
Mathematical Structures in Computer Science (2020), 30, pp. 314–341
doi:10.1017/S0960129520000043

PAPER

Open Petri nets
John C. Baez∗ and Jade Master∗

Department of Mathematics, University of California, Riverside, CA 92521, USA
∗Corresponding author. Emails: baez@math.ucr.edu; jadeedenstarmaster@gmail.com

(Received 3 November 2018; revised 3 February 2020; accepted 8 February 2020)

Abstract
The reachability semantics for Petri nets can be studied using open Petri nets. For us, an “open” Petri net is
one with certain places designated as inputs and outputs via a cospan of sets. We can compose open Petri
nets by gluing the outputs of one to the inputs of another. Open Petri nets can be treated as morphisms
of a category Open(Petri), which becomes symmetric monoidal under disjoint union. However, since the
composite of open Petri nets is defined only up to isomorphism, it is better to treat them as morphisms of
a symmetric monoidal double category Open(Petri). We describe two forms of semantics for open Petri
nets using symmetric monoidal double functors out of Open(Petri). The first, an operational semantics,
gives for each open Petri net a category whose morphisms are the processes that this net can carry out.
This is done in a compositional way, so that these categories can be computed on smaller subnets and then
glued together. The second, a reachability semantics, simply says which markings of the outputs can be
reached from a given marking of the inputs.

Keywords: Double category; open system; operational semantics; Petri net; reachability

1. Introduction
Petri nets are a simple and widely studied model of computation (Girault and Valk 2013; Gorrieri
2017; Peterson 1981), with generalizations applicable to many forms of modeling (Jensen and
Kristensen 2009). Recently, more attention has been paid to a compositional treatment in which
Petri nets can be assembled from smaller “open” Petri nets (Baez and Pollard 2017; Baldan et
al. 2005, 2015; Bruni et al. 2011, 2013, 2001). In particular, the reachability problem for Petri
nets, which asks whether one marking of a Petri net can be obtained from another via a sequence
of transitions, can be studied compositionally (Rathke et al. 2014; Sassone and Sobociński 2005;
Sobociński and Stephens 2013). Here, we seek to give this line of work a firmer footing in category
theory. Petri nets are closely tied to symmetric monoidal categories in two ways. First, a Petri net
P can be seen as a presentation of a free symmetric monoidal category FP, with the places and
transitions of P serving to freely generate the objects and morphisms of FP. We show how to
construct this in Section 2, after reviewing a line of previous work going back to Meseguer and
Montanari (1990). In these terms, the reachability problem asks whether there is a morphism from
one object of FP to another.

Second, there is a symmetric monoidal category where the objects are sets and the morphisms
are equivalence classes of open Petri nets. We construct this in Section 3, but the basic idea is very
simple. Here is an open Petri net P from a set X to a set Y :

© The Author(s) 2020. Published by Cambridge University Press. This is an Open Access article, distributed under the terms of the
Creative Commons Attribution-NonCommercial-ShareAlike licence (http://creativecommons.org/licenses/by-nc-sa/4.0/), which permits
non-commercial re-use, distribution, and reproduction in any medium, provided the same Creative Commons licence is included and the
original work is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use.

https://doi.org/10.1017/S0960129520000043 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000043
https://orcid.org/0000-0002-0609-9836
https://orcid.org/0000-0003-1970-6030
mailto:baez@math.ucr.edu
mailto:jadeedenstarmaster@gmail.com
http://creativecommons.org/licenses/by-nc-sa/4.0/
https://doi.org/10.1017/S0960129520000043


Mathematical Structures in Computer Science 315

A

B

C

D
α

X
1
2
3

Y
4

5

The yellow circles are places and the blue rectangle is a transition. The bold arrows from places
to transitions and from transitions to places complete the structure of a Petri net. There are also
arbitrary functions fromX andY into the set of places. These indicate points at which tokens could
flow in or out, making our Petri net “open.” We write this open Petri net as P : X� Y for short.

Given another open Petri net Q : Y � Z:

β

γ

E F

Y
4

5

Z

6

the first step in composing P and Q is to put the pictures together:

A

B

C

D
α

β

γ

E F

X
1
2
3

Y

4
5

Z

6

At this point, if we ignore the setsX, Y , Z, we have a new Petri net whose set of places is the disjoint
union of those for P and Q. The second step is to identify a place of P with a place of Q whenever
both are images of the same point in Y . We can then stop drawing everything involving Y and get
an open Petri net Q� P : X� Z:

A

B
α C F

β

γ

X
1
2
3

Z

6

Formalizing this simple construction leads us into a bit of higher category theory. The process
of taking the disjoint union of two sets of places and then quotienting by an equivalence relation is
a pushout. Pushouts are defined only up to canonical isomorphism: for example, the place labeled
C in the last diagram above could equally well have been labeled D or E. This is why to get a cate-
gory, with composition strictly associative, we need to use isomorphism classes of open Petri nets
as morphisms. But there are advantages to working with open Petri nets rather than isomorphism
classes. For example, we cannot point to a specific place or transition in an isomorphism class
of Petri nets. If we work with actual open Petri nets, we obtain not a category but a bicategory
(Sassone and Sobociński 2005).

However, this bicategory is equipped with more structure. Besides composing open Petri nets,
we can also “tensor” them via disjoint union: this describes Petri nets being run in parallel rather
than in series. The result is a symmetricmonoidal bicategory. Unfortunately, the axioms for a sym-
metric monoidal bicategory are cumbersome to check directly (Stay 2016). Double categories turn

https://doi.org/10.1017/S0960129520000043 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000043


316 J.C. Baez and J. Master

out to be much more convenient. Double categories were introduced in the 1960s by Ehresmann
(1963, 1965). More recently, they have been used to study open dynamical systems (Lerman 2018;
Lerman and Spivak 2016; Ngotiaoco 2017), open electrical circuits and chemical reaction net-
works (Courser 2017), open discrete-time Markov chains (Clerc et al. 2017), coarse-graining for
open continuous-time Markov chains (Baez and Courser 2017), and “tile logic” for concurrency
in computer science (Bruni et al. 2002).

A 2-morphism in a double category can be drawn as a square:

X1 Y1

X2 Y2.

⇓ α

M

gf

N

We call X1, X2, Y1, and Y2 “objects,” f and g “vertical 1-morphisms,”M and N “horizontal 1-cells,”
and α a “2-morphism.” We can compose vertical 1-morphisms to get new vertical 1-morphism
and compose horizontal 1-cells to get new horizontal 1-cells. We can compose the 2-morphisms
in two ways: horizontally and vertically. This is just a quick sketch of the ideas; for full definitions
see Appendix A.

In Theorem 13, we construct a symmetric monoidal double categoryOpen(Petri) with:

• sets X, Y , Z, . . . as objects,
• functions f : X→ Y as vertical 1-morphisms,
• open Petri nets P : X� Y as horizontal 1-cells,
• morphisms between open Petri nets as 2-morphisms.

To get a feeling for morphisms between open Petri nets, some examples may be helpful. There is
a morphism from this open Petri net:

α

α′

A

A′
B

X1

1

1′

Y1

2

to this one:

αA B

X2

1

Y2

2

mapping both primed and unprimed symbols to unprimed ones. This describes a process of “sim-
plifying” an open Petri net. There are also morphisms that include simple open Petri nets more
complicated ones. For example, the above morphism of open Petri nets has a right inverse.

The main goal of this paper is to describe two forms of semantics for open Petri nets. The
first is an “operational” semantics. In Theorem 17, we show that this semantics gives a map from
Open(Petri) to a double category Open(CMC). This map sends any Petri net P to the symmetric
monoidal category FP, but it also acts on open Petri nets in a compositional way. The second is a
“reachability” semantics. This gives a map from Open(Petri) to the double category of relations,
Rel, which has

https://doi.org/10.1017/S0960129520000043 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000043


Mathematical Structures in Computer Science 317

• sets X, Y , Z, . . . as objects,
• functions f : X→ Y as vertical 1-morphisms,
• relations R⊆ X× Y as horizontal 1-cells,
• squares

X1 Y1

X2 Y2

R⊆ X1 × Y1

gf

S⊆ X2 × Y2

obeying ( f × g)R⊆ S as 2-morphisms.

In Petri net theory, a “marking” of a set X is a finite multisubset of X: we can think of this as a
way of placing finitely many tokens on the points of X. Let N[X] denote the set of markings of X.
Given an open Petri net P : X� Y , there is a “reachability relation” saying when a given marking
of X can be carried by a sequence of transitions in P to a given marking of Y , leaving no tokens
behind. We write the reachability relation of P as

�P⊆N[X]×N[Y].
In Theorem 23, we show that the map sending P to�P extends to a lax double functor

� : Open(Petri)→Rel.
In Theorem 24, we go further and show that this double functor is symmetric monoidal.

If the reader prefers bicategories to double categories, they may be relieved to learn that any
double category D gives rise to a bicategory H(D) whose 2-morphisms are those 2-morphisms of
D of the form

X Y

X Y .

⇓ α

M

1X 1Y

N

Shulman has described conditions under which symmetric monoidal double categories give rise
to symmetric monoidal bicategories (Shulman 2010), and using his work, one can show that the
operational and reachability semantics for open Petri nets givemaps between symmetricmonoidal
bicategories (Baez and Courser 2019). However, only the double category framework presents the
operational and reachability semantics in their full glory. Namely, using double categories, we can
describe how these semantics behave on composite open Petri nets, tensor products of open Petri
nets, and also morphisms between open Petri nets.

2. From Petri Nets to Commutative Monoidal Categories
In this section, we treat Petri nets as presentations of symmetric monoidal categories. As we
shall explain, this has already been done by various authors. Unfortunately, there are different
notions of symmetric monoidal category, and also different notions of morphism between Petri
nets, which combine to yield a confusing variety of possible approaches.

Here, we take the maximally strict approach and work with “commutative” monoidal cate-
gories. This means that we are treating tokens in Petri nets as indistinguishable rather than merely
swappable – an approach known as the “collective token philosophy” (van Glabbeek and Plotkin
2009). A commutativemonoidal category is a commutativemonoid object in Cat, so its associator:

https://doi.org/10.1017/S0960129520000043 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000043


318 J.C. Baez and J. Master

αa,b,c : (a⊗ b)⊗ c ∼−→ a⊗ (b⊗ c),
its left and right unitor:

λa : I⊗ a ∼−→ a, ρa : a⊗ I ∼−→ a,
and even – disturbingly – its symmetry:

σa,b : a⊗ b ∼−→ b⊗ a
are all identity morphisms. The last would ordinarily be seen as “going too far,” since while every
symmetric monoidal category is equivalent to one with trivial associator and unitors, this ceases
to be true if we also require the symmetry to be trivial. However, it seems that Petri nets most nat-
urally serve to present symmetric monoidal categories of this very strict sort. Thus, we construct a
functor from the category of Petri nets to the category of commutative monoidal categories, which
we call CMC:

F : Petri→ CMC.
This functor sends any Petri net P to the free commutative monoidal category on P, and indeed,
it is a left adjoint.

It seems that Montanari and Meseguer were the first to treat Petri nets as presentations of
commutative monoidal categories (Meseguer and Montanari 1990). They constructed a closely
related but different left adjoint functor from a category of Petri nets to a category of “Petri cat-
egories,” which they call CatPetri. Our category Petri is a subcategory of their category of Petri
nets: our morphisms of Petri nets send places to places, while they allow more general maps that
send a place to a formal linear combination of places. On the other hand, their CatPetri is the full
subcategory of CMC containing only commutative monoidal categories whose objects form a free
commutative monoid.

In short, the situation is surprisingly subtle given the elementary nature of the concepts
involved. The paper by Montanari and Meseguer actually discusses over half a dozen categories
of Petri nets and commutative monoidal categories. Further work by Degano et al. (1989) and
Sassone (1994, 1995, 1996) explores other variations on the theme of generating symmetric
monoidal categories from Petri nets. Resisting the temptation to dwell on the subtleties of this
topic, we present our approach with no further ado.

Definition 1. Let CommMon be the category of commutative monoids and monoid homomor-
phisms.

Definition 2. Let J : Set→ CommMon be the free commutative monoid functor, that is, the left
adjoint of the functor K : CommMon→ Set that sends commutative monoids to their underlying
sets and monoid homomorphisms to their underlying functions. Let

N : Set→ Set
be the free commutative monoid monad given by the composite KJ.

For any set X, N[X] is the set of formal finite linear combinations of elements of X with nat-
ural number coefficients. The set X naturally includes in N[X], and for any function f : X→ Y ,
N[f ] : N[X]→N[Y] is given by the unique monoid homomorphism that extends f .

Definition 3. We define a Petri net to be a pair of functions of the following form:

T
t

��
s ��

N[S].

We call T the set of transitions, S the set of places, s the source function, and t the target function.

https://doi.org/10.1017/S0960129520000043 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000043


Mathematical Structures in Computer Science 319

Definition 4. A Petri net morphism from the Petri net s, t : T→N[S] to the Petri net s′, t′ : T→
N[S′] is a pair of functions ( f : T→ T′, g : S→ S′) such that the following diagrams commute:

T

f
��

s �� N[S]

N[g]
��

T′ s′ �� N[S′]

T

f
��

t �� N[S]

N[g]
��

T′ t′ �� N[S′].

Definition 5. Let Petri be the category of Petri nets and Petri net morphisms, with composition
defined by

( f , g) ◦ ( f ′, g′)= ( f ◦ f ′, g ◦ g′).

Asmentioned above, Meseguer andMontanari (1990) use amore general definition of Petri net
morphism: they allow an arbitrary commutative monoid homomorphism fromN[S] toN[S′], not
necessarily of the form N[g] for some function g : S→ S′. Sassone (1994, 1995, 1996) and Degano
et al. (1989) also use this more general definition, but Baldan et al. (2005, 2015) use the definition
we are using here.

Definition 6. A commutative monoidal category is a commutative monoid object internal to Cat.
Explicitly, a commutative monoidal category is a strict monoidal category (C,⊗, I) such that for all
objects a and b and morphisms f and g in C

a⊗ b= b⊗ a and f ⊗ g = g ⊗ f .

Note that a commutative monoidal category is the same as a strict symmetric monoidal
category where the symmetry isomorphisms σa,b : a⊗ b ∼−→ b⊗ a are all identity morphisms.
Every strict monoidal functor between commutative monoidal categories is automatically a strict
symmetric monoidal functor. This motivates the following definition:

Definition 7. Let CMC be the category whose objects are commutative monoidal categories and
whose morphisms are strict monoidal functors.

We can turn a Petri net P= (s, t : T→N[S]) into a commutative monoidal category FP as
follows. We take the commutative monoid of objects Ob(FP) to be the free commutative monoid
on S. We construct the commutative monoid of morphismsMor(FP) as follows. First, we generate
morphisms recursively:

• for every transition τ ∈ T, we include a morphism τ : s(τ )→ t(τ );
• for any object a, we include a morphism 1a : a→ a;
• for any morphisms f : a→ b and g : a′ → b′, we include a morphism denoted f + g : a+
a′ → b+ b′ to serve as their tensor product;

• for any morphisms f : a→ b and g : b→ c, we include a morphism g ◦ f : a→ c to serve as
their composite.

Then, we mod out by an equivalence relation on morphisms that imposes the laws of a
commutative monoidal category, obtaining the commutative monoid Mor(FP).

Definition 8. Let F : Petri→ CMC be the functor that makes the following assignments on Petri
nets and morphisms:

https://doi.org/10.1017/S0960129520000043 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000043


320 J.C. Baez and J. Master

T

f
��

t
��

s ��
N[S]

N[g] �→
��

FP

F( f ,g)
��

T′
t′

��
s′ ��

N[S′] FP′.

Here, F( f , g) : FP→ FP′ is defined on objects by N[g]. On morphisms, F( f , g) is the unique map
extending f that preserves identities, composition, and the tensor product.

Lemma 9. The functor

F : Petri→ CMC

is a left adjoint.

Proof. This is a special case of a result of Master (2019, Theorem 5.1) which shows that there
is similar adjunction for any Lawvere theory Q. When Q is set equal to the Lawvere theory for
commutative monoids, this theorem gives the desired adjunction.

3. Open Petri Nets
Our goal in this paper is to use the language of double categories to develop a theory of Petri
nets with inputs and outputs that can be glued together. The first step is to construct a double
category Open(Petri) whose horizontal 1-morphisms are open Petri nets. For this, we need a
functor L : Set→ Petri that maps any set S to a Petri net with S as its set of places, and we need L
to be a left adjoint.

Definition 10. Let L : Set→ Petri be the functor defined on sets and functions as follows:

X

f �→
��

∅

��

��
��
N[X]

N[f ]
��

Y ∅ ��
��
N[Y]

where the unlabeled maps are the unique maps of that type.

Lemma 11. The functor L has a right adjoint R : Petri→ Set that acts as follows on Petri nets and
Petri net morphisms:

T

f
��

t
��

s ��
N[S]

N[g] �→
��

S

g
��

T′
t′

��
s′ ��

N[S] S′.

Proof. For any set X and Petri net P= (s, t : T→N[S]), we have natural isomorphisms

homPetri
(
L(X), T

t
��

s ��
N[S]

) ∼= homPetri
( ∅ ��

��
N[X] , T

t
��

s ��
N[S]

)

∼= homSet(X, S)
∼= homSet

(
X, R(T

t
��

s ��
N[S])

)
.

https://doi.org/10.1017/S0960129520000043 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000043


Mathematical Structures in Computer Science 321

An “open” Petri net is a Petri net P equipped with maps from two sets X and Y into its set of
places, RP. We can write this as a cospan in Set of the form

RP

X

����������
Y .

����������

Using the left adjoint L, we can reexpress this as a cospan in Petri, and this gives our official
definition:

Definition 12. An open Petri net is a diagram in Petri of the form

P

LX

i
����������

LY

o
���������

for some sets X and Y. We sometimes write this as P : X� Y for short.

We now introduce the main object of study: the double categoryOpen(Petri), which has open
Petri nets as its horizontal 1-cells. Since this is a symmetric monoidal double category, it involves
quite a lot of structure. The definition of symmetric monoidal double category can be found in
Appendix A.

Theorem 13. There is a symmetric monoidal double categoryOpen(Petri) for which:

• objects are sets,
• vertical 1-morphisms are functions,
• horizontal 1-cells from a set X to a set Y are open Petri nets,

P

LX

i
����������

LY

o
���������

• 2-morphisms α : P⇒ P′ are commutative diagrams

LX i ��

Lf
��

P

α
��

LYo��

Lg
��

LX′ i′ �� P′ LY ′o′��

in Petri

Composition of vertical 1-morphisms is the usual composition of functions. Composition of horizon-
tal 1-cells is composition of cospans via pushout: given two horizontal 1-cells

P Q

LX

i1
����������

LY

o1
����������

LY

i2
����������

LZ

o2
���������

their composite is given by this cospan from LX to LZ:

https://doi.org/10.1017/S0960129520000043 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000043


322 J.C. Baez and J. Master

P+LY Q

P

jP
		���������

Q

jQ


���������

LX

i1
��								

LY

o1


���������

i2
		���������

LZ

o2
��









where the diamond is a pushout square. The horizontal composite of 2-morphisms

LX i1 ��

Lf
��

P

α
��

LYo1��

Lg
��

LX′
i′1 �� P′ LY ′

o′1��

LY i2 ��

Lg
��

Q

β

��

LZo2��

Lh
��

LY ′
i′2 �� Q′ LZ′

o′2��

is given by

LX
jPi1

��

Lf
��

P+LY Q
α+Lg β

��

LZ
jQo1

��

Lh
��

LX′
jP′ i′1 �� P′ +LY ′ Q′ LZ′.

jQ′o′2
��

Vertical composition of 2-morphisms is done using composition of functions. The symmetric
monoidal structure comes from coproducts in Set and Petri.

Proof. We construct this symmetric monoidal double category using the machinery of “struc-
tured cospans” (Baez and Courser 2019). The main tool is the following lemma, which explains
the symmetric monoidal structure in more detail:

Lemma 14. Let A be a category with finite coproducts and X be a category with finite colimits. Given
a left adjoint L : A→ X, there exists a unique symmetric monoidal double category LCsp(X), such
that:

• objects are objects of A,
• vertical 1-morphisms are morphisms of A,
• a horizontal 1-cell from a ∈ A to b ∈ A is a cospan in X of this form:

La x Lb

• a 2-morphism is a commutative diagram in X of this form:

La Lbx

Lc Ld.y

Lf Lgh

Composition of vertical 1-morphisms is composition in A. Composition of horizontal 1-cells is
composition of cospans in X via pushout: given horizontal 1-cells

x y

La

i1


��������

Lb

o1
���������

Lb

i2


�������

Lc

o2
����������

https://doi.org/10.1017/S0960129520000043 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000043


Mathematical Structures in Computer Science 323

their composite is this cospan from La to Lc:
x+Lb y

x

jx
��








 y

jy
�����������

La

i1
����������

Lb

o1
�����������

i2
�����������

Lc

o2
����������

where the diamond is a pushout square. The horizontal composite of 2-morphisms

La i1 ��

Lf
��

x

α

��

Lbo1��

Lg
��

La′
i′1 �� x′ Lb′

o′1��

Lb i2 ��

Lg
��

y

β

��

Lco2��

Lh
��

Lb′
i′2 �� y′ Lc′

o′2��

is given by

La
jxi1

��

Lf
��

x+Lb y

α+Lg β

��

Lc
jyo2

��

Lh
��

La′
jx′ i′1 �� x′ +Lb′ y′ Lc′.

jy′o′2
��

The vertical composite of 2-morphisms

La i1 ��

Lf
��

x

α

��

Lbo1��

Lg
��

La′
i′1 �� x′ Lb′

o′1��

La′
i′1 ��

Lf ′
��

x′

α′
��

Lb′
o′1��

Lg′
��

La′′
i′′1 �� x′′ Lb′′

o′′1��

is given by

La i1 ��

L( f ′f )
��

x

α′α
��

Lbo1��

L(g′g)
��

La′′
i′′1 �� x′′ Lb′′.

o′′1��

The tensor product is defined using chosen coproducts in A and X. Thus, the tensor product of two
objects a1 and a2 is a1 + a2, the tensor product of two vertical 1-morphisms

a1
f1
��

b1

a2
f2
��

b2
is

https://doi.org/10.1017/S0960129520000043 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000043


324 J.C. Baez and J. Master

a1 + a2
f1+f2

��

b1 + b2,

the tensor product of two horizontal 1-cells

La1
i1 �� x1 Lb1

o1�� La2
i2 �� x2 Lb2

o2��

is

L(a1 + a2)
i1+i2 �� x1 + x2 L(b1 + b2),

o1+o2��

and the tensor product of two 2-morphisms

La1
i1 ��

Lf1
��

x1
α1

��

Lb1
o1��

Lg1
��

La′1
i′1 �� x′1 Lb′1

o′1��

La2
i2 ��

Lf2
��

x2
α2

��

Lb2
o2��

Lg2
��

La′2
i′2 �� x′2 Lb′2

o′2��

is

L(a1 + a2)
i1+i2 ��

L( f1+f2)
��

x1 + x2

α1+α2
��

L(b1 + b2)
o1+o2��

L(g1+g2)
��

L(a′1 + a′2)
i′1+i′2 �� x′1 + x′2 L(b′1 + b′2).

o′1+o′2��

The units for these tensor products are taken to be initial objects, and the symmetry is defined using
the canonical isomorphisms a+ b∼= b+ a.

Proof. This is a result of Baez and Courser (2019, Theorem 3.9). Note that we are abusing language
slightly above. We must choose a specific coproduct for each pair of objects in X and A to give
LCsp(X) its tensor product. Given morphisms i1 : La1→ x1 and i2 : La2→ x2, their coproduct
is really a morphism i1 + i2 : La1 + La2→ x1 + x2 between these chosen coproducts. But since L
preserves coproducts, we can compose this morphism with the canonical isomorphism L(a1 +
a2)∼= La1 + La2 to obtain the morphism that we call i1 + i2 : L(a1 + a2)→ x1 + x2 above.

To apply this lemma to the situation at hand, we need the following result.

Lemma 15. Petri has small colimits.

Proof. Note that Petri is equivalent to the comma category f /g where f : Set→ Set is the identity
and g : Set→ Set is the functorN[− ]2.Whenever categories A and B have small colimits, f : A→
C is a functor preserving such colimits, and g : B→ C is any functor, then f /g has small colimits
(Burstall and Rydeheard 1988, Theorem 3, Section 5.2). Thus, Petri has small colimits.

For completeness, we recall how these colimits are constructed. The notation is simpler in the
general case. A diagram D : J→ f /g consists of diagrams DA : J→ A and DB : J→ B together
with a natural transformation

γ : f ◦DA→ g ◦DB.

To construct the colimit of D, we use the canonical morphisms

α : colim f ◦DA→ f (colimDA),
β : colim g ◦DB→ g(colimDB)

https://doi.org/10.1017/S0960129520000043 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000043


Mathematical Structures in Computer Science 325

defined using the universal property of the colimits at left. Since f preserves colimits, α is
an isomorphism. We also use the fact that colimits are functorial, so that γ gives a natural
transformation that we may call

colim γ : colim f ◦DA→ colim g ◦DB.
The desired colimiting object colimD in f /g consists of the objects colimDA ∈ A, colimDB ∈ B and
the morphism

f (colimDA)
α−1−−→ colim f ◦DA

colim γ−−−−→ colim g ◦DB
β−→ g(colimDB).

In particular, a diagram of Petri nets D : J→ Petri gives rise to functors DA,DB : J→ Set, a
Petri net

DA( j)
tj

��

sj
��
N[DB( j)]

for each object j of J, and a morphism between these Petri nets for each morphism of J. The
colimit of D takes the form

colimDA
t

��
s ��

N[colimDB].

where s and t are constructed using the general prescription just described.

We now have all of the ingredients to apply Lemma 14 to the functor L : Set→ Petri.
Theorem 13 follows from realizing thatOpen(Petri) as described in the theorem is the symmetric
monoidal double category LCsp(Petri).

4. The Operational Semantics
In Section 2, we saw how a Petri net P gives a commutative monoidal category FP, and in Section
3, we constructed a double category Open(Petri) of open Petri nets. Now we construct a double
categoryOpen(CMC) of “open commutative monoidal categories” and a map

Csp(F) : Open(Petri)→Open(CMC).
This can be seen as providing an operational semantics for open Petri nets in which any open Petri
net is mapped to the commutative monoidal category it presents. The reachability semantics for
open Petri nets is based on this more fundamental form of semantics.

The key is this commutative diagram of left adjoint functors:

Set L ��

L′ ���
��

��
��

� Petri

F
��

CMC

where L′ = FL sends any set to the free commutative monoidal category on this set: L′X has N[X]
as its set of objects, and only identity morphisms. Using Lemma 14, we can produce two sym-
metric monoidal double categories from this diagram. We have already seen one: Open(Petri)=
LCsp(Petri). We now introduce the other:Open(CMC)= L′Csp(CMC).

Theorem 16. There is a symmetric monoidal double categoryOpen(CMC) for which:

• objects are sets
• vertical 1-morphisms are functions

https://doi.org/10.1017/S0960129520000043 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000043


326 J.C. Baez and J. Master

• horizontal 1-cells from a set X to a set Y are open commutative monoidal categories C : X�

Y, that is, cospans in CMC of the form

C

L′X

i
���������

L′Y

o
���������

where C is a commutative monoidal category and i and o are strict monoidal functors,
• 2-morphisms α : C⇒ C′ are commutative diagrams in CMC of the form

L′X i ��

L′f
��

C

α

��

L′Yo��

L′g
��

L′X′ i �� C′ L′Y ′o′��

and the rest of the structure is given as in Lemma 14.

Proof. To apply Lemma 14 to the functor L′ : Set→ CMC, we just need to check that CMC has
finite colimits. First note that

CMC�Mod(CMON, Cat)
where Mod(CMON, Cat) is the category of finite-product-preserving functors from the Lawvere
theory for commutative monoids to Cat. The cocompleteness of this category then follows
from various classical results, some listed in the introduction of Freyd and Kelly (1972). More
recently, Trimble (2019, Proposition 3.1) showed that for any Lawvere theory Q and any
cocomplete cartesian category X with finite products distributing over colimits, the category of
finite-product-preserving functors Mod(Q, X) is cocomplete.

The functor F : Petri→ CMC induces a map sending open Petri nets to open commutative
monoidal categories. This map is actually part of a “symmetric monoidal double functor,” a
concept recalled in Appendix A.

Theorem 17. There is a symmetric monoidal double functor

Open(F) : Open(Petri)→Open(CMC)

that is the identity on objects and vertical 1-morphisms, and makes the following assignments on
horizontal 1-cells and 2-morphisms:

LX i ��

Lf
��

P

α

��

LYo��

Lg �→
��

L′X Fi ��

L′f
��

FP

Fα
��

L′YFo��

L′g
��

LX′ i′ �� P′ LY ′o′�� L′X′ Fi′ �� FP′ L′Y ′.Fo′��

Proof. This follows from the theory of structured cospans. More generally, suppose A is a category
with finite coproducts and X, X′ are categories with finite colimits. Suppose there is a commuting
triangle of left adjoints

A L ��

L′ ��
��

��
��

� X

F
��

X′.

https://doi.org/10.1017/S0960129520000043 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000043


Mathematical Structures in Computer Science 327

Then, Lemma 14 gives us symmetric monoidal double categories LCsp(X) and L′Csp(X′), and Baez
and Courser (2019, Theorem 4.3) give a symmetric monoidal double functor

Csp(F) : LCsp(X)→ L′Csp(X′)

that is the identity on objects and vertical morphisms and acts as follows on horizontal 1-cells and
2-morphisms:

La i ��

Lf
��

x

α

��

Lbo��

Lg �→
��

L′a Fi ��

L′f
��

Fx

Fα
��

L′bFo��

L′g
��

La′ i′ �� x′ Lb′o′�� L′a′ Fi′ �� Fx′ L′b′.Fo′��

In the case at hand, where the commutative triangle is

Set L ��

L′ ���
��

��
��

� Petri

F
��

CMC,

this double functor Csp(F) is what we are callingOpen(F).

We can think of the commutative monoidal category FP as providing an operational seman-
tics for the Petri net P: morphisms in this category are processes allowed by the Petri net. The
above theorem says that this semantics is compositional. That is, if we write P as a composite (or
tensor product) of smaller open Petri nets, FP will be the composite (or tensor product) of the
corresponding open commutative monoidal categories.

It is worthwhile comparing the work of some other authors. Baldan et al. (2005) consider a
category of Petri nets that is the same as our Petri. They define an “open net” to a Petri net P
equipped two subsets X and Y of its set of places. If one weakened this requirement slightly to
demandmerely thatX and Y are equipped with injections into the set of places, the corresponding
class of open Petri nets

P

LX

i
����������

LY

o
���������

would be precisely those for which i and o are monic. This class of open Petri nets is closed under
our form of horizontal composition. However, the authors take a different approach to composing
open nets. They consider a compositional semantics for open nets, but only for those of a special
kind, called “deterministic occurrence nets” because there is never any choice about what a token
can do. They do not describe this semantics as a functor.

Bruni et al. (2011, 2013) also consider a category of Petri nets that matches our Petri. Given
m, n ∈N, they define a “P/T-net with boundary” P : m→ n to be a Petri net P= (s, t : T→N[S])
equipped with maps i : T→N

m, o : T→N
n. Thus, we may think of each transition as having,

besides its usual source and target, an input which is a multisubset of {1, . . . ,m} and an output
which is a multisubset of {1, . . . , n}. They define a way to compose P/T-nets with boundary using
“synchronization” and show that this makes isomorphism classes of P/T-nets into the morphisms
of a category. They also describe an operational semantics for P/T nets with boundary using a “tile
calculus,” which is essentially a double category (Bruni et al. 2002). However, the vertical direction
in this double category has a fundamentally different meaning that in Open(Petri), it is used to
describe the process of firing transitions.

https://doi.org/10.1017/S0960129520000043 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000043


328 J.C. Baez and J. Master

As already mentioned, the operational semantics used here implements the “collective token
philosophy,” meaning that tokens are treated as indistinguishable. By contrast, in the “individ-
ual token philosophy,” swapping two tokens is treated as a nontrivial process. Van Glabbeek and
Plotkin have argued that these philosophies give different interpretations of causality in Petri nets
(van Glabbeek and Plotkin 2009). The key mathematical difference is that the individual token
philosophy uses symmetric monoidal categories that are not commutative, so their symmetries
are not identity morphisms. Bruni et al. showed that for a Petri net P, a category whose mor-
phisms represent processes of P under the individual token philosophy can be freely generated
by equipping the inputs and outputs of each transition with an ordering (Bruni et al. 2001). Petri
nets equipped with these orders are called “pre-nets.” InMaster (2019, Section 6.1), an operational
semantics for pre-nets is described as a left adjoint

Z : PreNet→ SSMC

where PreNet is an appropriate category of pre-nets and SSMC is the category of strict symmet-
ric monoidal categories. In a similar way to Theorem 17, this left adjoint can be extended to a
symmetric monoidal double functor

Open(Z) : Open(PreNet)→Open(SSMC)

This double functor explicates the way in which the more nuanced semantics of the individ-
ual token philosophy can be built in a compositional way. A proof of existence and a detailed
explanation of this double functor will be left to future work.

5. The Double Category of Relations
Using the language of functorial semantics,Open(Petri) can be thought of as a syntax for describ-
ing open systems, and reachability as a choice of semantics. To implement this, we show that the
reachability relation of a Petri net can be defined for open Petri nets in a way that gives a lax
double functor from Open(Petri) to the double category of relations constructed in Grandis and
Paré (1999, Section 3.4). Here, we recall this double category and give it a symmetric monoidal
structure.

This double category, which we call Rel, has

• sets as objects,
• functions f : X→ Y as vertical 1-morphisms from X to Y ,
• relations R⊆ X× Y as horizontal 1-cells from X to Y ,
• squares

X1 Y1

X2 Y2

R⊆ X1 × Y1

gf

S⊆ X2 × Y2

obeying ( f × g)R⊆ S as 2-morphisms.

The last item deserves some explanation. A preorder is a category such that for any pair of objects
a, b there exists at most one morphism α : x→ y. When such a morphism exists, we usually
write x≤ y. Similarly, there is a kind of double category for which given any frame—that is, any
collection of objects, vertical 1-morphisms and horizontal 1-cells as follows:

https://doi.org/10.1017/S0960129520000043 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000043


Mathematical Structures in Computer Science 329

X1 Y1

X2 Y2

M

gf

N

there exists at most one 2-morphism

X1 Y1

X2 Y2

⇓ α

M

gf

N

filling this frame. Following Baez and Courser (2017), we call this a degenerate double category.
Our definition of the 2-morphisms in Rel will imply that this double category is degenerate.

Composition of vertical 1-morphisms inRel is the usual composition of functions, while com-
position of horizontal 1-cells is the usual composition of relations. Since composition of relations
obeys the associative and unit laws strictly, Rel will be a strict double category. Since Rel is
degenerate, there is at most one way to define the vertical composite of 2-morphisms

X1 Y1

X2 Y2

⇓ α

X3 Y3

⇓ β

=

X1 Y1

X3 Y3

⇓ βα

R⊆ X1 × Y1

gf

f ′

T ⊆ X3 × Y3

g ′

S⊆ X2 × Y2

R⊆ X1 × Y1

g ′gf ′ f

T ⊆ X3 × Y3

so we need merely check that a 2-morphism βα filling the frame at right exists. This amounts to
noting that

( f × g)R⊆ S, ( f ′ × g′)S⊆ T =⇒ ( f ′ × g′)( f × g)R⊆ T.

Similarly, there is at most one way to define the horizontal composite of 2-morphisms

X1 Y1

X2 Y2

⇓ α

Z1

Z2

⇓ α′ =

X1 Z1

X2 Z2

⇓ α′ ◦ α

R⊆ X1 × Y1

gf

S⊆ X2 × Y2

R′ ⊆ Y1 × Z1

h

S′ ⊆ Y2 × Z2

R′R⊆ X1 × Z1

f

S′S⊆ X2 × Z2

h

so we need merely check that a filler α′ ◦ α exists, which amounts to noting that

( f × g)R⊆ S, (g × h)R′ ⊆ S′ =⇒ ( f × h)(R′R)⊆ S′S.
Theorem 18. There exists a strict double category Rel with the above properties.

https://doi.org/10.1017/S0960129520000043 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000043


330 J.C. Baez and J. Master

Proof. We use the definition of double category in Appendix A (Definition A.1), which introduces
two concepts not mentioned so far: the category of objects and the category of arrows. We define
the category of objects Rel0 to have sets as objects and functions as morphisms. We define the
category of arrows Rel1 to have relations as objects and squares

X1 X2

Y1 Y2

R⊆ X1 × X2

gf

S⊆ Y1 × Y2

with ( f × g)R⊆ S as morphisms. The source and target functors S, T : Rel1→Rel0 are clear. The
identity-assigning functor u : Rel0→Rel1 sends a set X to the identity function 1X and a function
f : X→ Y to the unique 2-morphism

X X

Y Y

1X

ff

1Y

The composition functor �: Rel1 ×Rel0 Rel1→Rel1 acts on objects by the usual composition
of relations, and it acts on 2-morphisms by horizontal composition as described above. These
functors can be shown to obey all the axioms of a double category. In particular, because Rel is
degenerate, all the required equations between 2-morphisms, such as the interchange law, hold
automatically.

Next we makeRel into a symmetric monoidal double category. To do this, we first giveRel0 =
Set the symmetric monoidal structure induced by the cartesian product. Then, we give Rel1 a
symmetric monoidal structure as follows. Given relations R1 ⊆ X1 × Y1 and R2 ⊆ X2 × Y2, we
define

R1 × R2 = {(x1, x2, y1, y2) : (x1, y1) ∈ R1, (x2, y2) ∈ R2} ⊆ X1 × X2 × Y1 × Y2.
Given two 2-morphisms in Rel1:

X1 Y1

X2 Y2

X′1 Y ′1

X′2 Y ′2,

⇓ α′⇓ α

R⊆ X1 × Y1

gf

S⊆ X2 × Y2

R′ ⊆ X′1 × Y ′1

g ′f ′

S′ ⊆ X′2 × Y ′2

there is at most one way to define their product

X1 × X′1 Y1 × Y ′1

X2 × X′2 Y2 × Y ′2

⇓ α× α′

R× R′ ⊆ (X1 × X′1)× (Y1 × Y ′1)

g × g ′f × f ′

S× S′ ⊆ (X2 × X′2)× (Y2 × Y ′2)

https://doi.org/10.1017/S0960129520000043 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000043


Mathematical Structures in Computer Science 331

because Rel is degenerate. To show that α× α′ exists, we need merely note that
( f × g)R⊆ S, ( f ′ × g′)R′ ⊆ S′ =⇒ ( f × f ′ × g × g′)(R× R′)⊆ S× S′.

Theorem 19. The double category Rel can be given the structure of a symmetric monoidal double
category with the above properties.

Proof. We have described Rel0 and Rel1 as symmetric monoidal categories. The source and tar-
get functors S, T : Rel1→Rel0 are strict symmetric monoidal functors. We must also equip Rel
with two other pieces of structure. One, called χ , says how the composition of horizontal 1-cells
interacts with the tensor product in the category of arrows. The other, called μ, says how the
identity-assigning functor u relates the tensor product in the category of objects to the tensor
product in the category of arrows. These are defined as follows. Given four horizontal 1-cells

R1 ⊆ X1 × Y1, R2 ⊆ Y1 × Z1,

S1 ⊆ X2 × Y2, S2 ⊆ Y2 × Z2,
the globular 2-isomorphism χ : (R2 × S2)(R1 × S1)⇒ (R2R1)× (S2S1) is the identity 2-morphism

X1 × X2 Z1 × Z2

X1 × X2 Z1 × Z2.

(R2 × S2)(R1 × S1)

11

(R2R1)× (S2S1)

The globular 2-isomorphism μ : u(X× Y)⇒ u(X)× u(Y) is the identity 2-morphism

X× Y X× Y

X× Y X× Y .

1X×Y

11

1X × 1Y

All the commutative diagrams in the definition of symmetric monoidal double category
(Definitions A.5 and A.6) can be checked straightforwardly. In particular, all diagrams of
2-morphisms commute automatically because Rel is degenerate.

6. The Reachability Semantics
Now, we explain howOpen(Petri) provides a compositional approach to the reachability problem.
In particular, we prove that the reachability semantics defines a lax double functor

� : Open(Petri)→Rel
which is symmetric monoidal.

Definition 20. Let P be a Petri net (s, t : T→N[S]). A marking of P is an element m ∈N[S].
Given a transition τ ∈ T, a firing of τ is a tuple (τ ,m, n) such that m≥ s(τ ) and n+ s(τ )=m+
t(τ ). We say that a marking n is reachable from a marking m if for some k≥ 1 there is a sequence
of markings m=m1, . . . ,mk = n and firings {(τi,mi,mi+1)}k−1i=1 . In particular, taking k= 1, any
marking is reachable from itself with no firings.

https://doi.org/10.1017/S0960129520000043 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000043


332 J.C. Baez and J. Master

Given two markings of a Petri net, the problem of deciding whether one is reachable from the
other is called the “reachability problem.” In 1984, Mayr showed that the reachability problem
is decidable (Mayr 1984). However, it is a very hard problem: in 1976, Lipton had showed that
it requires at least exponential space, and in fact, any EXPSPACE algorithm can be reduced in
polynomial time to a Petri net reachability problem (Lipton 1976). More recently, lower and upper
bounds on the time to solve the reachability problem have been found (Czerwinski et al. 2018;
Leroux and Schmitz 2015). The lower bound grows much faster than the Ackermann function.

There is a close connection between reachability and the free commutative monoidal category
on a Petri net constructed in Lemma 9.

Proposition 21. If m and n are markings of a Petri net P, then n is reachable from m if and only if
there is a morphism f : m→ n in FP.

Proof. If n is reachable from m, there is a sequence of markings m=m1, . . . ,mk = n and firings
{(τi,mi,mi+1)}k−1i=1 . For each firing (τi,mi,mi+1), there is a morphism in FP given by

τi + 1mi−s(τi) : mi→mi+1.
Taking the composite of these morphisms gives a morphism f : m→ n in FP.

Conversely, if f : m→ n is a morphism in FP, it can be obtained by composition and addi-
tion (i.e., the tensor product) from morphisms arising from the basic transitions and symmetry
morphisms. Because+ is a functor, we have the interchange law

( f1 ◦ g1)+ ( f2 ◦ g2)= ( f1 + f2) ◦ (g1 + g2)

whenever f1, g1 and f2, g2 are pairs of composable morphisms in FP. We can use this inductively
to simplify f into a composite of sums. If f1 : a1→ b1 and f2 : a2→ b2 are morphisms in FP, the
interchange law also tells us that

f1 + f2 = ( f1 ◦ 1a1 )+ (1b2 ◦ f2)= ( f1 + 1b2 ) ◦ (1a1 + f2).

This fact allows us to inductively simplify f to a composite of sums each containing one transition.
The factors in this composite correspond to firings that make n reachable fromm. (Here, we allow
the possibility of an empty composite, which corresponds to an identity morphism.)

Definition 22. We define the reachability relation of an open Petri net

LX i �� P LYo��

to be the relation

�P= {(x, y) ∈N[X]×N[Y]| o(y) is reachable from i(x)} ⊆ N[X]×N[Y].

Note that �P depends on the whole open Petri net P : X� Y , not just its underlying Petri net
P. By Proposition 21,

�P= {(x, y) ∈N[X]×N[Y]| ∃h : F(i)(x)→ F(o)(y)}.
Here, F(i)(x) and F(o)(y) are objects of the category FP, and the reachability relation holds iff
there is a morphism in FP from the first of these to the second.

Theorem 23. There is a lax double functor � : Open(Petri)→Rel, called the reachability
semantics, that sends

• any object X to the underlying set of the free commutative monoid N[X], which we denote
simply as N[X],

• any vertical 1-morphism f : X→ Y to the underlying function of N[f ],

https://doi.org/10.1017/S0960129520000043 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000043


Mathematical Structures in Computer Science 333

• any horizontal 1-cell, that is, any open Petri net

LX i �� P LY ,o��

to the reachability relation�P.
• any 2-morphism α : P⇒ P′, that is any commuting diagram

LX

Lf
��

i �� P

α

��

LYo��

Lg
��

LX′ i′ �� P′ LY ′,o′��

to the square

N[X] N[Y]

N[X′] N[Y ′].

�P⊆ X× Y

N[g]N[f ]

�P′ ⊆ X′ × Y ′

Proof. We construct� as the composite G ◦Csp(F) where
Csp(F) : Open(Petri)→Open(CMC)

is the double functor constructed in Theorem 17 and
G : Open(CMC)→Rel

is defined as follows. Recall that we have categories of objects
Open(CMC)0 =Rel0 = Set.

We define G0 : Open(PetriCat)0→Rel0 to be the functor N : Set→ Set. We define
G1 : Open(CMC)1→Rel1 as follows:

N[X] N[Y]

N[X′] N[Y ′].

G1C⊆N[X]×N[Y]

N[g]N[f ]

G1C′ ⊆N[X′]×N[Y ′]

�→

L′X

L′X′ C′ L′Y ′

C L′Y
i o

i′ o′

L′ f L′gα

Recall that the set of objects of L′X isN[X] and the set of objects of L′Y isN[Y]. We define G1C to
be the relation

{(x, y) ∈ L′X× L′Y | h : i(x)→ o(y) for some h in C} ⊆ N[X]×N[Y]
and G1α to be the inclusion

(N[f ]×N[g])G1C⊆G1C′.
To see that this inclusion is well defined, suppose (x, y) ∈G1C. Then, there exists a morphism
h : i(x)→ o(y) in C. We thus have a morphism α(h) : α(i(x))→ α(o(y)) in C′. However, on
objects, we have α ◦ i= i′ ◦ L′f = i′ ◦N[f ] and similarly α ◦ o= o′ ◦N[g], so α(h) : i′(N[f ](x))→
o′(N[g](y)). It follows that (N[f ]×N[g])(x, y) ∈G1C′.

Next we prove that G is a lax double functor. First note that by construction we have the
following equalities:

S ◦G1 =G0 ◦ S, T ◦G1 =G0 ◦ T.

https://doi.org/10.1017/S0960129520000043 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000043


334 J.C. Baez and J. Master

Next we need the composition comparison required by Definition A.3. Suppose we compose
C : X� Y and D : Y � Z inOpen(CMC):

C+L′Y D

C

jC
�����������

D

jD
�����������

L′X

i1
��								

L′Y

o1
�����������

i2
�����������

L′Z.

o2
����������

We need to prove that

G1(D)�G1(C)⊆G1(D� C).

We have

G1(D� C)= {(x, z) ∈ L′X× L′Z | ∃h : jCi1(x)→ jDo2(z)}.
On the other hand,

G1C= {(x, y) ∈ L′X× L′Y | ∃m : i1(x)→ o1(y)}
and

G1D= {(y, z) ∈ L′Y × L′Z | ∃n : i2(y)→ o2(z)}
which compose to give the relation

G1D � G1C= {(x, z) ∈ L′X× L′Z | ∃y (x, y) ∈G1C and (y, z) ∈G1D}.
Suppose (x, z) ∈G1D�G1C. Then, there exist morphismsm : i1(x)→ o1(y) in C and n : i2(y)→
o2(z) inD. By commutativity of the pushout square, jCo1 = jDi2. Therefore, the codomain of jC(m)
is jCo1(y)= jDi2(y), which is also the domain of jD(n). This allows us to form the composite

jD(n) ◦ jC(m) : jCi1(x)→ jDo2(z).

Thus, (x, z) ∈G1(D� C) as desired.
We also need the identity comparison required by Definition A.3. Thus, we need

UG0(X) ⊆G1(UX)

for any set X. By definition, UX ∈Open(CMC)1 is the cospan

L′X 1 �� L′X L′X.1��

Because L′X has no nonidentity morphisms, G1 maps this to the identity relation on the set N[X].
On the other hand, G0(X)=N[X] and UG0(X) is the identity relation on this set. So, the desired
inclusion is actually an equality.

Finally, becauseRel is a degenerate double category, the composition and identity comparisons
for G are trivially natural transformations. For the same reason, the diagrams in Definition A.3
expressing compatibility with the associator, left unitor, and right unitor also commute trivially. It
follows that G is a lax double functor.

To complete the proof, one simply computes the composite�=G ◦Csp(F) and checks that it
matches the description in the theorem statement.

The reachability semantics is only lax: given two open Petri nets P : X� Y and Q : Y � Z, the
composite of �Q and �P is in general a proper subset of �(Q� P). To see this, take P to be this

https://doi.org/10.1017/S0960129520000043 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000043


Mathematical Structures in Computer Science 335

open Petri net:

A B

C

D

α

β

X
1

Y
2

3

4

and take Q to be this:

B

C

D E

γ

δ

Z

5

Y
2

3

4

Then, their composite, Q� P : X� Z, looks like this:

A B

C

D

α

β

X
1 B

C

D E

γ

δ

Z

5

We have
�P= {(n, n, 0, 0)| n ∈N} ⊆N×N

3

since tokens starting at A can only move to B, and similarly

�Q= {(0, 0, n, n)| n ∈N} ⊆N
3 ×N.

It follows that
�Q��P= {(0, 0)} ⊆N×N.

On the other hand,
�(Q� P)= {(n, n)| n ∈N} ⊆N×N

since in the composite open Petri net QP tokens can move from A to E. The point is that tokens
can only accomplish this by leaving the open Petri net P, going to Q, then returning to P, then
going to Q. The composite relation�Q ��P only keeps track of processes where tokens leave P,
move to Q, and never reenter P.

This makes it all the more impressive that the operational semantics
Open(F) : Open(Petri)→Open(CMC)

is not lax:
Open(Q� P)∼=Open(Q)�Open(P).

https://doi.org/10.1017/S0960129520000043 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000043


336 J.C. Baez and J. Master

We can see the difference in the example above: Open(Q)�Open(P) contains a morphism
δβγ α : A→ E which describes a process where tokens start in P, go to Q, then reenter P, and
finally end in Q.

On the other hand, the reachability semantics is maximally compatible with running Petri nets
in parallel:

Theorem 24. The reachability semantics� : Open(Petri)→Rel is symmetric monoidal.

Proof. Because Csp(F) is symmetric monoidal, it suffices to show that
G : Open(CMC)→Rel

is symmetric monoidal. This is simplified by that fact that Rel is a degenerate double category.
Following Definition A.7, it suffices to show that

• G0 : (Set,+)→ (Set,×) is symmetric monoidal,
• G1 : Open(CMC)1→Rel1 is symmetric monoidal,
• we have equations of monoidal functors

S ◦G1 =G0 ◦ S, T ◦G1 =G0 ◦ T,
• the composition and unit comparisons are monoidal natural transformations.

To show these things, first recall that G0 =N=K ◦ J where K : CommMon→ Set is the for-
getful functor and J : Set→ CommMon is its left adjoint. Since J is a left adjoint, it preserves finite
coproducts. Since K : CommMon→ Set is a right adjoint, it preserves finite products. However,
finite products in CommMon are also finite coproducts. Thus, G0 maps finite coproducts to finite
products and is thus a symmetric monoidal functor from (Set,+) to (Set,×).

Next, suppose we are given two open commutative monoidal categories

L′X i �� C L′Y ,o�� L′X′ i′ �� C′ L′Y ′.o′��

Their tensor product is

L′(X+ X′) i+i′
�� C+ C′ L′(Y + Y ′)o+o′

�� .

The set of objects of L′(X+ X′) is naturally isomorphic to N[X]×N[X′], and similarly for L′(Y +
Y ′), so we have natural isomorphisms

G1(C+ C′)∼=
{((x, x′, y, y′) ∈N[X]×N[X′]×N[Y]×N[Y ′] | ∃h : i(x)→ o(y) and ∃h′ : i′(x′)→ o′(y′)}

∼=G1(C)×G1(C′).
Using this fact, one can check that G1 is symmetric monoidal.

One can check that the equations S ◦G1 =G0 ◦ S and T ◦G1 =G0 ◦ T are equations of
monoidal functors, and the composition and unit comparisons of G are trivially monoidal natural
transformations because Rel is degenerate.

7. Conclusions
The ideas presented here can be adapted to handle timed Petri nets, colored Petri nets with
guards, and other kinds of Petri nets. One can also develop a reachability semantics for open
Petri nets that are glued together along transitions as well as places. We hope to treat some of
these generalizations in future work.

https://doi.org/10.1017/S0960129520000043 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000043


Mathematical Structures in Computer Science 337

It would be valuable to have �(QP)=�Q��P, since then the reachability relation for an
open Petri net could be computed compositionally, not merely “approximated from below” using
�Q��P⊆�(Q� P). We conjecture that�(Q� P)=�Q��P if P andQ are “one-way” open
Petri nets. Here, an open Petri net

LX i �� P LYo��

is one way if no place in the image of i appears in the target t(τ ) of any transition τ of P, and no
place in the image of o appears in the source s(τ ) of any transition τ of P. One-way open Petri nets
should be the horizontal 1-cells in a full subdouble category OneWay(Petri) of Open(Petri), and
we conjecture that the reachability semantics restricts to an actual (not merely lax) double functor

� : OneWay(Petri)→Rel.

Acknowledgements. We would like to thank Kenny Courser for help with double categories and for a careful reading of
this paper. We thank Christina Vasilakopoulou for spending many hours helping us figure out how to turn Petri nets into
commutative monoidal categories. We also thank Daniel Cicala, Joe Moeller, and Christian Williams for many insightful
conversations.

References
Baez, J. C. and Courser, K. (2018). Coarse-graining open Markov processes. Theory and Applications of Categories 33 (39)

1223–1268.
Baez, J. C. and Courser, K. (2019). Structured cospans. Available as arXiv:1911.04630.
Baez, J. C. and Pollard, B. (2017). A compositional framework for reaction networks. Reviews in Mathematical Physics 29 (09)

1750028.
Baldan, P., Bonchi, F., Gadducci F. and Monreale, G. V. (2015). Modular encoding of synchronous and asynchronous

interactions using open Petri nets. Science of Computer Programming 109 (2015) 96–124.
Baldan, P., Corradini, A., Ehrig, H. andHeckel, R. (2005). Compositional semantics for open Petri nets based on deterministic

processes.Mathematical Structures in Computer Science 15 (1) 1–35.
Bruni, R., Megratti, H. C. and Montanari, U. (2011). A connector algebra for P/T nets interactions. In: Concurrency Theory

(CONCUR’11), Lecture Notes in Computer Science, vol. 6901, Berlin, Springer, 312–326.
Bruni, R., Melgratti, H. C., Montanari U. and Sobociński, P. (2013). A connector algebra for C/E and P/T nets’ interactions.

Logical Methods in Computer Science 9 (2013) lmcs:883.
Bruni, R., Meseguer, J. and Montanari, U. (2002). Symmetric monoidal and cartesian double categories as a semantic

framework for tile logic.Mathematical Structures in Computer Science 12 (1) 53–90.
Bruni, R., Meseguer, J., Montanari, U. and Sassone, V. (2001). Functorial models for Petri nets. Information and Computation

170 (2) 207–236.
Burstall, R. M. and Rydeheard, D. E. (1988) Computational Category Theory, Englewood Cliffs, Prentice Hall.
Clerc, F., Humphrey, H. and Panangaden, P. (2017) Bicategories of Markov processes. In: Aceto, L., Bacci, G., Bacci, G.,

Ingólfsdóttir, A., Legay, A. andMardare, R. (eds.)Models, Algorithms, Logics and Tools, Lecture Notes in Computer Science,
vol. 10460, Berlin, Springer, 112–124.

Courser, K. (2017). A bicategory of decorated cospans. Theory and Applications of Categories 32 995–1027.
Czerwinski, W., Lasota, S., Lazic, R., Leroux, J. and Mazowiecki, F. (2018). The reachability problem for Petri nets is not

elementary. Available as arXiv:1809.07115.
Day, B. and Street, R. (1997). Monoidal bicategories and Hopf algebroids. Advances in Mathematics 129 (1) 99–157.
Degano, P., Meseguer, J. and Montanari, U. (1989). Axiomatizing net computations and processes. In Proceedings of the

Fourth Annual Symposium on Logic in Computer Science, New Jersey, IEEE, 175–185.
Ehresmann, C. (1963). Catégories structurées III: Quintettes et applications covariantes. Cahiers de Topologie et Géométrie

Différentielle 5 (3) 1–22.
Ehresmann, C. (1965). Catégories et Structures, Paris, Dunod.
Freyd, P. J. and Kelly, G. M. (1972). Categories of continuous functors, I. Journal of Pure and Applied Algebra 2 (3) 169–191.
Girault, C. and Valk, R. (2013). Petri Nets for Systems Engineering: a Guide to Modeling, Verification, and Applications, Berlin,

Springer.
Gorrieri, R. (2017). Process Algebras for Petri Nets—The Alphabetization of Distributed Systems, Berlin, Springer.
Grandis, M. and Paré, R. (1999). Limits in double categories. Cahiers de Topologie et Géométrie Différentielle 40 (3) 162–220.
Grandis, M. and Paré, R. (2004). Adjoints for double categories. Cahiers de Topologie et Géométrie Différentielle 45 (3) 193–

240.

https://doi.org/10.1017/S0960129520000043 Published online by Cambridge University Press

https://arxiv.org/abs/1911.04630
https://arxiv.org/abs/1809.07115
https://doi.org/10.1017/S0960129520000043


338 J.C. Baez and J. Master

Jensen, K. and Kristensen, L. M. (2009).Coloured Petri Nets: Modelling and Validation of Concurrent Systems, Berlin, Springer.
Lerman, E. (2018). Networks of open systems. Journal of Geometry and Physics 130 81–112.
Lerman, E. and Spivak, D. (2016). An algebra of open continuous time dynamical systems and networks. Available as

arXiv:1602.01017.
Leroux, J. and Schmitz, S. (2015). Demystifying reachability in vector addition systems. In: LICS’15: 30th Annual ACM/IEEE

Symposium on Logic in Computer Science, New Jersey, IEEE, 56–67.
Lipton, R. (1976). The Reachability Problem is Exponential-Space-Hard. Technical Report 62 (1), Department of Computer

Science, Yale University.
Mac Lane, S. (1998) Categories for the Working Mathematician, Berlin, Springer.
Master, J. (2019). Generalized Petri nets. Available as arXiv:1904.09091
Mayr, E. (1984). An algorithm for the general Petri net reachability problem. SIAM Journal on Computing 13 (3) 441–460.
Meseguer, J. and Montanari, U. (1990). Petri nets are monoids. Information and Computation 88 (2) 105–155.
Ngotiaoco, T. (2017). Compositionality of the Runge–Kutta method. Available as arXiv:1707.02804.
Peterson, J. L. (1981). Petri Net Theory and the Modeling of Systems, New Jersey, Prentice Hall.
Rathke, J., Sobociński, P. and Stephens, O. (2014). Compositional reachability in Petri nets. In: International Workshop on

Reachability Problems, Lecture Notes in Computer Science, vol. 8762, Berlin, Springer.
Sassone, V. (1994). Strong concatenable processes: an approach to the category of Petri net computations. BRICS Report

Series, Department of Computer Science. University of Aarhus.
Sassone, V. (1995). On the category of Petri net computations. In: CAAP’92: 17th Colloquium on Trees in Algebra and

Programming, Lecture Notes in Computer Science, vol. 581, Berlin, Springer.
Sassone, V. (1996) An axiomatization of the algebra of Petri net concatenable processes. Theoretical Computer Science 170

(1–2) 277–296.
Sassone, V. and Sobociński, P. (2005). A congruence for Petri nets. Electronic Notes in Theoretical Computer Science 127

107–120.
Shulman, M. (2010). Constructing symmetric monoidal bicategories. Available as arXiv:1004.0993.
Sobociński, P. and Stephens, O. (2013). Reachability via compositionality in Petri nets. Available as arXiv:1303.1399.
Stay, M. (2016). Compact closed bicategories. Theory and Applications of Categories 31 (26) 755–798.
Trimble, T. (2009). Multisorted Lawvere theories. nLab.
van Glabbeek, R. J. and Plotkin, G. D. (2009). Configuration structures, event structures and Petri nets. Theoretical Computer

Science 410 (41) 4111–4159.

Appendix A. Double Categories
What follows is a brief introduction to double categories. Amore detailed exposition can be found
in Grandis and Paré (1999, 2004), and for monoidal double categories in Shulman (2010). We use
“double category” to mean what earlier authors called a “pseudo double category.”

Definition A.1. A double category is a category weakly internal to Cat. More explicitly, a double
category D consists of

• a category of objects D0 and a category of arrows D1,
• source and target functors

S, T : D1→D0,

an identity-assigning functor
U : D0→D1,

and a composition functor
�: D1 ×D0 D1→D1,

where the pullback is taken over D1
T−→D0

S←−D1, such that
S(UA)=A= T(UA), S(M�N)= SN, T(M�N)= TM,

• natural isomorphisms called the associator

αN,N′,N′′ : (N �N′)�N′′ ∼−→N � (N′ �N′′),

https://doi.org/10.1017/S0960129520000043 Published online by Cambridge University Press

http://arxiv.org/abs/1602.01017
https://arxiv.org/abs/1904.09091
https://arxiv.org/abs/1707.02804
https://arxiv.org/abs/1004.0993
https://arxiv.org/abs/1303.1399
https://doi.org/10.1017/S0960129520000043


Mathematical Structures in Computer Science 339

the left unitor

λN : UT(N) �N ∼−→N,
and the right unitor

ρN : N �US(N)
∼−→N

such that S(α), S(λ), S(ρ), T(α), T(λ), and T(ρ) are all identities and such that the standard
coherence axioms hold: the pentagon identity for the associator and the triangle identity for the
left and right unitor (Mac Lane, 1998, Section VII.1).

If α, λ, and ρ are identities, we call D a strict double category.
Objects of D0 are called objects, and morphisms in D0 are called vertical 1-morphisms.

Objects of D1 are called horizontal 1-cells of D and morphisms in D1 are called 2-morphisms. A
morphism α : M→N in D1 can be drawn as a square:

A B

C D

⇓ α

M

gf

N

where f = Sα and g = Tα. If f and g are identities, we call α a globular 2-morphism. These give
rise to a bicategory:

Definition A.2. Let D be a double category. Then, the horizontal bicategory of D, denoted H(D),
is the bicategory consisting of objects, horizontal 1-cells, and globular 2-morphisms of D.

We have maps between double categories and also transformations between maps:

Definition A.3. Let A and B be double categories. A double functor F : A→B consists of

• functors F0 : A0→B0 and F1 : A1→B1 obeying the following equations:
S ◦ F1 = F0 ◦ S, T ◦ F1 = F0 ◦ T,

• natural isomorphisms called the composition comparison:

φ(N,N′) : F1(N)� F1(N′)
∼−→ F1(N �N′)

and the identity comparison:

φA : UF0(A)
∼−→ F1(UA)

whose components are globular 2-morphisms,

such that the following diagram commmute:

• a diagram expressing compatibility with the associator:

(F1(N)� F1(N′))� F1(N′′)

φ(N,N′)�1
��

α �� F1(N)� (F1(N′)� F1(N′′))

1�φ(N′,N′′)
��

F1(N �N′)� F1(N′′)

φ(N�N′,N′′)
��

F1(N)� F1(N′ �N′′)

φ(N,N′�N′′)
��

F1((N �N′)�N′′) F1(α) �� F1(N � (N′ �N′′))

https://doi.org/10.1017/S0960129520000043 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000043


340 J.C. Baez and J. Master

• two diagrams expressing compatibility with the left and right unitors:

F1(N)�UF0(A)

F1(N)� F1(UA)

F1(N)

F1(N �UA)

1� φA F1(ρN )

ρF1 (N)

φ(N,UA)

UF0(B) � F1(N)

F1(UB)� F1(N)

F1(N)

F1(UB �N).

φB � 1

φ(UB ,N)

λF1 (N)

F1(λN )

If the 2-morphisms φ(N,N′) and φA are identities for all N,N′ ∈A1 and A ∈A0, we say F : A→B

is a strict double functor. If on the other hand we drop the requirement that these 2-morphisms be
invertible, we call F a lax double functor.

DefinitionA.4. Let F : A→B and G : A→B be lax double functors. A transformation β : F⇒G
consists of natural transformations β0 : F0⇒G0 and β1 : F1⇒G1 (both usually written as β) such
that

• S(βM)= βSM and T(βM)= βTM for any object M ∈ A1,
• β commutes with the composition comparison, and
• β commutes with the identity comparison.

Shulman defines a 2-category Dbl of double categories, double functors, and transformations
(Shulman 2010). This has finite products. In any 2-category with finite products, we can define a
pseudomonoid (Day and Street 1997), which is a categorification of the concept of monoid. For
example, a pseudomonoid in Cat is a monoidal category.

Definition A.5. A monoidal double category is a pseudomonoid in Dbl. Explicitly, a monoidal
double category is a double category equipped with double functors⊗: D×D→D and I : ∗→D,
where ∗ is the terminal double category, along with invertible transformations called the associator:

A : ⊗ ◦ (1D ×⊗)⇒⊗ ◦ (⊗×1D),
left unitor:

L : ⊗ ◦ (1D × I)⇒ 1D,

and right unitor:

R : ⊗ ◦ (I × 1D)⇒ 1D
satisfying the pentagon axiom and triangle axioms.

This definition neatly packages a large quantity of information. Namely,

• D0 and D1 are both monoidal categories.
• If I is the monoidal unit of D0, then UI is the monoidal unit of D1.
• The functors S and T are strict monoidal.

https://doi.org/10.1017/S0960129520000043 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000043


Mathematical Structures in Computer Science 341

• ⊗ is equipped with composition and identity comparisons

χ : (M1 ⊗N1)� (M2 ⊗N2)
∼−→ (M1 �M2)⊗ (N1 �N2)

μ : UA⊗B
∼−→ (UA ⊗UB)

making three diagrams commute as in Definition A.3.
• The associativity isomorphism for⊗ is a transformation between double functors.
• The unit isomorphisms are transformations between double functors.

DefinitionA.6. A braidedmonoidal double category is a monoidal double category equipped with
an invertible transformation

β : ⊗⇒⊗◦ τ

called the braiding, where τ : D×D→D×D is the twist double functor sending pairs in the object
and arrow categories to the same pairs in the opposite order. The braiding is required to satisfy the
usual two hexagon identities (Mac Lane, 1998, Section XI.1). If the braiding is self-inverse, we say
that D is a symmetric monoidal double category.

In other words:

• D0 and D1 are braided (respectively, symmetric) monoidal categories,
• the functors S and T are strict braided monoidal functors, and
• the braiding is a transformation between double functors.

Definition A.7. A monoidal lax double functor F : D→D between monoidal double categories
D and D is a lax double functor F : D→D such that

• F0 and F1 are monoidal functors,
• SF1 = F0S and TF1 = F0T are equations between monoidal functors, and
• the composition and unit comparisons φ(N1,N2) : F1(N1)� F1(N2)→ F1(N1 �N2) and

φA : UF0(A)→ F1(UA) are monoidal natural transformations.

The monoidal lax double functor is braided if F0 and F1 are braided monoidal functors and
symmetric if they are symmetricmonoidal functors.

Cite this article: Baez JC and Master J (2020). Open Petri nets. Mathematical Structures in Computer Science 30, 314–341.
https://doi.org/10.1017/S0960129520000043

https://doi.org/10.1017/S0960129520000043 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000043
https://doi.org/10.1017/S0960129520000043

	Open Petri nets
	Introduction
	From Petri Nets to Commutative Monoidal Categories
	Open Petri Nets
	The Operational Semantics
	The Double Category of Relations
	The Reachability Semantics
	Conclusions
	Double Categories



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage false
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


