A NOTE ON COMPACTIFYING ARTINIAN RINGS

DAVID K. HALEY

In this note a number of compactifications are discussed within the class of artinian rings. In [1] the following was proved:

Theorem. For an artinian ring R the following are equivalent:
(1) R is equationally compact.
(2) $R^{+} \simeq B \oplus P$, where B is a finite group, P is a finite direct sum of Prüfer groups, and $R \cdot P=P \cdot R=\{0\}$.
(3) R is a retract of a compact topological ring.

Here, we extend this result to show that the following are also equivalent to (1) for an artinian ring R :
(4) R is a subring of a compact topological ring.
(5) R is a subring of an equationally compact ring.
(6) R is quasi-compactifiable.

Involved in the present discussion are a number of ideas appearing in the proof of the above theorem. To avoid superfluous discussions we will refer at times to arguments which the reader may find in [1]. We refer also to [1] for terminology.

Proposition 1. Let R be a ring satisfying $n \cdot R=\{0\}$. If R is quasi-compactifiable, then so is $\mathbf{Z}_{n} * R$.

Proof. By [2, Theorem 4] we can choose $S \in c(R) \cap \operatorname{Pos}(R)$. Then obviously $n \cdot S=\{0\}$, and we claim that $\mathbf{Z}_{n} * S \in c\left(\mathbf{Z}_{n} * R\right)$. The proof is now totally analogous to that of [1, Proposition 4].

Proposition 2. A torsion-free artinian ring with more that one element is never quasi-compactifiable.

Proof. In the proof of [1, Lemma 5] we take I larger in cardinality than any ring S which quasi-compactifies R; this yields $R=(0)$.

We next settle quasi-compactifiability in unital artinian rings. To do this we first need information on what happens when passing to homomorphic images:

Proposition 3. Let R and S be rings such that R is noetherian with identity, and let A be an ideal of S. Then $S \in c(R)$ implies $S / A \in c(R / R \cap A)$.

[^0]Proof. Set $A^{\prime}=A \cap R$ and assume that $S \in c(R)$. Let Σ be a set of polynomial equations with constants in R / A^{\prime} and finitely solvable in R / A^{\prime}. Without loss of generality Σ can be assumed to be of the form

$$
\left\{\phi_{i}=0 ; i \in I\right\},
$$

where ϕ_{i} is a polynomial with constants in R / A^{\prime}. "Lift" each ϕ_{i} to $\phi_{i}{ }^{\prime}$ by replacing all constants by representatives in R. Since R is noetherian with identity there exist a_{1}, \ldots, a_{n}, elements of A^{\prime}, such that $A^{\prime}=R a_{1}+\ldots+R a_{n}$. Then the system of equations

$$
\Sigma^{\prime}=\left\{\boldsymbol{\phi}_{i}^{\prime}=z_{i} ; i \in I\right\} \cup\left\{z_{i}=z_{i 1} a_{1}+\ldots+z_{i n} a_{n} ; i \in I\right\}
$$

(where the z_{i} 's and $z_{j k}$'s are assumed to be variables not occurring in Σ), has constants in R and is finitely solvable in R (just "lift" solutions of members of Σ). Hence Σ^{\prime} is solvable in S. But the z_{i} 's are forced to take on values in A, and thus any solution of Σ^{\prime} taken modulo A yields a solution of Σ in S / A.

Proposition 4. Every quasi-compactifiable artinian ring R with identity is finite.

Proof. Again we may choose $S \in c(R) \cap \operatorname{Pos}(R)$. We show first that $R / J(R)$ is quasi-compactifiable ($J(R)$ denotes the Jacobson radical). Since R is also noetherian, this would be accomplished by Proposition 3 provided an ideal A of S can be found satisfying $R \cap A=J(R)$. Now $J(R)=$ $R a_{1}+\ldots+R a_{n}$ for suitable a_{1}, \ldots, a_{n}, because R is noetherian with identity. We set

$$
A=S a_{1}+\ldots+S a_{n}
$$

and claim that A does the job. Now the two-sidedness of the left ideal $R a_{1}+\ldots+R a_{n}$ is expressed by the positive sentence

$$
\begin{array}{r}
\Phi=\left(\forall x_{1}\right) \ldots\left(\forall x_{n}\right)(\forall y)\left(\exists z_{1}\right) \ldots\left(\exists z_{n}\right)\left(\left(x_{1} a_{1}+\ldots+x_{n} a_{n}\right) \cdot y=\right. \\
\left.z_{1} a_{1}+\ldots+z_{n} a_{n}\right) .
\end{array}
$$

Therefore Φ must be true in S, which implies that the left ideal A is also two-sided. Now obviously $A \cap R$ contains $J(R)$. To show the other inclusion, recall that the artinian ring R has $J(R)$ as its largest nilpotent ideal; suppose $J(R)^{m}=(0)$. This implies the truth in R of the positive sentence

$$
\Psi=\left(\forall x_{i j}\right)_{i=1, \ldots n, j=1, \ldots m}\left(\prod_{j}\left(\sum_{i} x_{i j} a_{i}\right)=0\right)
$$

But then Ψ must be true in S, which in turn implies the nilpotency of A; hence $A \cap R$ is a two-sided nilpotent ideal of R and therefore contained in $J(R)$. Thus Proposition 3 guarantees that $R / J(R)$ is also quasi-compactifiable. But $R / J(R)$ is a semisimple artinian ring and therefore finite by [1, Proposition 9]. Moreover, since every left ideal of R is finitely generated, [1, Lemma 3]
and induction imply that $R / J(R)^{n}$ is finite for every n. Thus $R / J(R)^{m} \simeq R$ is also finite and the proof is complete.

We are ready to prove the equivalence of conditions (1)-(6) stated at the outset. The implications $(3) \Rightarrow(4) \Rightarrow(5) \Rightarrow(6)$ are obvious, so it suffices to show $(6) \Rightarrow(2)$. The proof begins analogously to that of $[1$, Theorem 3 , (i) \Rightarrow (ii)]: R is the sum of its torsion ideal and some torsion-free ideal T; then T is quasi-compactifiable too, and by Proposition $2, T=(0)$, i.e., R is torsion. Let $R^{+}=B \bigoplus P$ be a decomposition of R^{+}into reduced and divisible parts B and P. By [1, Proposition 9], $R \cdot P=P \cdot R=\{0\}$, and P is a finite sum of Prüfer groups.

It remains to show the finiteness of B. Let \bar{B} be the subring of R generated by B. If A is an arbitrary left ideal of \bar{B}, then A is also a left ideal of R, because

$$
R \cdot A=(P+B) \cdot A=P \cdot A+B \cdot A \subseteq(0)+\bar{B} \cdot A \subseteq A
$$

Thus \bar{B} inherits the descending chain condition from R, i.e., \bar{B} is artinian and, of course, quasi-compactifiable. We claim that \bar{B}^{+}is a bounded torsion group. Since \bar{B} is artinian, the family of ideals $\{m \cdot \bar{B} ; m \in \mathbf{N}\}$ has a smallest element, say $n \cdot \bar{B}$, which is of course additively a divisible subgroup of R^{+}. Hence $n \cdot \bar{B} \subseteq P$. Since $n \cdot B \subseteq B$ we obtain

$$
n \cdot B \subseteq n \cdot \bar{B} \cap B \subseteq P \cap B=\{0\}
$$

and thus B is bounded torsion. That the underlying group of \bar{B}, the ring generated by B, is also bounded torsion, is then elementary. Thus Proposition 1 applies and $\mathbf{Z}_{n} * \bar{B}$ is quasi-compactifiable. But $\mathbf{Z}_{n} * \bar{B}$ is artinian because the $\mathbf{Z}_{n} * \bar{B}$-modules \bar{B} and $\mathbf{Z}_{n} * \bar{B} / \bar{B}$ are artinian; thus $\mathbf{Z}_{n} * \bar{B}$ is finite by Proposition 4 and so, of course, is B. The proof is complete.

References

1. D. K. Haley, Equationally compact artinian rings, Can. J. Math. 25 (1973), 273-283.
2. G. H. Wenzel, On ($\mathfrak{S}, \mathfrak{N}, \mathfrak{m t}$)-atomic compact relational systems, Math. Ann. 194 (1971), 12-18.

Universität Mannheim, Mannheim, West Germany

[^0]: Received November 13, 1972 and in revised form, February 20, 1973.

