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SHARP CONSTANTS IN HIGHER-ORDER HEAT KERNEL BOUNDS

Nick DUNGEY

We consider a space X of polynomial type and a self-adjoint operator on L2{(X) which
is assumed to have a heat kernel satisfying second-order Gaussian bounds. We prove
that any power of the operator has a heat kernel satisfying Gaussian bounds with a
precise constant in the Gaussian. This constant was previously identified by Barbatis
and Davies in the case of powers of the Laplace operator on R¥. In this case we prove
slightly sharper bounds and show that the above-mentioned constant is optimal.

1. INTRODUCTION

In [1] Barbatis and Davies considered the problem of obtaining sharp constants
in Gaussian heat kernel bounds for a class of higher order elliptic operators acting on
L? (RN ) In particular, they obtained the following result. Let K™ denote the heat

N
kernel for the operator A™?, where A = — 5° 87 is the ordinary Laplacian on R" and

=1

m is a positive even integer with m > N. Then for each r > 1 there exists ¢, > 0,
depending only on m, N, and r, such that

(1) |k (@;39)| < ¢ N/ me=Om /MW" YT g e RN 45,
where the constant b, is given by
(2) bm = (m — 1) m™™/"=1 sin(n/(2m — 2))

N 1/2
and d(z;y) = (Z (z; - y,-)2) is the Euclidean distance.
j=1

In this paper, we improve this result in two directions. In Section 2, we prove
Theorem 1, which may roughly be stated as follows. Let H be a nonnegative self-
adjoint operator on L?(X; u) for a measure space (X, 1) with a metric ¢ which satisfies
a uniform condition of polynomial growth. If the heat kernel for H satisfies second-order
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190 N. Dungey (2]

Gaussian bounds with a factor which may be chosen arbitrarily close to b, = 1/4 in the
exponential, then the heat kernel for H™/? satisfies m-th order Gaussian bounds with
a factor arbitrarily close to b, in the exponential. Thus the constant b, is typical for
powers of a general class of self-adjoint operators. This is not clear from the analysis of
[1], which uses the Fourier theory of L? (RN )

The second-order Gaussian bounds with a factor arbitrarily close to 1/4 are char-
acteristic for a variety of second-order elliptic, or subelliptic, differential operators over
manifolds. For example, second-order uniformly elliptic operators in divergence form
with real measurable symmetric coefficients on R", and left-invariant sublaplacians on
Lie groups of polynomial growth, satisfy the assumptions of Theorem 1 [3, 6, 8).

Robinson and ter Elst showed in unpublished work that Gaussian bounds for powers
of an operator may be deduced from second-order Gaussian bounds for the operator itself.
A similar result, under different hypotheses, was proved by Saloff-Coste [7]. Robinson
and ter Elst’s proof used a Cauchy integral representation for the semigroup S,('") =
e~tH™? together with a partial fraction decomposition of the resolvent of H™? in terms
of the resolvent of H (a similar decomposition was previously used in [5]). Our proof of
Theorem 1 follows their method, but in order to obtain the sharp constant b,, we need
more precise bounds on the kernel of the resolvent (see Lemma 5 below) and more careful
choices of certain parameters.

In Section 3 we return to the special case of the operator A™? on R". Using Fourier
theory we prove that (1) holds with r = 1, and for all m and N without the restriction
m > N of [1]. Finally we confirm the conjecture of [1] that the constant b, is optimal,
by showing that the bounds (1) cannot hold when 0 < r < 1.

2. POWERS OF SELF-ADJOINT OPERATORS

Let (X, d) be a metric space and p a positive measure on X. We assume that the
ball B(z;r) = {y €X:dz;y)< r} is p-measurable for each £ € X and r > 0, and set
V(z;7) = p(B(z;7)). We further assume that the space has uniform polynomial growth,
in the sense that there are integers D' > 1 and D > 0 such that

N
=

C ' g V(gr)gCr?, o<r
Cl'rPgV(zr)<CrP, r21,

for some C > 0 and all z. (The integers D' and D are often called the dimensions at zero
and infinity respectively.) Then u is o-finite, because X = ch B(zp;n) is a countable
union of balls. The volume growth of balls is measured by ,11:?1:3 function V defined by
V(r) =72 or V(r) =2 accordingas0 <r<lorr > 1.

Let H be a nonnegative self-adjoint operator on L? = L?(X; u). Then H generates
a holomorphic semigroup S, = e *H on L?, defined for all z € C with Rez > 0. We
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assume that S; has a continuous kernel K; : X x X — C for each t > 0 which satisfies
Gaussian bounds with a factor arbitrarily close to 1/4 in the exponential. That is,

(Sf)@) = [ dulw) Kulzi)f @), feI?,
and for each r > 1 there exists ¢, > 0 such that
Fatesn)| < vy e

for allt > 0 and z,y € X. Here, as elsewhere, we abbreviate d(z;y) as d. Let m be

a positive even integer. Then the operator H™/? is nonnegative self-adjoint on L? and
; (m) _ —tH™/2 2

generates a semigroup S; ' =e on L*

THEOREM 1. Suppose that (X,d, n), and H acting on L*(X; 1), satisfy the above
assumptions, and let m > 4 be an even integer. Then the semigroup St(m) = e tH™? pag
an integral kernel K, ( ™ Moreover for each r > 1 there exists ¢, > 0, depending on
(X,d, ), H, m, and r, such that

K™ (@39)| < & V() YmerCnl) (@Y d = d(ai),

forallt > 0 and z,y € X.
The first step in the proof of Theorem 1 is to derive uniform bounds.

LEMMA 2. The semigroup S,('") has an integral kernel K,(m) satisfying bounds
| (@5 y)| < eV ™m

forallt >0 and z,y € X.

PROOF: Let || - ||, denote the norm of a bounded linear operator from LP(X; u)
to L9(X; u). Then

2\ 1/2 _
1Sukemco < sup ([ dutw) [Kutz o)) < cviey™

where the second inequality follows from the Gaussian bounds on K by a quadrature
argument (see for example [4, Proposition 2.1]). Fix kK > N/2, where N = D’ v D. For
each p > 0 one has the identity

00
(I + pH) ™% = T(k/2)~" /0 dtett~1+E S,
and using a volume inequality V(tp)~/* < ¢ (1 + t'N/“) V(p)~*/* one finds that

”(1+pH)-k/2"2_m < c’V(p)""‘ /0°° dt e—t41+k/2) (1 +t‘”/4) = 'V (p) "V
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for all p > 0. Using this estimate and spectral theory gives

I, < @+ 2mm) ™)+ 2mE) s < dviTrem.
Therefore
571, < (187,00 < eV
and the lemma follows by the Dunford-Pettis Theorem. 0

To derive Gaussian bounds, following an unpublished argument of ter Elst and
Robinson, we first reduce to the case where D' = D > 4.

LEMMA 3. If Theorem 1 holds when D' = D > 4, then it holds generally.

PROOF: Suppose that the quadruple (X, d, u, H) satisfies the assumptions of Theo-
rem 1. If D’ > D define X, = GP~P x R3 where G is the three-dimensional Heisenberg
group, if D' < D define X; = TP~P" xR3 and if D' = D define X, = R3. Then X, is a Lie
group and we let uy be the (bi-invariant) Haar measure on X,. Choose left-invariant vec-
tor fields Ay, ..., Ay which form a vector space basis for the Lie algebra of X5, and let d;

k

be the left-invariant distance and Hy, = — ¥ A? the Laplacian associated with this choice.
j=1

Then (X3, d2, p2, Ho) satisfies the assumptions of Theorem 1; in particular, the kernel K,

of e~*H2 gsatisfies Gaussian bounds with a factor arbitrarily close to 1/4 [6, 8]. If D} and

D, are the dimensions at zero and infinity of (X3, dy, p2) then Dy + D' = Dy + D > 4

Moreover, since H;"*1 =0 it follows that 1= (S(m) ) (z2) = /x dua(y2) Ké,':l)(f'?z ; y2) for
2
all 7, € X,, where K is the kernel of S{7 = e—tHy?

Now define X = X x X, and let d((z Tq); (y,yg)) = d(z;y)?+dy(z2;v2)? for (z, 22),
(y,y2) € X. Let i I = i X po be the product measure on X,andset H=HQ®I +1®H,,
where we have identified L? (5{') = L?*(X) ® L?(X;). Then the quadruple (X,d, i, ﬁ)
satisfies the assumptions of Theorem 1, and moreover the dimensions at zero and infinity
of (5(: d, ﬁ) are equal and not less than 4. Thus by assumption, the kernel K, K™ of
S, 5im) — e=tH™'* gatisfies Gaussian bounds with a factor arbitrarily close to b,;,. One easily
sees that

K™ ((2,22); (4, 1)) = K{™ (219) K§p (32 10)

for all z,y € X and z,,y; € X,. Since /x dua(y2) Kg?)(z‘z ;¥2) = 1 we obtain
2

K(wiy) = [ dualun) K™ (@, 72): (0, )

But for any r > 1 and ' € (1,7), the kernel K™ satisfies bounds

~ n{ 1/(m-1)
R (@,22): (4 90)) | € e V(0)7Hm et E 1)

< e V(8) Y gmlm/D@ 91D oyt e 1)V
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where € = (b /") — (bm/r) > 0. Integrating these bounds over X, with respect to y,
yields Gaussian bounds on K,("') with a factor of b, /7, as required. 0

In the remainder of the proof of Theorem 1 we shall assume that D' = D > 4, so
that V(r) = r? for all r > 0.

LEMMA 4. The operator S, = e~*¥ has a kernel K, satisfying bounds
|Kz(x;y)| < ¢ (Re z)—D/2 o~ Reld®/(4r2)} _ e |z|‘D/2(cos 0)—0/2e—c050d2/(4r|z|)

forallz€ C withRez>0and @ =argz, allr > 1 and all 7,y € X.

PROOF: The existence of the kernel K,, and uniform bounds on K, follow from
bounds

o A

< (]

where 2 =t + ¢s with ¢ > 0, s € R. Then the lemma is obtained by a complex-analytic
argument as in [3, Theorem 3.4.8]. 0

For A € C — (—00,0] we let Rx(-;-) denote the integral kernel of (A] + H)™".
LEMMA 5. Foranype [0,7), and any q > 1, there is a c = c(p,q) > 0 such that

e,

2
) < ct™P/? = ¢(Re2) ™2/

2—00

|R,\(:l: ; y)l < cd-D+2e—M%q7 cos (6/2)d

for all A € C — {0} with § = arg ) € [-p,p] and all z,y € X.
PROOF: Write A = Re® where R > 0, 8 € [0, p]. (Because of the reflection relation

R5(z,y) = Ra(y, z), it is sufficient to prove the lemma for such §.) Let 7 € [0,7/2) be
such that 0 < # — 7 < 7/2, and set X' = Re’". Then

(A +H)™ =700 (X 4 70D g)

. 00 ,
— e-t(G—T) /0‘ dte=>t Ste—i(a—r)
Thus applying Lemma 4, and a change of variable s = d~%,
0o U
[Ba(@iy)| < [ dt e[ Kopmiomn(z5)
/°° dt e RteosTe (t cos (6 — 1.)) —D/2e_(4r)-| cos (0-7)(d?/t)
0

-D/2 0 _ _
C,-(COS (0 - 7—)) / d—D+2/(; ds S-D/Ze-Rd’acosr—(4r) eos (8-7)s~!

N

= c,(cos 6 - 7'))—0/2 d—P+2

. /oo ds s—D/2e-Rd23008‘r—6(4r)"cos(B—T)s'le—(l—6)(4r)"cos (9-1)s—1
0

for arbitrary r > 1 and é € (0,1). But for every s > 0, one has

Rd’scosT + 8(4r) " cos (0 — 7)s7! > (Ré/r)'/* (cosrcos - 1—)) Y4
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and hence
. —-D/J2 —D+2 1/2 1/2
IR,\(Q: ; y)l <e (cos @~ 7')) d exp | —(RS/r) (cosrcos (8- T)) d)

' /°° ds s~ P/2e—(1=8)(4r) ™" cos (6~7)s™!
0

Now choose T = 8/2 to maximise the function 7 — cos7cos (6 — 7) on [0, 8]. Since r and
6 may be chosen arbitrarily close to 1, the lemma follows. 0

Henceforth we assume z,y and ¢ > 0 are such that d(z;y) > /™ and prove the
bounds of Theorem 1 under this assumption. This will complete the proof of Theorem 1,
since the bounds for d(z ;y) < t'/™ follow from Lemma 2.

Let ¢ € (7/2,7) and R > 0 and define the contour I' = I'(R, o) in the complex
plane by I = Ly UAUL_, where Ly = {A € C: argA=+0,|\| > R} and A = {re
C: |argA| < ag,|A\|=R } Here T is oriented to run along L_ towards the origin, then
anti-clockwise around A and along L, away from the origin. Then one has the Cauchy
integral representation

(m)_L At ny—1
St = 2m,/rd/\e (M + H")

where n = m/2 (see [2, Section 2.5], or [9, Chapter IX]). If A € C — {0} and a € (0,1)
define A® = |A|%ei*28A and let —)y,...,~A, be the n-th roots of —~\. More precisely,
let Ay = —e™™/"AYK for k € {1,...,n}, where w = €™/ Then one has the partial
fraction decomposition

O +HY =W+ H) L Qul+ HY = Y (W) T O+ )

k=1
. -1
where one may calculate ¢, = —e™™/* ] (w" - w’) . Combining this with the
1In 1k '

Cauchy integral representation yields

n
(3) K™ @59 < @M 3 lewl [[dIA XA Ry (25 )

k=1

We shall use Lemma 5 to bound the right hand side. First observe that if A € C — {0}
and the )\, are as above, then m — |arg \¢| > (7r - |0|)/n, where § = argA. Hence

|arg Ael/2 < (m/2) — (m = 10]) /m and

(4) cos((arg /\k)/2) > cos (71'/2 - (7r - |t9|)/m) = sin((w - |0|)/m)

Also, |Ax| = |A|Y/". Therefore by Lemma 5, for an arbitrary ¢ > 1 there is an a > 0,
depending on ¢ and o, such that

/ d|/\| |6M“/\|—1+(1/")|R)\k (.’l: : y)| <a /"’ b RemcosaR—1+(l/n)d_D+28_q-1R1/m sin ((7—~18])/m)d
A -0

= %24 d—D+2R1/n /V do ethosG—q“R’/'" sin{(w~8)/m)d
0
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Now choose R = (gm)~™™ D (d/t)™/ ™) and use the assumptions D > 4 and d > /m
to obtain

(5) / dIAI |eAt”A|_1+(1/ﬂ)IRAk (x ; y)l < a; t—D/m /a d0 e_(qm)—m/(m—l) G(o)(d"‘/t)l/("‘—l) ’
4 0

where a; depends on ¢ and ¢, and G(8) = msin((ﬂ - 0)/m) —cosf for 0 < § < w. Let
6 € (0,1) be arbitrary. To estimate the integral over L, we use Lemma 5, (4) and our
choice of R:

[ MO R (1) < [ dr s 140 g gDzt e ey
Ly R
=)4)

< ad P*%exp (6 {Rt coso — g ' RY™sin (u) d})
m
. t—l/n /°° dv e(l—é’)vcosau—l-{-(l/n)
0

<ad P+2exp ((5 {Rt coso — ¢~ RY™sin (‘”

. /oo dr e(L—J)thos¢77_—l+(1/ﬂ)
R

(6) < gy t~D/m g=(am) /"D 5 Glo)@m /) /D

where ay = a/mdu gll-9)veoso,—1+(1/m) depends on g, o and 8. Next we minimise G.
0

LEMMA 6. Let 6y = (m—2)w/(2m —2), 6, = (m+ 2)n/(2m +2). Then G(§) >
(m — 1)sin(r/(2m — 2)) for all § € [0,6,], with equality if and only if 6 = 6,.

PRrROOF: Elementary calculations show that, for 0 < 8 < 7, G'(8) = 0 precisely if
6 = 6, or @ = 6,, and that G'(f) < 0 for 0 < 8 < 6, while G'(§) > 0 for 6, < 8 < 6,.
Since G(8) = (m — 1) sin(7r/(2m - 2)), the proof is complete. 0

Now in the path of integration I' = I'(R,0) = F((qm)_"'/('"_l)(d/t)m/(m_l),a) we
fix a choice 0 € (7/2,6,]. By combining (3), (5) and (6), and applying Lemma 6, we

obtain

n

IK:(m)(I y l (2m)” Z |ck] (awt_D/"‘ g=9 ™D b (@ )t/ m D)

+2a, P/ gma ™R Ebn(am MM

< a3 4=DIm e—q""/(’"-l)me(d"‘/t)‘/‘"‘")

where a3 = (27) 7! (a10 + 2a2) E lck| depends on q, o and 4. Since ¢ > 1 and 6 € (0,1)
k=

may be chosen arbitrarily close to 1, the proof of Theorem 1 is complete.

3. POWERS OF THE LAPLACIAN ON RY

If @ is a multi-index, and ¢ a vector in RY or CV, we use the standard notations
0% for 8" ... 04", |of for g + - - + an and ¢ for (' ... (3" . Moreover |z| denotes the
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Euclidean norm of z € RY. We consider the operator H = A™/? acting on L2 (RN ),
where m is a fixed positive even integer with m > 4. The symbol of H is the polynomial

mf2

N

P(¢) = (Z (f) defined for ( € C¥. Then H corresponds in Fourier space to mul-
j=1

tiplication by £ € RN +— P(£) = |£|™. The kernel K™ of the corresponding semigroup
S, = e~tH is given by K{™(z;y) = Ly(z — y), where

(7) Li(z) = @2m)™ /RN dee~tPOciet |z e RV,

Qur aim in this section is to prove

THEOREM 7. (1) The kernel satisfies bounds
ILu(2)| < ct~MIme-bmterm/0/™

for all z € RY and t > 0, where by, is given by (2) and ¢ > 0 is a constant depending
only on m and N.

(I1) The coefficient by, in these bounds is optimal, that is, the bounds are not valid if b,
is replaced by any b with b > b,,.

We shall prove part (I) first. It is convenient to introduce the function o : (0,00) —
(0, c0) defined by o(k) = m~(m — 1)(km)™"™ Y Then note that inf{ kA™t — Jdp :
A >0} = —a(k) (p™/t)/"™ D for each t >0, p > 0 and k > 0. Also observe that if we
define

by = (sin(ﬂ'/(Zm - 2)))_m+1

then o(ky) = bm.

In the following preliminary lemma we write “(s, t)” for (s? + t2)1/2.

LEMMA 8. The polynomial Q(s,t) =Re ((s +i)? + tz)m/z, s,t € R, has absolute
minimum —k,, achieved at precisely two points (s,t) = (£s,,,0), where s, > 0 depends
only on m. There exist ¢;,cy > 0 such that

3
Q(s,t) = —kpm +1(s — sm)2 +et?+0 (”(s - sm,t)” ) as (s,t) = (m, 0) ,
3
Q(s,t) = —km +c1(s+ sm)2 +ct? + O ("(s + sm,t)" ) as (s,t) = (=sm,0).
Moreover, for any 6 > 0 there exists a K5z > 0 such that
)m/2

Q(s,t) = ~km + K; (32 + 2

for all (s,t) such that "(s - sm,t)" > 6 and "(s + Sm, t)" > 6.
PROOF: To minimise s — Q(s,0) = Re(s+1i)™ one sets s + i = pe’®, p > 0,
0 < 6 <7, asin[1). Then p? = sin"20 and Q(s,0) = S(h) := sin"™ @ cos (mh).
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By elementary calculus one finds that S achieves an absolute minimum -k, precisely
at the points § = 6,,,6 = © — O, where 6, = n/(2m — 2). Furthermore, §"(0,) =
S"( — 6m) > 0. Thus S(8) = —km + (1/2)S"(6m)(8 = Om)* + O (6 — 6)°) a5 0 — bm,
with a similar expression for 8 close to ™ — 8. Next consider Q(f,t) := Q(s,t): by
expanding the brackets in the definition of @, one finds that Q is the sum of S (8) and
terms in ¢2,¢%,...,t™ whose coefficients depend on f. In particular, explicit calculation
shows that the coefficient of ¢? is positive when evaluated at 8 = 6, (or 8 = 7 — 0,,).
Upon changing back from 6 to s, this leads to the expansions of @ near (+s,,,0), where
Sm + 1 =sin"! (8,,)efm.

Next, by calculating 9Q /s, 8Q /3t one finds that the only stationary points (sg, %)
of Q with t, # 0 are (sg,%) = (0,£1). Since @(0,%1) = 0 and Q(s,t) — oo as
”(s, t)” — oo it follows that —kp, is indeed the absolute minimum of Q.

Since Q(s, t) is the sum of (s? + £2)™? and terms which have lower degree in s and ¢,
the final statement of the lemma certainly holds when ”(s, t)" is large enough, say when
"(s, t)" > R. Because Q(s,t) + ky, > 0 when (s,t) # (£8m,0), a simple compactness
argument yields the statement for ” (s, t)" £ R satisfying ” (s % sm,t) " =6 0

For any a € SV~ = {z € RN : |z| = 1} define the polynomial P, by P,(£) =
Re P(€ + ia) for £ € RY. In [1, Lemma 7], Barbatis and Davies identified —k,, as the
minimum value of P,. We also require lower bounds on P, near the points where the
minimum is achieved.

LEMMA 9. The function £ € RN — P,(£) has absolute minimum —k,,, attained
only at the points *sna for s, as in Lemma 8. Moreover there exist § > 0 and K > 0,
depending only on m and N, such that
3]
(€)
Let F, = {f ERVN: | —5pa] 26,/ +5ma|l > 6 } Then there is K' > 0 depending only

on m, N and § such that
(g) Pn(g) 2 —km + K’lélm

foralla€ SN-! and £ € F,.

PROOF: In the case N = 1, one has a = +1 and Py, (£) = Re (£ +:)™, so the lemma
follows by applying Lemma 8 with s = +£ and t = 0.

If N > 2, given a € S¥-! one can uniquely decompose any £ € R" as £ = sa + ¢,
where s is real and &’ is a vector orthogonal to a. Setting t = |£’|, simple calculations
show that P,(£) = Q(s, 1), € — sma|? = (5 — sm)? +12, J€[? = 52 + 12, et cetera, and again
the required results follow from Lemma 8. 0

—km + K|€ — sma|?, |€— sma

@® P{€) 2 [<6,
Po(8) 2 —km + K|E+ smal?, |E+smal <6.
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The key to obtaining Gaussian bounds on L, is to shift the contour of integration in
(7) (this technique was previously used in [6, Proposition 1.5.3). By Cauchy’s theorem
one may replace £ by & + i)a in (7), for arbitrary A > 0 and a € SV, yielding

_ —tP(£+ida) iz ~deT _ —tA™ P((€/))+ia) Jiz-€ ,~Aa-T
L,(a:)—c/RNdfe e"te =c RNd{e e te
where ¢ = (2n)™". Now we apply (9) and the following consequence of (8): there is

K" > 0 such that
P.(&) 2 ~kpn+ K"|€ £ spa|™

whenever |€ + spa| < 6. Thus

|L2)| < / dE e~V PalE/N g=raz
<ec | 4t O K €N —smal™ ghm 3™z
{&1(E/N)—smeal<d)}
C/ d e_"\mkul(f//\)'l'smal"‘ekm)\"‘t_)‘a.x
{&1(/X)+3mal<8}
c/ e~ AT K/ E/A™ pkm A= Daz
{§:€/XeFa }

By changes of variable n = £ — As,a, n = £ + Aspa in the first two integrals we obtain
|Lt(z)l < Cekmz\"‘t—)\a-: {2 /RN dne—K"tlfll"' + /RN de¢ e—K’t|5|’"} =c = N/m km ATt 2a-z

The proof of part (I) is completed by setting a = z/|z| (or letting @ € S¥~! be arbitrary
if z = 0) and minimising over A > 0.

We turn to the proof of (II). Following [1], let £ be the set of linear functions
#: RY — R of the form ¢(z) = a -z, where a € S¥-1. For A € R and'd) € &, we define
perturbed operators and semigroups by Hys = e *He* and S;¢ = e 4S,e*. The
crucial observation of [1] is that the operators Hy4 are constant-coefficient differential
operators and so can be analyzed using the Fourier transform.

LEMMA 10. For ¢ € £ with ¢(z) =a-z,and all \ € R andt > 0,
1521|252 = €57

PROOF: In this proof we write P({) = ¥ ¢, (i)® and H = ¥ ¢,8* for certain
a|=m

lal=m
real constants c,. For a multi-index ¢, and f in Schwartz space, a straightforward

calculation shows that

e—A¢aaeA¢f — z Cﬁv(’\ay (6ﬂf) . Cpy = (ﬂ + 'Y)!

pa=a piar
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where 8! = Bi!...Bn!. Hence Hyy = ¥ ¢ca ¥ ¢py(Xa)"0? so Hyg corresponds in
lajl=m  B+r=c
Fourier space to multiplication by

Y e X ()6’ = T cali(€ - ida))” = P(§ —ida)

la|=m B+y=a la|=m
regarded as a function of £ € RM. Hence S corresponds to multiplication by £ —
e tP(€=a) Thys if A # 0, Lemma 9 gives
152 |lass2 = sup |e=8A"PUE/N~ia)] — ghmA™e
EERN
and similarly ”S,” =1lifA=0. 0
22

Now suppose that L, satisfies Gaussian bounds with a factor b, b > b,,, replacing
b, in the exponential. Choose &' with b,, < b’ < b and set € = b — b'. Define k' > 0
by o(k’) = b where the function ¢ was introduced previously. Then —b' (p™/t)/™V) <
E'A™t — |A|p forallt >0, p > 0and A € R. Thus

— b (lg—ylm /) (m=1) —ylm i/ (m—1)
|Lt(x_y)| < et NIme=b (lz=yIm /)1 —e(lz—y™ /1)
< ct~NImEA™ =Nzl —e(lz—y|™/t)/ ™D

forall A € R and z,y € R". Since S;¢ has the kernel K}*(z;y) = e @) L,(z — y)eM®)
and |¢(z) — #(y)| < |z — y| we obtain

b

|29z < = MImekAmtgmeta-aim 0=
and it follows that

Ad _ Ab. . LY
5o, - sup [ el < e
Here ¢ is a constant which does not depend on t, A or ¢. By duality, ||S;?[|15, < ¢ eF'*™
and by interpolation one finds ”S{\‘i’”%)2 < et But o(k') = b > by = o(ky) implies
that &' < k,;, so this contradicts Lemma 10 when A™¢ is sufficiently large. Thus the
Gaussian bounds with b > b, are impossible.

REMARK. Theorem 7 may be extended to a larger class of operators on R". Indeed,

consider a homogeneous m-th order operator H = Y} ¢,0* with constant complex
laj=m
coefficients ¢,, where m > 4 is even. Assume that H is strongly elliptic in the sense

that Re P(€) > pl€|™, € € RY, for some u > 0, where P({) = ¥ co(i¢)%, ¢ € CN,
|lal=m

is the symbol of H. We define kg, = _fmli{% Re P(£ + ia) for each a € SV~!, and set
€

ky = rr;z)a.vxl kyo. Then for each € > 0 there exists p, > 0 such that
ag -

(10) Re P(§ +1a) > pcl€|™ —ku — €
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for all £ € RY and @ € S¥-!. (For large || this follows by using the strong ellipticity
condition, while for small |£| one uses the definition of ky.) The kernel L") of e=*# has
a Fourier representation analogous to (7) and by shifting the contour of integration as in
the proof of Theorem 7 and applying (10), one obtains bounds

(11) ILSH) (z)l <ec t—N/me—(bH/f)(|3|"‘/l)l/("'_l)

for each r > 1, where by = o(ky). It is unclear whether one can choose r = 1 in general:
this would require a more careful analysis of the polynomials Re P(€ + ia) near their
minima.

The constant by is optimal in the sense that the bounds (11) cannot hold if 0 < r < 1.
The proof of this is similar to the proof of Theorem 7(II), but in place of Lemma 10 one
finds that [|S;?[lsne = e*#.2X™ for ¢ € £ with ¢(z) = a - z.
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