SHARP CONSTANTS IN HIGHER-ORDER HEAT KERNEL BOUNDS

NICK DUNGEY

We consider a space X of polynomial type and a self-adjoint operator on $L^2(X)$ which is assumed to have a heat kernel satisfying second-order Gaussian bounds. We prove that any power of the operator has a heat kernel satisfying Gaussian bounds with a precise constant in the Gaussian. This constant was previously identified by Barbatis and Davies in the case of powers of the Laplace operator on \mathbb{R}^N . In this case we prove slightly sharper bounds and show that the above-mentioned constant is optimal.

1. INTRODUCTION

In [1] Barbatis and Davies considered the problem of obtaining sharp constants in Gaussian heat kernel bounds for a class of higher order elliptic operators acting on $L^2(\mathbf{R}^N)$. In particular, they obtained the following result. Let $K_t^{(m)}$ denote the heat kernel for the operator $\Delta^{m/2}$, where $\Delta = -\sum_{j=1}^N \partial_j^2$ is the ordinary Laplacian on \mathbf{R}^N and m is a positive even integer with m > N. Then for each r > 1 there exists $c_r > 0$, depending only on m, N, and r, such that

(1)
$$\left|K_{t}^{(m)}(x;y)\right| \leq c_{r} t^{-N/m} e^{-(b_{m}/r)(d(x;y)^{m}/t)^{1/(m-1)}} \quad x, y \in \mathbf{R}^{N}, t > 0,$$

where the constant b_m is given by

(2)
$$b_m = (m-1) m^{-m/(m-1)} \sin(\pi/(2m-2))$$

and $d(x; y) = \left(\sum_{j=1}^{N} (x_j - y_j)^2\right)^{1/2}$ is the Euclidean distance.

In this paper, we improve this result in two directions. In Section 2, we prove Theorem 1, which may roughly be stated as follows. Let H be a nonnegative selfadjoint operator on $L^2(X;\mu)$ for a measure space (X,μ) with a metric d which satisfies a uniform condition of polynomial growth. If the heat kernel for H satisfies second-order

Received 12th April, 1999

I would like to thank Derek Robinson and Tom ter Elst for their encouragement during this work and for critically commenting on the manuscript. The proof of Theorem 1 is based on their work, notes of which they generously shared with me. Alan McIntosh made some suggestions to improve the clarity of the exposition.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/00 \$A2.00+0.00.

Gaussian bounds with a factor which may be chosen arbitrarily close to $b_2 = 1/4$ in the exponential, then the heat kernel for $H^{m/2}$ satisfies *m*-th order Gaussian bounds with a factor arbitrarily close to b_m in the exponential. Thus the constant b_m is typical for powers of a general class of self-adjoint operators. This is not clear from the analysis of [1], which uses the Fourier theory of $L^2(\mathbf{R}^N)$.

The second-order Gaussian bounds with a factor arbitrarily close to 1/4 are characteristic for a variety of second-order elliptic, or subelliptic, differential operators over manifolds. For example, second-order uniformly elliptic operators in divergence form with real measurable symmetric coefficients on \mathbb{R}^N , and left-invariant sublaplacians on Lie groups of polynomial growth, satisfy the assumptions of Theorem 1 [3, 6, 8].

Robinson and ter Elst showed in unpublished work that Gaussian bounds for powers of an operator may be deduced from second-order Gaussian bounds for the operator itself. A similar result, under different hypotheses, was proved by Saloff-Coste [7]. Robinson and ter Elst's proof used a Cauchy integral representation for the semigroup $S_t^{(m)} = e^{-tH^{m/2}}$ together with a partial fraction decomposition of the resolvent of $H^{m/2}$ in terms of the resolvent of H (a similar decomposition was previously used in [5]). Our proof of Theorem 1 follows their method, but in order to obtain the sharp constant b_m we need more precise bounds on the kernel of the resolvent (see Lemma 5 below) and more careful choices of certain parameters.

In Section 3 we return to the special case of the operator $\Delta^{m/2}$ on \mathbb{R}^N . Using Fourier theory we prove that (1) holds with r = 1, and for all m and N without the restriction m > N of [1]. Finally we confirm the conjecture of [1] that the constant b_m is optimal, by showing that the bounds (1) cannot hold when 0 < r < 1.

2. POWERS OF SELF-ADJOINT OPERATORS

Let (X, d) be a metric space and μ a positive measure on X. We assume that the ball $B(x;r) = \{ y \in X : d(x;y) < r \}$ is μ -measurable for each $x \in X$ and r > 0, and set $V(x;r) = \mu(B(x;r))$. We further assume that the space has uniform polynomial growth, in the sense that there are integers $D' \ge 1$ and $D \ge 0$ such that

$$C^{-1} r^{D'} \leq V(x;r) \leq C r^{D'}, \quad 0 < r \leq 1,$$

$$C^{-1} r^{D} \leq V(x;r) \leq C r^{D}, \quad r \geq 1,$$

for some C > 0 and all x. (The integers D' and D are often called the dimensions at zero and infinity respectively.) Then μ is σ -finite, because $X = \bigcup_{n=1}^{\infty} B(x_0; n)$ is a countable union of balls. The volume growth of balls is measured by the function V defined by $V(r) = r^{D'}$ or $V(r) = r^{D}$ according as 0 < r < 1 or $r \ge 1$.

Let *H* be a nonnegative self-adjoint operator on $L^2 = L^2(X; \mu)$. Then *H* generates a holomorphic semigroup $S_z = e^{-zH}$ on L^2 , defined for all $z \in \mathbb{C}$ with $\operatorname{Re} z > 0$. We assume that S_t has a continuous kernel $K_t : X \times X \to \mathbb{C}$ for each t > 0 which satisfies Gaussian bounds with a factor arbitrarily close to 1/4 in the exponential. That is,

$$(S_t f)(x) = \int_X d\mu(y) K_t(x; y) f(y) , \quad f \in L^2 ,$$

and for each r > 1 there exists $c_r > 0$ such that

$$|K_t(x;y)| \leq c_r V(t)^{-1/2} e^{-d^2/(4rt)}$$

for all t > 0 and $x, y \in X$. Here, as elsewhere, we abbreviate d(x; y) as d. Let m be a positive even integer. Then the operator $H^{m/2}$ is nonnegative self-adjoint on L^2 and generates a semigroup $S_t^{(m)} = e^{-tH^{m/2}}$ on L^2 .

THEOREM 1. Suppose that (X, d, μ) , and H acting on $L^2(X; \mu)$, satisfy the above assumptions, and let $m \ge 4$ be an even integer. Then the semigroup $S_t^{(m)} = e^{-tH^{m/2}}$ has an integral kernel $K_t^{(m)}$. Moreover for each r > 1 there exists $c'_r > 0$, depending on (X, d, μ) , H, m, and r, such that

$$\left|K_{t}^{(m)}(x;y)\right| \leq c_{r}' V(t)^{-1/m} e^{-(b_{m}/r)} (d^{m}/t)^{1/(m-1)}, \qquad d = d(x;y),$$

for all t > 0 and $x, y \in X$.

The first step in the proof of Theorem 1 is to derive uniform bounds.

LEMMA 2. The semigroup $S_t^{(m)}$ has an integral kernel $K_t^{(m)}$ satisfying bounds

$$\left|K_t^{(m)}(x\,;y)\right| \leqslant c \, V(t)^{-1/m}$$

for all t > 0 and $x, y \in X$.

PROOF: Let $\|\cdot\|_{p\to q}$ denote the norm of a bounded linear operator from $L^p(X;\mu)$ to $L^q(X;\mu)$. Then

$$||S_t||_{2\to\infty} \leq \sup_{x\in X} \left(\int d\mu(y) \left|K_t(x;y)\right|^2\right)^{1/2} \leq c V(t)^{-1/4}$$

where the second inequality follows from the Gaussian bounds on K by a quadrature argument (see for example [4, Proposition 2.1]). Fix k > N/2, where $N = D' \vee D$. For each $\rho > 0$ one has the identity

$$(I+\rho H)^{-k/2} = \Gamma(k/2)^{-1} \int_0^\infty dt \, e^{-t} t^{-1+(k/2)} \, S_{t\mu}$$

and using a volume inequality $V(t\rho)^{-1/4} \leqslant c \left(1 + t^{-N/4}\right) V(\rho)^{-1/4}$ one finds that

$$\left\| \left(I + \rho H \right)^{-k/2} \right\|_{2 \to \infty} \leq c' \, V(\rho)^{-1/4} \, \int_0^\infty dt \, e^{-t} t^{1+(k/2)} \left(1 + t^{-N/4} \right) = c'' \, V(\rho)^{-1/4}$$

for all $\rho > 0$. Using this estimate and spectral theory gives

$$\left\|S_{t}^{(m)}\right\|_{2\to\infty} \leq \left\|\left(I+t^{2/m}H\right)^{-k/2}\right\|_{2\to\infty} \left\|\left(I+t^{2/m}H\right)^{k/2}S_{t}^{(m)}\right\|_{2\to2} \leq c'V(t)^{-1/(2m)}$$

Therefore

$$\left\|S_{t}^{(m)}\right\|_{1\to\infty} \leqslant \left(\left\|S_{t/2}^{(m)}\right\|_{2\to\infty}\right)^{2} \leqslant c V(t)^{-1/m}$$

and the lemma follows by the Dunford-Pettis Theorem.

To derive Gaussian bounds, following an unpublished argument of ter Elst and Robinson, we first reduce to the case where $D' = D \ge 4$.

LEMMA 3. If Theorem 1 holds when $D' = D \ge 4$, then it holds generally.

PROOF: Suppose that the quadruple (X, d, μ, H) satisfies the assumptions of Theorem 1. If D' > D define $X_2 = G^{D'-D} \times \mathbf{R}^3$ where G is the three-dimensional Heisenberg group, if D' < D define $X_2 = \mathbf{T}^{D-D'} \times \mathbf{R}^3$ and if D' = D define $X_2 = \mathbf{R}^3$. Then X_2 is a Lie group and we let μ_2 be the (bi-invariant) Haar measure on X_2 . Choose left-invariant vector fields A_1, \ldots, A_k which form a vector space basis for the Lie algebra of X_2 , and let d_2 be the left-invariant distance and $H_2 = -\sum_{j=1}^k A_j^2$ the Laplacian associated with this choice. Then (X_2, d_2, μ_2, H_2) satisfies the assumptions of Theorem 1; in particular, the kernel $K_{2,t}$ of e^{-tH_2} satisfies Gaussian bounds with a factor arbitrarily close to 1/4 [6, 8]. If D'_2 and D_2 are the dimensions at zero and infinity of (X_2, d_2, μ_2) then $D'_2 + D' = D_2 + D \ge 4$. Moreover, since $H_2^{m/2} 1 = 0$ it follows that $1 = (S_{2,t}^{(m)} 1)(x_2) = \int_{X_2} d\mu_2(y_2) K_{2,t}^{(m)}(x_2; y_2)$ for all $x_2 \in X_2$, where $K_{2,t}^{(m)}$ is the kernel of $S_{2,t}^{(m)} = e^{-tH_2^{m/2}}$.

Now define $\widetilde{X} = X \times X_2$ and let $\widetilde{d}((x, x_2); (y, y_2))^2 = d(x; y)^2 + d_2(x_2; y_2)^2$ for (x, x_2) , $(y, y_2) \in \widetilde{X}$. Let $\widetilde{\mu} = \mu \times \mu_2$ be the product measure on \widetilde{X} , and set $\widetilde{H} = H \otimes I + I \otimes H_2$, where we have identified $L^2(\widetilde{X}) = L^2(X) \otimes L^2(X_2)$. Then the quadruple $(\widetilde{X}, \widetilde{d}, \widetilde{\mu}, \widetilde{H})$ satisfies the assumptions of Theorem 1, and moreover the dimensions at zero and infinity of $(\widetilde{X}, \widetilde{d}, \widetilde{\mu})$ are equal and not less than 4. Thus by assumption, the kernel $\widetilde{K}_t^{(m)}$ of $\widetilde{S}_t^{(m)} = e^{-t\widetilde{H}^{m/2}}$ satisfies Gaussian bounds with a factor arbitrarily close to b_m . One easily sees that

$$\widetilde{K}_{t}^{(m)}((x, x_{2}); (y, y_{2})) = K_{t}^{(m)}(x; y) K_{2,t}^{(m)}(x_{2}; y_{2})$$

for all $x, y \in X$ and $x_2, y_2 \in X_2$. Since $\int_{X_2} d\mu_2(y_2) K_{2,t}^{(m)}(x_2; y_2) = 1$ we obtain

$$K_{t}^{(m)}(x;y) = \int_{X_{2}} d\mu_{2}(y_{2}) \widetilde{K}_{t}^{(m)}((x,x_{2});(y,y_{2}))$$

But for any r > 1 and $r' \in (1, r)$, the kernel $\widetilde{K}^{(m)}$ satisfies bounds

$$\begin{aligned} \left| \widetilde{K}_{t}^{(m)} \left((x, x_{2}); (y, y_{2}) \right) \right| &\leq c_{r'} \widetilde{V}(t)^{-1/m} e^{-(b_{m}/r') \left(\widetilde{d}^{m}/t \right)^{1/(m-1)}} \\ &\leq c_{r'} V(t)^{-1/m} e^{-(b_{m}/r) (d^{m}/t)^{1/(m-1)}} V_{2}(t)^{-1/m} e^{-\varepsilon \left(d_{2}^{m}/t \right)^{1/(m-1)}} \end{aligned}$$

0

where $\varepsilon = (b_m/r') - (b_m/r) > 0$. Integrating these bounds over X_2 with respect to y_2 yields Gaussian bounds on $K_t^{(m)}$ with a factor of b_m/r , as required.

In the remainder of the proof of Theorem 1 we shall assume that $D' = D \ge 4$, so that $V(r) = r^D$ for all r > 0.

LEMMA 4. The operator $S_z = e^{-zH}$ has a kernel K_z satisfying bounds

$$\left|K_{z}(x;y)\right| \leq c_{r} (\operatorname{Re} z)^{-D/2} e^{-\operatorname{Re}\{d^{2}/(4rz)\}} = c_{r} |z|^{-D/2} (\cos \theta)^{-D/2} e^{-\cos \theta \, d^{2}/(4r|z|)}$$

for all $z \in \mathbf{C}$ with $\operatorname{Re} z > 0$ and $\theta = \arg z$, all r > 1 and all $x, y \in X$.

PROOF: The existence of the kernel K_z , and uniform bounds on K_z , follow from bounds

$$\begin{split} \|e^{-zH}\|_{1\to\infty} &\leq \left\|e^{-(t/2)H}\right\|_{2\to\infty} \|e^{-isH}\|_{2\to2} \left\|e^{-(t/2)H}\right\|_{1\to2} \\ &\leq \left(\left\|e^{-(t/2)H}\right\|_{2\to\infty}\right)^2 \leq c \, t^{-D/2} = c \, (\operatorname{Re} z)^{-D/2} \end{split}$$

where z = t + is with t > 0, $s \in \mathbb{R}$. Then the lemma is obtained by a complex-analytic argument as in [3, Theorem 3.4.8].

For $\lambda \in \mathbf{C} - (-\infty, 0]$ we let $R_{\lambda}(\cdot; \cdot)$ denote the integral kernel of $(\lambda I + H)^{-1}$.

LEMMA 5. For any $\rho \in [0, \pi)$, and any q > 1, there is a $c = c(\rho, q) > 0$ such that

$$\left|R_{\lambda}(x;y)\right| \leq c d^{-D+2} e^{-|\lambda|^{1/2}q^{-1}\cos(\theta/2)d}$$

for all $\lambda \in \mathbf{C} - \{0\}$ with $\theta = \arg \lambda \in [-\rho, \rho]$ and all $x, y \in X$.

PROOF: Write $\lambda = Re^{i\theta}$ where $R > 0, \theta \in [0, \rho]$. (Because of the reflection relation $R_{\overline{\lambda}}(x, y) = \overline{R_{\lambda}(y, x)}$, it is sufficient to prove the lemma for such θ .) Let $\tau \in [0, \pi/2)$ be such that $0 \leq \theta - \tau < \pi/2$, and set $\lambda' = Re^{i\tau}$. Then

$$(\lambda I + H)^{-1} = e^{-i(\theta - \tau)} \left(\lambda' I + e^{-i(\theta - \tau)} H \right)^{-1} = e^{-i(\theta - \tau)} \int_0^\infty dt \, e^{-\lambda' t} \, S_{te^{-i(\theta - \tau)}}$$

Thus applying Lemma 4, and a change of variable $s = d^{-2}t$,

$$\begin{aligned} \left| R_{\lambda}(x;y) \right| &\leq \int_{0}^{\infty} dt \left| e^{-\lambda' t} \right| \left| K_{te^{-i(\theta-\tau)}}(x;y) \right| \\ &\leq \int_{0}^{\infty} dt \, e^{-Rt\cos\tau} c_{r} \left(t\cos\left(\theta-\tau\right) \right)^{-D/2} e^{-(4r)^{-1}\cos\left(\theta-\tau\right) \left(d^{2}/t \right)} \\ &= c_{r} \left(\cos\left(\theta-\tau\right) \right)^{-D/2} d^{-D+2} \int_{0}^{\infty} ds \, s^{-D/2} e^{-Rd^{2}s\cos\tau - (4r)^{-1}\cos\left(\theta-\tau\right) s^{-1}} \\ &= c_{r} \left(\cos\left(\theta-\tau\right) \right)^{-D/2} d^{-D+2} \\ &\quad \cdot \int_{0}^{\infty} ds \, s^{-D/2} e^{-Rd^{2}s\cos\tau - \delta(4r)^{-1}\cos\left(\theta-\tau\right) s^{-1}} e^{-(1-\delta)(4r)^{-1}\cos\left(\theta-\tau\right) s^{-1}} \end{aligned}$$

for arbitrary r > 1 and $\delta \in (0, 1)$. But for every s > 0, one has

$$Rd^2s\cos\tau + \delta(4r)^{-1}\cos\left(\theta - \tau\right)s^{-1} \ge \left(R\delta/r\right)^{1/2}\left(\cos\tau\cos\left(\theta - \tau\right)\right)^{1/2}d$$

and hence

$$\begin{aligned} \left| R_{\lambda}(x;y) \right| &\leq c_{\tau} \left(\cos\left(\theta - \tau\right) \right)^{-D/2} d^{-D+2} \exp\left(-(R\delta/r)^{1/2} \left(\cos\tau\cos\left(\theta - \tau\right) \right)^{1/2} d \right) \\ &\quad \cdot \int_{0}^{\infty} ds \, s^{-D/2} e^{-(1-\delta)(4\tau)^{-1}\cos\left(\theta - \tau\right)s^{-1}} \end{aligned}$$

Now choose $\tau = \theta/2$ to maximise the function $\tau \mapsto \cos \tau \cos (\theta - \tau)$ on $[0, \theta]$. Since r and δ may be chosen arbitrarily close to 1, the lemma follows.

Henceforth we assume x, y and t > 0 are such that $d(x; y) \ge t^{1/m}$ and prove the bounds of Theorem 1 under this assumption. This will complete the proof of Theorem 1, since the bounds for $d(x; y) \le t^{1/m}$ follow from Lemma 2.

Let $\sigma \in (\pi/2, \pi)$ and R > 0 and define the contour $\Gamma = \Gamma(R, \sigma)$ in the complex plane by $\Gamma = L_+ \cup A \cup L_-$, where $L_{\pm} = \{\lambda \in \mathbf{C} : \arg \lambda = \pm \sigma, |\lambda| \ge R\}$ and $A = \{\lambda \in \mathbf{C} : |\arg \lambda| \le \sigma, |\lambda| = R\}$. Here Γ is oriented to run along L_- towards the origin, then anti-clockwise around A and along L_+ away from the origin. Then one has the Cauchy integral representation

$$S_t^{(m)} = \frac{1}{2\pi i} \int_{\Gamma} d\lambda \, e^{\lambda t} (\lambda I + H^n)^{-1}$$

where n = m/2 (see [2, Section 2.5], or [9, Chapter IX]). If $\lambda \in \mathbb{C} - \{0\}$ and $\alpha \in (0, 1)$ define $\lambda^{\alpha} = |\lambda|^{\alpha} e^{i\alpha \arg \lambda}$ and let $-\lambda_1, \ldots, -\lambda_n$ be the *n*-th roots of $-\lambda$. More precisely, let $\lambda_k = -e^{-\pi i/n} \lambda^{1/n} \omega^k$ for $k \in \{1, \ldots, n\}$, where $\omega = e^{2\pi i/n}$. Then one has the partial fraction decomposition

$$(\lambda I + H^n)^{-1} = (\lambda_1 I + H)^{-1} \dots (\lambda_n I + H)^{-1} = \sum_{k=1}^n c_k (\lambda^{1/n})^{1-n} (\lambda_k I + H)^{-1}$$

where one may calculate $c_k = -e^{-\pi i/n} \prod_{1 \le l \le n, l \ne k} (\omega^k - \omega^l)^{-1}$. Combining this with the Cauchy integral representation yields

(3)
$$\left| K_{t}^{(m)}(x;y) \right| \leq (2\pi)^{-1} \sum_{k=1}^{n} |c_{k}| \int_{\Gamma} d|\lambda| |e^{\lambda t}||\lambda|^{-1+(1/n)} |R_{\lambda_{k}}(x;y)|$$

We shall use Lemma 5 to bound the right hand side. First observe that if $\lambda \in \mathbb{C} - \{0\}$ and the λ_k are as above, then $\pi - |\arg \lambda_k| \ge (\pi - |\theta|)/n$, where $\theta = \arg \lambda$. Hence $|\arg \lambda_k|/2 \le (\pi/2) - (\pi - |\theta|)/m$ and

(4)
$$\cos((\arg \lambda_k)/2) \ge \cos(\pi/2 - (\pi - |\theta|)/m) = \sin((\pi - |\theta|)/m)$$

Also, $|\lambda_k| = |\lambda|^{1/n}$. Therefore by Lemma 5, for an arbitrary q > 1 there is an a > 0, depending on q and σ , such that

$$\begin{split} \int_{A} d|\lambda| \, |e^{\lambda t}||\lambda|^{-1+(1/n)} \Big| R_{\lambda_{k}}(x\,;y) \Big| &\leq a \, \int_{-\sigma}^{\sigma} d\theta \, Re^{Rt\cos\theta} R^{-1+(1/n)} d^{-D+2} e^{-q^{-1}R^{1/m}\sin((\pi-|\theta|)/m)d} \\ &= 2a \, d^{-D+2} R^{1/n} \, \int_{0}^{\sigma} d\theta \, e^{Rt\cos\theta - q^{-1}R^{1/m}\sin((\pi-\theta)/m)d} \, . \end{split}$$

Now choose $R = (qm)^{-m/(m-1)} (d/t)^{m/(m-1)}$ and use the assumptions $D \ge 4$ and $d \ge t^{1/m}$ to obtain

(5)
$$\int_{A} d|\lambda| |e^{\lambda t}||\lambda|^{-1+(1/n)} |R_{\lambda_{k}}(x;y)| \leq a_{1} t^{-D/m} \int_{0}^{\sigma} d\theta \, e^{-(qm)^{-m/(m-1)} G(\theta)(d^{m}/t)^{1/(m-1)}}$$

where a_1 depends on q and σ , and $G(\theta) = m \sin((\pi - \theta)/m) - \cos \theta$ for $0 \le \theta \le \pi$. Let $\delta \in (0, 1)$ be arbitrary. To estimate the integral over L_{\pm} we use Lemma 5, (4) and our choice of R:

$$\begin{aligned} \int_{L_{\pm}} d|\lambda| \, |e^{\lambda t}||\lambda|^{-1+(1/n)} \Big| R_{\lambda_k}(x,y) \Big| &\leq \int_R^{\infty} d\tau \, e^{\tau t \cos \sigma} \tau^{-1+(1/n)} \, a \, d^{-D+2} e^{-q^{-1} \tau^{1/m} \sin((\pi-\sigma)/m)d} \\ &\leq a \, d^{-D+2} \exp\left(\delta \left\{ Rt \cos \sigma - q^{-1} R^{1/m} \sin\left(\frac{\pi-\sigma}{m}\right)d\right\} \right) \\ &\quad \cdot \int_R^{\infty} d\tau \, e^{(1-\delta)\tau t \cos \sigma} \tau^{-1+(1/n)} \\ &\leq a \, d^{-D+2} \, \exp\left(\delta \left\{ Rt \cos \sigma - q^{-1} R^{1/m} \sin\left(\frac{\pi-\sigma}{m}\right)d\right\} \right) \\ &\quad \cdot t^{-1/n} \, \int_0^{\infty} d\nu \, e^{(1-\delta)\nu \cos \sigma} \nu^{-1+(1/n)} \\ &\leq a_2 \, t^{-D/m} \, e^{-(qm)^{-m/(m-1)} \, \delta G(\sigma)(d^m/t)^{1/(m-1)}} \end{aligned}$$

where $a_2 = a \int_0^\infty d\nu \, e^{(1-\delta)\nu \cos \sigma} \nu^{-1+(1/n)}$ depends on q, σ and δ . Next we minimise G.

LEMMA 6. Let $\theta_0 = (m-2)\pi/(2m-2)$, $\theta_1 = (m+2)\pi/(2m+2)$. Then $G(\theta) \ge (m-1)\sin(\pi/(2m-2))$ for all $\theta \in [0, \theta_1]$, with equality if and only if $\theta = \theta_0$.

PROOF: Elementary calculations show that, for $0 \le \theta \le \pi$, $G'(\theta) = 0$ precisely if $\theta = \theta_0$ or $\theta = \theta_1$, and that $G'(\theta) < 0$ for $0 \le \theta < \theta_0$ while $G'(\theta) > 0$ for $\theta_0 < \theta < \theta_1$. Since $G(\theta_0) = (m-1)\sin(\pi/(2m-2))$, the proof is complete.

Now in the path of integration $\Gamma = \Gamma(R, \sigma) = \Gamma((qm)^{-m/(m-1)}(d/t)^{m/(m-1)}, \sigma)$ we fix a choice $\sigma \in (\pi/2, \theta_1]$. By combining (3), (5) and (6), and applying Lemma 6, we obtain

$$\begin{aligned} \left| K_t^{(m)}(x;y) \right| &\leq (2\pi)^{-1} \sum_{k=1}^n |c_k| \left(a_1 \sigma \, t^{-D/m} \, e^{-q^{-m/(m-1)} \, b_m (d^m/t)^{1/(m-1)}} \right. \\ &+ 2a_2 \, t^{-D/m} \, e^{-q^{-m/(m-1)} \, \delta \, b_m (d^m/t)^{1/(m-1)}} \right) \\ &\leq a_3 \, t^{-D/m} \, e^{-q^{-m/(m-1)} \, \delta \, b_m (d^m/t)^{1/(m-1)}} \end{aligned}$$

where $a_3 = (2\pi)^{-1} (a_1\sigma + 2a_2) \sum_{k=1}^{n} |c_k|$ depends on q, σ and δ . Since q > 1 and $\delta \in (0, 1)$ may be chosen arbitrarily close to 1, the proof of Theorem 1 is complete.

3. Powers of the Laplacian on \mathbf{R}^N

If α is a multi-index, and ζ a vector in \mathbb{R}^N or \mathbb{C}^N , we use the standard notations ∂^{α} for $\partial_1^{\alpha_1} \dots \partial_N^{\alpha_N}$, $|\alpha|$ for $\alpha_1 + \dots + \alpha_N$ and ζ^{α} for $\zeta_1^{\alpha_1} \dots \zeta_N^{\alpha_N}$. Moreover |x| denotes the

Euclidean norm of $x \in \mathbf{R}^N$. We consider the operator $H = \Delta^{m/2}$ acting on $L^2(\mathbf{R}^N)$, where m is a fixed positive even integer with $m \ge 4$. The symbol of H is the polynomial $P(\zeta) = \left(\sum_{j=1}^N \zeta_j^2\right)^{m/2}$ defined for $\zeta \in \mathbf{C}^N$. Then H corresponds in Fourier space to multiplication by $\xi \in \mathbf{R}^N \mapsto P(\xi) = |\xi|^m$. The kernel $K^{(m)}$ of the corresponding semigroup $S_t = e^{-tH}$ is given by $K_t^{(m)}(x; y) = L_t(x - y)$, where

(7)
$$L_t(x) = (2\pi)^{-N} \int_{\mathbf{R}^N} d\xi \, e^{-tP(\xi)} e^{ix \cdot \xi} \quad , \quad x \in \mathbf{R}^N.$$

Our aim in this section is to prove

THEOREM 7. (I) The kernel satisfies bounds

$$|L_t(x)| \leq c t^{-N/m} e^{-b_m(|x|^m/t)^{1/(m-1)}}$$

for all $x \in \mathbf{R}^N$ and t > 0, where b_m is given by (2) and c > 0 is a constant depending only on m and N.

(II) The coefficient b_m in these bounds is optimal, that is, the bounds are not valid if b_m is replaced by any b with $b > b_m$.

We shall prove part (I) first. It is convenient to introduce the function $\sigma: (0, \infty) \rightarrow (0, \infty)$ defined by $\sigma(k) = m^{-1}(m-1)(km)^{-1/(m-1)}$. Then note that $\inf\{k\lambda^m t - \lambda\rho : \lambda > 0\} = -\sigma(k)(\rho^m/t)^{1/(m-1)}$ for each t > 0, $\rho \ge 0$ and k > 0. Also observe that if we define

$$k_m = \left(\sin\left(\pi/(2m-2)\right)\right)^{-m+1}$$

then $\sigma(k_m) = b_m$.

In the following preliminary lemma we write ||(s,t)|| for $(s^2 + t^2)^{1/2}$.

LEMMA 8. The polynomial $Q(s,t) = \operatorname{Re}\left((s+i)^2 + t^2\right)^{m/2}$, $s,t \in \mathbf{R}$, has absolute minimum $-k_m$ achieved at precisely two points $(s,t) = (\pm s_m, 0)$, where $s_m > 0$ depends only on m. There exist $c_1, c_2 > 0$ such that

$$Q(s,t) = -k_m + c_1(s-s_m)^2 + c_2t^2 + O\left(\left\|(s-s_m,t)\right\|^3\right) \quad \text{as } (s,t) \to (s_m,0) ,$$

$$Q(s,t) = -k_m + c_1(s+s_m)^2 + c_2t^2 + O\left(\left\|(s+s_m,t)\right\|^3\right) \quad \text{as } (s,t) \to (-s_m,0)$$

Moreover, for any $\delta > 0$ there exists a $K_{\delta} > 0$ such that

$$Q(s,t) \ge -k_m + K_\delta \left(s^2 + t^2\right)^{m/2}$$

for all (s,t) such that $||(s-s_m,t)|| \ge \delta$ and $||(s+s_m,t)|| \ge \delta$.

PROOF: To minimise $s \mapsto Q(s,0) = \operatorname{Re}(s+i)^m$ one sets $s+i = \mu e^{i\theta}$, $\mu > 0$, $0 < \theta < \pi$, as in [1]. Then $\mu^2 = \sin^{-2}\theta$ and $Q(s,0) = S(\theta) := \sin^{-m}\theta \cos(m\theta)$.

197

By elementary calculus one finds that S achieves an absolute minimum $-k_m$, precisely at the points $\theta = \theta_m$, $\theta = \pi - \theta_m$, where $\theta_m = \pi/(2m-2)$. Furthermore, $S''(\theta_m) =$ $S''(\pi - \theta_m) > 0$. Thus $S(\theta) = -k_m + (1/2)S''(\theta_m)(\theta - \theta_m)^2 + O\left((\theta - \theta_m)^3\right)$ as $\theta \to \theta_m$, with a similar expression for θ close to $\pi - \theta_m$. Next consider $\tilde{Q}(\theta, t) := Q(s, t)$: by expanding the brackets in the definition of Q, one finds that \tilde{Q} is the sum of $S(\theta)$ and terms in t^2, t^4, \ldots, t^m whose coefficients depend on θ . In particular, explicit calculation shows that the coefficient of t^2 is positive when evaluated at $\theta = \theta_m$ (or $\theta = \pi - \theta_m$). Upon changing back from θ to s, this leads to the expansions of Q near $(\pm s_m, 0)$, where $s_m + i = \sin^{-1}(\theta_m)e^{i\theta_m}$.

Next, by calculating $\partial Q/\partial s$, $\partial Q/\partial t$ one finds that the only stationary points (s_0, t_0) of Q with $t_0 \neq 0$ are $(s_0, t_0) = (0, \pm 1)$. Since $Q(0, \pm 1) = 0$ and $Q(s, t) \rightarrow \infty$ as $||(s,t)|| \rightarrow \infty$ it follows that $-k_m$ is indeed the absolute minimum of Q.

Since Q(s,t) is the sum of $(s^2 + t^2)^{m/2}$ and terms which have lower degree in s and t, the final statement of the lemma certainly holds when ||(s,t)|| is large enough, say when $||(s,t)|| \ge R$. Because $Q(s,t) + k_m > 0$ when $(s,t) \ne (\pm s_m, 0)$, a simple compactness argument yields the statement for $||(s,t)|| \le R$ satisfying $||(s \pm s_m, t)|| \ge \delta$.

For any $a \in S^{N-1} = \{x \in \mathbb{R}^N : |x| = 1\}$ define the polynomial P_a by $P_a(\xi) = \operatorname{Re} P(\xi + ia)$ for $\xi \in \mathbb{R}^N$. In [1, Lemma 7], Barbatis and Davies identified $-k_m$ as the minimum value of P_a . We also require lower bounds on P_a near the points where the minimum is achieved.

LEMMA 9. The function $\xi \in \mathbb{R}^N \mapsto P_a(\xi)$ has absolute minimum $-k_m$, attained only at the points $\pm s_m a$ for s_m as in Lemma 8. Moreover there exist $\delta > 0$ and K > 0, depending only on m and N, such that

(8)
$$P_{a}(\xi) \ge -k_{m} + K|\xi - s_{m}a|^{2}, \quad |\xi - s_{m}a| \le \delta, \\P_{a}(\xi) \ge -k_{m} + K|\xi + s_{m}a|^{2}, \quad |\xi + s_{m}a| \le \delta. \end{cases}$$

Let $F_a = \{ \xi \in \mathbf{R}^N : |\xi - s_m a| \ge \delta, |\xi + s_m a| \ge \delta \}$. Then there is K' > 0 depending only on m, N and δ such that

$$(9) P_a(\xi) \ge -k_m + K' |\xi|^m$$

for all $a \in S^{N-1}$ and $\xi \in F_a$.

[9]

PROOF: In the case N = 1, one has $a = \pm 1$ and $P_{\pm 1}(\xi) = \operatorname{Re}(\xi \pm i)^m$, so the lemma follows by applying Lemma 8 with $s = \pm \xi$ and t = 0.

If $N \ge 2$, given $a \in S^{N-1}$ one can uniquely decompose any $\xi \in \mathbb{R}^N$ as $\xi = sa + \xi'$, where s is real and ξ' is a vector orthogonal to a. Setting $t = |\xi'|$, simple calculations show that $P_a(\xi) = Q(s,t)$, $|\xi - s_m a|^2 = (s - s_m)^2 + t^2$, $|\xi|^2 = s^2 + t^2$, et cetera, and again the required results follow from Lemma 8.

[10]

The key to obtaining Gaussian bounds on L_t is to shift the contour of integration in (7) (this technique was previously used in [6, Proposition I.5.3]. By Cauchy's theorem one may replace ξ by $\xi + i\lambda a$ in (7), for arbitrary $\lambda > 0$ and $a \in S^{N-1}$, yielding

$$L_t(x) = c \int_{\mathbf{R}^N} d\xi \, e^{-tP(\xi + i\lambda a)} e^{ix \cdot \xi} e^{-\lambda a \cdot x} = c \int_{\mathbf{R}^N} d\xi \, e^{-t\lambda^m P((\xi/\lambda) + ia)} e^{ix \cdot \xi} e^{-\lambda a \cdot x}$$

where $c = (2\pi)^{-N}$. Now we apply (9) and the following consequence of (8): there is K'' > 0 such that

$$P_a(\xi) \ge -k_m + K'' |\xi \pm s_m a|^m$$

whenever $|\xi \pm s_m a| \leq \delta$. Thus

$$\begin{aligned} \left| L_t(x) \right| &\leq c \int d\xi \, e^{-t\lambda^m P_a(\xi/\lambda)} e^{-\lambda a \cdot x} \\ &\leq c \int_{\{\xi \colon |(\xi/\lambda) - s_m a| \leqslant \delta\}} d\xi \, e^{-t\lambda^m K'' |(\xi/\lambda) - s_m a|^m} e^{k_m \lambda^m t - \lambda a \cdot x} \\ &+ c \int_{\{\xi \colon |(\xi/\lambda) + s_m a| \leqslant \delta\}} d\xi \, e^{-t\lambda^m K'' |(\xi/\lambda) + s_m a|^m} e^{k_m \lambda^m t - \lambda a \cdot x} \\ &+ c \int_{\{\xi \colon \xi/\lambda \in F_a\}} d\xi \, e^{-t\lambda^m K' |\xi/\lambda|^m} e^{k_m \lambda^m t - \lambda a \cdot x} .\end{aligned}$$

By changes of variable $\eta = \xi - \lambda s_m a$, $\eta = \xi + \lambda s_m a$ in the first two integrals we obtain

$$\left|L_{t}(x)\right| \leqslant c \, e^{k_{m}\lambda^{m}t - \lambda a \cdot x} \left\{ 2 \, \int_{\mathbf{R}^{N}} d\eta \, e^{-K''t|\eta|^{m}} + \int_{\mathbf{R}^{N}} d\xi \, e^{-K't|\xi|^{m}} \right\} = c' \, t^{-N/m} e^{k_{m}\lambda^{m}t - \lambda a \cdot x} \quad .$$

The proof of part (I) is completed by setting a = x/|x| (or letting $a \in S^{N-1}$ be arbitrary if x = 0) and minimising over $\lambda > 0$.

We turn to the proof of (II). Following [1], let \mathcal{E} be the set of linear functions $\phi: \mathbf{R}^N \to \mathbf{R}$ of the form $\phi(x) = a \cdot x$, where $a \in S^{N-1}$. For $\lambda \in \mathbf{R}$ and $\phi \in \mathcal{E}$, we define perturbed operators and semigroups by $H_{\lambda\phi} = e^{-\lambda\phi}He^{\lambda\phi}$ and $S_t^{\lambda\phi} = e^{-\lambda\phi}S_te^{\lambda\phi}$. The crucial observation of [1] is that the operators $H_{\lambda\phi}$ are constant-coefficient differential operators and so can be analyzed using the Fourier transform.

LEMMA 10. For $\phi \in \mathcal{E}$ with $\phi(x) = a \cdot x$, and all $\lambda \in \mathbf{R}$ and t > 0,

$$\|S_t^{\lambda\phi}\|_{2\to 2} = e^{k_m\lambda^m t}$$

PROOF: In this proof we write $P(\zeta) = \sum_{|\alpha|=m} c_{\alpha} (i\zeta)^{\alpha}$ and $H = \sum_{|\alpha|=m} c_{\alpha} \partial^{\alpha}$ for certain real constants c_{α} . For a multi-index α , and f in Schwartz space, a straightforward calculation shows that

$$e^{-\lambda\phi}\partial^{\alpha}e^{\lambda\phi}f = \sum_{eta+\gamma=lpha} c_{eta\gamma}(\lambda a)^{\gamma}\left(\partial^{eta}f
ight), \quad c_{eta\gamma} = rac{(eta+\gamma)!}{eta!\gamma!}$$

199

0

where $\beta! = \beta_1! \dots \beta_N!$. Hence $H_{\lambda\phi} = \sum_{|\alpha|=m} c_{\alpha} \sum_{\beta+\gamma=\alpha} c_{\beta\gamma} (\lambda a)^{\gamma} \partial^{\beta}$ so $H_{\lambda\phi}$ corresponds in Fourier space to multiplication by

$$\sum_{|\alpha|=m} c_{\alpha} \sum_{\beta+\gamma=\alpha} c_{\beta\gamma} (\lambda a)^{\gamma} (i\xi)^{\beta} = \sum_{|\alpha|=m} c_{\alpha} (i (\xi - i\lambda a))^{\alpha} = P(\xi - i\lambda a)$$

regarded as a function of $\xi \in \mathbf{R}^N$. Hence $S_t^{\lambda\phi}$ corresponds to multiplication by $\xi \mapsto e^{-tP(\xi-i\lambda a)}$. Thus if $\lambda \neq 0$, Lemma 9 gives

$$\|S_t^{\lambda\phi}\|_{2\to 2} = \sup_{\xi \in \mathbf{R}^N} \left| e^{-t\lambda^m P((\xi/\lambda) - ia)} \right| = e^{k_m \lambda^m t}$$

,

and similarly $\|S_t\|_{2\to 2} = 1$ if $\lambda = 0$.

[11]

Now suppose that L_t satisfies Gaussian bounds with a factor $b, b > b_m$, replacing b_m in the exponential. Choose b' with $b_m < b' < b$ and set $\varepsilon = b - b'$. Define k' > 0 by $\sigma(k') = b'$ where the function σ was introduced previously. Then $-b' (\rho^m/t)^{1/(m-1)} \leq k' \lambda^m t - |\lambda| \rho$ for all $t > 0, \rho \ge 0$ and $\lambda \in \mathbf{R}$. Thus

$$\begin{aligned} \left| L_t(x-y) \right| &\leq c \, t^{-N/m} e^{-b'(|x-y|^m/t)^{1/(m-1)}} e^{-\varepsilon(|x-y|^m/t)^{1/(m-1)}} \\ &\leq c \, t^{-N/m} e^{k' \lambda^m t - |\lambda| |x-y|} e^{-\varepsilon(|x-y|^m/t)^{1/(m-1)}} \end{aligned}$$

for all $\lambda \in \mathbf{R}$ and $x, y \in \mathbf{R}^N$. Since $S_t^{\lambda\phi}$ has the kernel $K_t^{\lambda\phi}(x; y) = e^{-\lambda\phi(x)}L_t(x-y)e^{\lambda\phi(y)}$ and $|\phi(x) - \phi(y)| \leq |x-y|$ we obtain

$$\left|K_t^{\lambda\phi}(x\,;y)\right| \leqslant c\,t^{-N/m}e^{k'\lambda^m t}e^{-\epsilon(|x-y|^m/t)^{1/(m-1)}}$$

and it follows that

$$\left\|S_t^{\lambda\phi}\right\|_{\infty\to\infty} = \sup_{x\in\mathbf{R}^N} \int dy \left|K_t^{\lambda\phi}(x\,;y)\right| \leqslant c' \, e^{k'\lambda^m t}$$

Here c' is a constant which does not depend on t, λ or ϕ . By duality, $||S_t^{\lambda\phi}||_{1\to 1} \leq c' e^{k'\lambda^m t}$ and by interpolation one finds $||S_t^{\lambda\phi}||_{2\to 2} \leq c' e^{k'\lambda^m t}$. But $\sigma(k') = b' > b_m = \sigma(k_m)$ implies that $k' < k_m$, so this contradicts Lemma 10 when $\lambda^m t$ is sufficiently large. Thus the Gaussian bounds with $b > b_m$ are impossible.

REMARK. Theorem 7 may be extended to a larger class of operators on \mathbb{R}^N . Indeed, consider a homogeneous *m*-th order operator $H = \sum_{\substack{|\alpha|=m}} c_{\alpha} \partial^{\alpha}$ with constant complex coefficients c_{α} , where $m \ge 4$ is even. Assume that *H* is strongly elliptic in the sense that $\operatorname{Re} P(\xi) \ge \mu |\xi|^m$, $\xi \in \mathbb{R}^N$, for some $\mu > 0$, where $P(\zeta) = \sum_{\substack{|\alpha|=m}} c_{\alpha}(i\zeta)^{\alpha}$, $\zeta \in \mathbb{C}^N$, is the symbol of *H*. We define $k_{H,a} = -\min_{\xi \in \mathbb{R}^N} \operatorname{Re} P(\xi + ia)$ for each $a \in S^{N-1}$, and set $k_H = \max_{a \in S^{N-1}} k_{H,a}$. Then for each $\varepsilon > 0$ there exists $\mu_{\varepsilon} > 0$ such that

(10)
$$\operatorname{Re} P(\xi + ia) \ge \mu_{\varepsilon} |\xi|^m - k_H - \varepsilon$$

for all $\xi \in \mathbf{R}^N$ and $a \in S^{N-1}$. (For large $|\xi|$ this follows by using the strong ellipticity condition, while for small $|\xi|$ one uses the definition of k_H .) The kernel $L_t^{(H)}$ of e^{-tH} has a Fourier representation analogous to (7) and by shifting the contour of integration as in the proof of Theorem 7 and applying (10), one obtains bounds

(11)
$$\left| L_t^{(H)}(x) \right| \leq c_r t^{-N/m} e^{-(b_H/r)(|x|^m/t)^{1/(m-1)}}$$

for each r > 1, where $b_H = \sigma(k_H)$. It is unclear whether one can choose r = 1 in general: this would require a more careful analysis of the polynomials $\operatorname{Re} P(\xi + ia)$ near their minima.

The constant b_H is optimal in the sense that the bounds (11) cannot hold if 0 < r < 1. The proof of this is similar to the proof of Theorem 7(II), but in place of Lemma 10 one finds that $||S_t^{\lambda\phi}||_{2\to 2} = e^{k_{H,a}\lambda^m t}$ for $\phi \in \mathcal{E}$ with $\phi(x) = a \cdot x$.

References

- [1] G. Barbatis and E.B. Davies, 'Sharp bounds on heat kernels of higher order uniformly elliptic operators', J. Operator Theory 36 (1996), 179-198.
- [2] E.B. Davies, One-parameter semigroups, London Math. Soc. Monographs 15 (Academic Press, London, New York, 1980).
- [3] E.B. Davies, *Heat kernels and spectral theory*, Cambridge Tracts in Mathematics 92 (Cambridge University Press, Cambridge, 1989).
- [4] X.T. Duong and D.W. Robinson, 'Semigroup kernels, Poisson bounds, and holomorphic functional calculus', J. Funct. Anal. 142 (1996), 89-129.
- [5] D.W. Robinson, 'Commutators and generators II', Math. Scand. 64 (1989), 87-108.
- [6] D.W. Robinson, *Elliptic operators and Lie groups*, Oxford Mathematical Monographs (Oxford University Press, Oxford, 1991).
- [7] L. Saloff-Coste, 'A note on Poincaré, Sobolev, and Harnack inequalities', Internat. Math. Res. Notices 2 (1992), 27-38.
- [8] N.T. Varopoulos, L. Saloff-Coste and T. Coulhon, Analysis and geometry on groups, Cambridge Tracts in Mathematics 100 (Cambridge University Press, Cambridge, 1992).
- [9] K. Yosida, Functional analysis (sixth edition), Grundlehren der mathematischen Wissenschaften 123 (Springer-Verlag, Berlin, Heidelberg, New York, 1980).

Centre for Mathematics and its Applications School of Mathematical Sciences Australian National University Canberra, ACT 0200 Australia e-mail: dungey@maths.anu.edu.au Australia