contribute to the prevention of an unexpected failure due to Type I
(catastrophic failure), and eventually it would improve the (residual) survival probability of
the system. This reasoning is verified in Theorem 3. The first two results of Theorem 3 show
the contribution of the preventive maintenance strategy described above to marginal types of
failure, and the last result shows its contribution to the survival probability of the system. A
more detailed interpretation will be given just after the theorem.
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For our discussions, we need to introduce some notation. We define Sp as the time instant
at which any one of the degradation processes exceed the preventive threshold level ξp for the
first time. Furthermore, let us define

Ḡv(t; ξp) ≡ P{Xv(t) ≤ ξp}, Ḡv(s, t; ξp, ξc) ≡ P{Xv(s) ≤ ξp, Xv(t) ≤ ξc}.
Then as the degradation process {Xv(t), t ≥ 0} possesses the independent increments property,
we have

Ḡv(s, t; ξp, ξc) =
∫ ξp

0
P{Xv(t) − Xv(s) ≤ ξc − x}fXv(s)(x) dx

=
∫ ξp

0
FXv(t)−Xv(s)(ξc − x)fXv(s)(x) dx,

where FXv(t)−Xv(s)(x) denotes the cumulative distribution function of Xv(t) − Xv(s).

Theorem 3. Suppose that the degradation process {Xv(t), t ≥ 0} fulfills the independent
increments property. Then the following properties hold:

(i) P{Y > t + s | Y > t, Sp > t} ≥ P{Y > t + s | Y > t} for all t ≥ 0, s ≥ 0.

(ii) P{Sc > t + s | Sc > t, Sp > t} ≥ P{Sc > t + s | Sc > t} for all t ≥ 0, s ≥ 0.,

(iii) P{Y > t + s, Sc > t + s | Y > t, Sc > t, Sp > t} ≥ P{Y > t + s, Sc > t + s | Y > t,

Sc > t} for all t ≥ 0, s ≥ 0.

Proof. Observe that in property (iii) if we let ξc ≡ ∞, we can obtain property (i); and if we
let p(t) ≡ 0 for all t ≥ 0 and η ≡ 0, then we can obtain property (ii). Therefore, it is sufficient
to show property (iii). From (4),

P{Y > t + s, Sc > t + s|Y > t, Sc > t}
= exp

{
−

∫ t+s

t

r0(s) ds

}
exp

{∫ t

0
(q(x) exp{−η(t + s − x)}Ḡx(t + s − x; ξc)

− q(x) exp{−η(t − x)}Ḡx(t − x; ξc))λ(x) dx

}

× exp

{
−

∫ t+s

t

(1 − q(x) exp{−η(t + s − x)}Ḡx(t + s − x; ξc))λ(x) dx

}
.

We will now derive P{Y > t + s, Sc > t + s | Y > t, Sc > t, Sp > t}. Thus,

P{Y > t + s, Sc > t + s | Y > t, Sc > t, Sp > t}
= P{Y > t + s, Sc > t + s | Y > t, Sp > t}
= E{N(t),N(t+s)−N(t) | Y>t,Sp>t}

{P{Y > t + s, Sc > t + s | Y > t, Sp > t, N(t), N(t + s) − N(t)}}. (5)

Here,
P{Y > t + s, Sc > t + s | Y > t, Sp > t, N(t), N(t + s) − N(t)}

= E{T ′
i s,V

′
i s | Y>t,Sp>t,N(t),N(t+s)−N(t)}

{P{Y > t + s, Sc > t + s | Y > t, Sp > t, N(t), T1, T2, · · · , TN(t),

N(t + s) − N(t), V1, V2, · · · , VN(t+s)−N(t)}}, (6)
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where Vi is the arrival time of the ith shock in (t, t + s]. Observe that

P{Y > t + s, Sc > t + s | Y > t, Sp > t,

N(t), T1, T2, · · · , TN(t), N(t + s) − N(t), V1, V2, · · · , VN(t+s)−N(t)}

= exp

{
−

∫ t+s

t

r0(u) + N(t)η du

} N(t)∏
i=1

P{XTi
(t + s − Ti) ≤ ξc | XTi

(t − Ti) ≤ ξp}

×
N(t+s)−N(t)∏

k=1

q(Vi) exp{−η(t + s − Vi)}ḠVi
(t + s − Vi; ξc).

In order to take the conditional expectation in (6), we will now derive the conditional joint
distribution of

(T1, T2, · · · , TN(t), V1, V2, · · · , VN(t+s)−N(t) | Y > t, Sp > t, N(t), N(t + s) − N(t)).

Observe that the joint distribution of

(Y > t, Sp > t, N(t), N(t + s) − N(t), T1, T2, · · · , TN(t), V1, V2, · · · , VN(t+s)−N(t))

is

exp

{
−

∫ t

0
r0(u) du

}( n∏
i=1

q(ti) exp{−η(t − ti )}Ḡti (t − ti; ξp)

)

×
n∏

i=1

λ(ti) exp

{
−

∫ t

0
λ(u) du

} m∏
j=1

λ(vj ) exp

{
−

∫ t+s

t

λ(u) du

}

for 0 < t1 < t2 < . . . < tn < t and t < v1 < v2 < . . . < vm < t + s. Thus, the joint
distribution of (Y > t, Sp > t, N(t), N(t + s) − N(t)) is

exp

{
−

∫ t

0
r0(u) du

}
1

n!
(∫ t

0
q(x) exp{−η(t − x)}Ḡx(t − x; ξp)λ(x) dx

)n

× exp{−�(t)} 1

m!
(∫ t+s

t

λ(u) du

)m

exp{−(�(t + s) − �(t))}. (7)

Then the conditional joint distribution of

(T1, T2, · · · , TN(t), V1, V2, · · · , VN(t+s)−N(t) | Y > t, Sp > t, N(t), N(t + s) − N(t))

is

n!
[ n∏

i=1

q(ti) exp{−η(t − ti )}Ḡti (t − ti; ξp)λ(ti)∫ t

0 q(x) exp{−η(t − x)}Ḡx(t − x; ξp)λ(x) dx

]
m!

[ m∏
k=1

λ(vk)

�(t + s) − �(t)

]
.

Thus,
P{Y > t + s, Sc > t + s | Y > t, Sp > t, N(t) = n, N(t + s) − N(t) = m}

= exp

{
−

∫ t+s

t

r0(u) du

}
(exp{−ηs})n

×
(∫ t

0 q(x) exp{−η(t − x)}Ḡx(t − x, t + s − x; ξp, ξc)λ(x) dx∫ t

0 q(x) exp{−η(t − x)}Ḡx(t − x; ξp)λ(x) dx

)n

×
(∫ t+s

t
q(x) exp{−η(t + s − x)}Ḡx(t + s − x; ξc)λ(x) dx

�(t + s) − �(t)

)m

.
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Now, in order to take the conditional expectation in (5), the conditional distribution of
(N(t), N(t + s) − N(t) | Y > t, Sp > t) can be obtained from (7), which is given by

1

n!
( ∫ t

0
q(x) exp{−η(t − x)}Ḡx(t − x; ξp)λ(x) dx

)n

× exp

{
−

∫ t

0
q(x) exp{−η(t − x)}Ḡx(t − x; ξp)λ(x) dx

}

× 1

m!
(∫ t+s

t

λ(u) du

)m

exp{−(�(t + s) − �(t))}.

Therefore,

P{Y > t + s, Sc > t + s | Y > t, Sp > t}
= exp

{
−

∫ t+s

t

r0(u) du

}

× exp

{∫ t

0
(q(x) exp{−η(t + s − x)}Ḡx(t − x, t + s − x; ξp, ξc) − q(x)

× exp{−η(t − x)}Ḡx(t − x; ξp))λ(x) dx

}

× exp

{
−

∫ t+s

t

(1 − q(x) exp{−η(t + s − x)}Ḡx(t + s − x; ξc))λ(x) dx

}
.

We will now compare P{Y > t + s, Sc > t + s | Y > t, Sp > t} with P{Y > t + s, Sc >

t + s | Y > t, Sc > t}. For this, it is now sufficient to compare

L1(x) ≡ q(x) exp{−η(t + s − x)}Ḡx(t + s − x; ξc) − q(x) exp{−η(t − x)}Ḡx(t − x; ξc)

and
L2(x) ≡ q(x) exp{−η(t + s − x)}Ḡx(t − x, t + s − x; ξp, ξc) − q(x)

× exp{−η(t − x)}Ḡx(t − x; ξp).

Observe that

L1(x) − L2(x) = q(x) exp{−η(t − x)}
× (exp{−ηs}[Ḡx(t + s − x; ξc) − Ḡx(t − x, t + s − x; ξp, ξc)]

− [Ḡx(t − x; ξc) − Ḡx(t − x; ξp)]).
Note here that

[Ḡx(t + s − x; ξc) − Ḡx(t − x, t + s − x; ξp, ξc)][Ḡx(t − x, ξc) − Ḡx(t − x; ξp)]−1

= P{Xx(t + s − x) ≤ ξc} − P{Xx(t − x) ≤ ξp, Xx(t + s − x) ≤ ξc}
P{Xx(t − x) ≤ ξc} − P{Xx(t − x) ≤ ξp}

= P{Xx(t − x) ≤ ξc, Xx(t + s − x) ≤ ξc} − P{Xx(t − x) ≤ ξp, Xx(t + s − x) ≤ ξc}
P{Xx(t − x) ≤ ξc} − P{Xx(t − x) ≤ ξp}

= P{ξp < Xx(t − x) ≤ ξc, Xx(t + s − x) ≤ ξc}
P{ξp < Xx(t − x) ≤ ξc}

≤ 1.
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The above inequality implies that L1(x) − L2(x) ≤ 0 for x ∈ [0, t] and, finally, we can now
conclude that property (iii) holds.

As mentioned above, the first two results show the contribution of the preventive maintenance
strategy to the marginal types of failure. For example, suppose that the system has survived to
a catastrophic failure at time t . In this case, the residual lifetime until failure due to Type I is
given by P{Y > t + s | Y > t}. Furthermore, suppose that the replacement strategy described
in the first part of this section is applied. Then, by this maintenance strategy, the systems with
degradation processes exceeding ξp at time t (i.e. the systems with Sp ≤ t) are eliminated and
only the systems that fulfill Sp > t continue working. Thus, in this case, the residual lifetime
until failure due to Type I is described by P{Y > t + s | Y > t, Sp > t}. In the first result
of Theorem 3, it was shown that P{Y > t + s | Y > t, Sp > t} ≥ P{Y > t + s | Y > t}.
As mentioned above, the preventive maintenance strategy utilizes information which is directly
related to the Type II failure, but it also contributes to the prevention of an unexpected failure by
Type I due to the stochastic dependence between them. The second result of Theorem 3 can also
be interpreted in a similar way. For the interpretation of the last result of Theorem 3, we need to
consider the two types at the same time. Suppose that the system survives at time t . In this case,
the residual lifetime of the system is described by P{Y > t + s, Sc > t + s | Y > t, Sc > t}.
However, if the preventive maintenance strategy is applied, the residual lifetime is given by
P{Y > t + s, Sc > t + s | Y > t, Sc > t, Sp > t} and, by Theorem 3, the preventive
maintenance strategy improves the residual survival probability of the system.

Therefore, we are now ready to discuss the preventive maintenance strategy suggested in
this section more formally and systematically in the next section.

4. Maintenance strategy

In Section 3 the preventive maintenance policy based on the degradation level was fully
justified. In this section the maintenance strategy is discussed in a more formal way.

We assume that the failure of the system can be detected only by an inspection, and the
system is inspected each T units of time to check its status. On each inspection, if the system
is failed then the system is replaced by a new one (a corrective maintenance). If it is not, in
these inspection times, the deterioration level of the degradation processes is measured. If the
deterioration level of any degradation process exceeds a threshold ξp (0 < ξp ≤ ξc) then the
system is replaced by a new one (a preventive maintenance); otherwise no maintenance task is
performed. The time to perform a maintenance action is negligible.

We assume that the cost of a corrective replacement is Cc monetary units (MUs), the cost of
a preventive replacement is Cp (MU), the corresponding cost for each inspection is CI (MU)
and the cost incurred by the downtime of the system is Cd (MU) per unit time. Now we will
calculate some measures of interest related to this maintenance policy. Before doing so, we
will calculate some survival functions used to obtain these measures.

We denote by F̄min(Y,Sc) the survival function of min(Y, Sc). By Theorem 1,

F̄min(Y,Sc)(t) = P{Y > t, Sc > t}
= exp

{
−

∫ t

0
r0(s) ds

}

× exp

{
−

∫ t

0
(1 − q(x) exp{−η(t − x)}Ḡx(t − x; ξc))λ(x) dx

}
.
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Analogously, we obtain the joint distribution of (min(Y, Sc), Sp). For 0 ≤ u ≤ t ,

F̄1(t, u) = P{min(Y, Sc) > t, Sp > u}
= P{Y > t, Sc > t, Sp > u}
= exp

{
−

∫ t

0
r0(u) du

}

× exp

{
−

∫ u

0
(1 − q(x) exp{−η(t − x)}Ḡx(u − x, t − x; ξp, ξc))λ(x) dx

}

× exp

{
−

∫ t

u

(1 − q(x) exp{−η(t − x)}Ḡx(t − x; ξc))λ(x) dx

}
,

and for 0 ≤ t ≤ u, we have

F̄2(t, u) = P{min(Y, Sc) > t, Sp > u}
= P{Y > t, Sp > u}
= exp

{
−

∫ t

0
r0(u) du

}

× exp

{
−

∫ t

0
(1 − q(x) exp{−η(t − x)}Ḡx(u − x; ξp))λ(x) dx

}

× exp

{
−

∫ u

t

(1 − Ḡx(u − x; ξp)))λ(x) dx

}
.

We denote by f1(t, u) and f2(t, u) the bidimensional density functions associated to F̄1 and
F̄2, respectively, i.e. the functions that fulfill

F̄1(t, u) =
∫ ∞

t

∫ ∞

u

f1(w, s) ds dw, t ≥ u, (8a)

F̄2(t, u) =
∫ ∞

t

∫ ∞

u

f2(w, s) ds dw, u ≥ t. (8b)

Probability of the maintenance actions. Let Pp{kT } be the probability of a preventive
maintenance action at time kT . A preventive maintenance action is performed at time kT ,
k = 1, 2, · · · , if

{(k − 1)T ≤ Sp ≤ kT , kT ≤ min(Sc, Y )}
occurs. Hence,

Pp{kT } = P{(k − 1)T ≤ Sp ≤ kT , kT ≤ min(Sc, Y )}

=
∫ kT

(k−1)T

du

∫ ∞

kT

f1(t, u) dt, k = 1, 2, . . . , T > 0, (9)

where f1 is given by (8).
Let Pc{kT } be the probability of a corrective maintenance at kT for k = 1, 2, . . .. For this

maintenance strategy, the failure is detected only by inspection, and the corrective maintenance
is performed only at these points. Hence, a corrective replacement is performed at T if
{min(Y, Sc) ≤ T } occurs and, at kT , k = 2, 3 . . ., if the following occurs:

{(k − 1)T < Sp, (k − 1)T < min(Y, Sc) ≤ kT }.
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Hence,
Pc{kT } = P{min(Y, Sc) ≤ T }1{k=1}

+ P{(k − 1)T < Sp, (k − 1)T < min(Y, Sc) ≤ kT }1{k>1}

= 1{k=1}Fmin(Y,Sc)(T ) +
(∫ kT

(k−1)T

du

∫ u

(k−1)T

f2(t, u) dt

+
∫ kT

(k−1)T

du

∫ kT

u

f1(t, u) dt

+
∫ ∞

kT

du

∫ kT

(k−1)T

f2(t, u) dt

)
1{k>1}. (10)

Expected time to a replacement cycle. Let R be the time to a replacement cycle under this
maintenance strategy. Then R = kT if

{(k − 1)T < Sp ≤ kT , kT ≤ min(Sc, Y )},
or

{(k − 1)T < Sp, (k − 1)T < min(Y, Sc) < kT }
for k = 1, 2, . . .. Then

E{R} =
∞∑

k=1

kT (Pp{kT } + Pc{kT }), (11)

where Pp{kT } and Pc{kT } are given by (9) and (10), respectively.

Expected number of inspections. We assume that the cost of inspection is mainly due to the
measurement of the degradation levels, and, thus, if the system is failed then there is no incurred
inspection cost on the
corresponding inspection. Then the expected number of inspections involving inspection cost
in a replacement cycle is given by

E{N} =
∞∑

k=1

k(Pc{(k + 1)T } + Pp{kT }), (12)

where Pp{kT } and Pc{kT } are given by (9) and (10), respectively.

Expected downtime in a replacement cycle. Let W be the downtime of the system in a
replacement cycle. Then

E{W } = E{(T − min(Y, Sc)1{min(Y,Sc)≤T }}

+
∞∑

k=2

E{(kT − min(Y, Sc))1{(k−1)T <Sp,(k−1)T <min(Y,Sc)≤kT }}

=
∫ T

0
(T − fmin(Y,Sc)(t)) dt +

∞∑
k=2

(∫ kT

(k−1)T

du

∫ u

(k−1)T

f2(t, u)[kT − t] dt

+
∫ kT

(k−1)T

du

∫ kT

u

f1(t, u)[kT − t] dt

+
∫ ∞

kT

du

∫ kT

(k−1)T

f2(t, u)[kT − t] dt

)
, (13)

where f1 and f2 are given by (8).
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Let C(T , ξp) be the expected cost rate for this maintenance model. By Tijms (2003),

C(T , ξp) = E{C}
E{R} ,

where E{C} denotes the expected cost in a replacement cycle and E{R} denotes the expected
time to a replacement cycle. So,

C(T , ξp) = Cc
∑∞

k=1Pc{kT } + Cp
∑∞

k=1Pp{kT } + CIE{N} + CdE{W }
E{R} , (14)

where Pp{kT }, Pc{kT }, E{R}, E{N}, and E[W ] are given by (9)–(13), respectively.
The search of the optimal maintenance strategy is reduced to find the values T opt and ξ

opt
p

such that
C(T opt, ξ

opt
p ) = inf{T >0,0<ξp≤ξc}

C(T , ξp),

where C(T , ξp) is given by (14). Due to the analytical complexity of C(T , ξp), the optimization
of the expected cost rate for a data set is performed in the next section using numerical methods.

5. Numerical example

We consider a system subject to a random external shock process with intensity 1
100 shocks

per unit time. These shocks provoke a catastrophic failure with probability 0.05 or, otherwise,
they increase the catastrophic failure rate by η = 1

1000 . We also assume that the baseline rate
function of the catastrophic failure is given by r0(t) = 1

200 failures per unit time. Each shock, in
its arrival, initiates a degradation process. The deterioration level of this degradation process is
modelled by a gamma process with parameters α = 1 and β = 3. Then Xv(t), the deterioration
level at t time units after the initiation point v, follows a gamma distribution with parameters t

and 3, having the corresponding PDF

fXv(t)(x) = 3t


(t)
xt−1e−3x, x ≥ 0

for t ≥ 0. The cost of a corrective replacement is 10 MU, the cost of a preventive replacement
is 8 MU, the cost of an inspection is 0.005 MU and the downtime cost is 0.5 MU per unit time.

Figure 1: Expected cost rate versus ξp and T .
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In Figure 1, we show the expected cost rate versus T and ξp. The values of this figure have
been calculated using a Monte Carlo simulation with 150 values of T and 40 values for ξp
and 60 000 simulations for each pair of values. The optimal values for T and ξp are given by

T opt = 5.9 and ξ
opt
p = 7.6923 with an optimal expected cost rate of C(T opt, ξ

opt
p ) = 0.110

MUs per unit time.

6. Concluding remarks

In this paper we have studied a stochastic failure model for a system under a random
shock environment with ‘stochastically dependent’ competing risks and developed a preventive
maintenance policy for it. The conditional properties of the two competing risks have been
discussed, and the basis for the development of the preventive maintenance policy has been
built. Even though the preventive maintenance strategy considered in this paper utilizes only the
information which is directly related with the Type II (degradation failure), it also contributes
to the prevention of an unexpected failure by the Type I (catastrophic failure) due to the
stochastic dependence of the two types. This is a new insight into the maintenance policy for
a system with dependent competing risks which can generally be applied to the development
of similar maintenance models under dependency. While the maintenance of the systems with
‘independent competing risks’or with very simple dependency structure has been studied under
specific settings in the literature, this paper is the first to consider the dependent competing risks
model sharing external shocks under a general setting, and to provide new insights and stochastic
interpretation on the dependency structure of the model from a theoretical point of view.

As mentioned above, this paper is based on a theoretically advanced stochastic model and
relevant analysis in studying the lifetime of a system under a dynamic random environment. The
theoretical basis for the maintenance policy and new insight into the structure of the stochastic
dependency of the model is be one of the main contributions of this paper. Furthermore, since all
the results have been obtained without specifying the degradation process, the results obtained
in this paper may be regarded as very general and fundamental.
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