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THE LARGEST IRREDUCIBLE CHARACTER DEGREE 
OF A FINITE GROUP 

DAVID GLUCK 

Introduction. Much information about a finite group is encoded in its 
character table. Indeed even a small portion of the character table may 
reveal significant information about the group. By a famous theorem of 
Jordan, knowing the degree of one faithful irreducible character of a finite 
group gives an upper bound for the index of its largest normal abelian 
subgroup. 

Here we consider b(G), the largest irreducible character degree of 
the group G. A simple application of Frobenius reciprocity shows that 
b(G) ^ \G\A\ for any abelian subgroup A of G. In light of this fact and 
Jordan's theorem, one might seek to bound the index of the largest abelian 
subgroup of G from above by a function of b(G). If is G is nilpotent, a 
result of Isaacs and Passman (see [7, Theorem 12.26] ) shows that G has an 
abelian subgroup of index at most b(G)4. 

In this paper, we show that there is a constant K such that any finite 
group G has an abelian subgroup of index at most b(G)K. We use the 
classification of simple groups to handle the nonsolvable case, but the 
existence of such a polynomial bound is a new result even for solvable 
groups. 

The first half of this paper is devoted to solvable groups. We show first 
that if H is solvable and F is a completely reducible //-module, then V 
contains a vector v such that 

\CH(y)\ ^ \H\um. 

We deduce that if G is a solvable group with Fitting subgroup F{G), 
then 

\G:F(G) | ^ b{G)un. 

Combining this with the result of Isaacs and Passman mentioned above, 
we obtain an abelian subgroup A ^ F(G) ^ G with 

\G:A\ ^ b(G)2V2. 

These inequalities for solvable groups depend on several substantial 
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known results, including T. R. Wolfs upper bound for the order of a 
completely reducible solvable subgroup of GL(n, p). 

In the nonsolvable case, it is the nonsolvable composite groups, rather 
than the simple groups, which cause difficulties. Indeed there is a constant 
C such that \G\ < b(G)c for every nonabelian simple group G. This 
constant C exists for the trivial reason that |Irr(G) | is much smaller than 
\G\ for any such G. 

Our methods are not strong enough to give best possible bounds, even 
for solvable groups. We indicate why this is so at the end of Section 1. 

I would like to thank I. M. Isaacs for many helpful conversations 
related to this paper. I am using his simplified version of my original proof 
of Theorem 2.10. 

1. Solvable groups. Throughout this paper all groups are assumed to be 
finite and all modules are assumed to be finite dimensional right 
modules. 

We begin our discussion of solvable groups with precise statements of 
three results mentioned in the introduction. 

THEOREM A. Let G be solvable and let Vbe a faithful completely reducible 
F[G]-modulef for a finite field F. Then 

\CG(v)\ ^ |G|11/13 for some v <= V. 

THEOREM B. Let G be solvable with largest irreducible character degree 
b(G) and Fitting subgroup F(G). Then \G:F(G) | ^ Z>(G)13/2. 

THEOREM C. Let G be solvable with largest irreducible character degree 
b(G). Then G has an abelian subgroup A such that \G:A\ ^ b(G) ' . 

To prove these theorems, we assemble several known results and 
consequences of known results. 

LEMMA 1.1. Let H be a solvable group and let V be a faithful completely 
reducible F[H]-module, for a finite field F. Then \H\ ^ \V\9/4. 

Proof This is a slightly weaker version of [11, Theorem 3.1]. 

COROLLARY 1.2. Let G be solvable with Fitting subgroup F(G). Then 

\G:F(G) | ^ \F(G) |9/4. 

Proof Let 3>(G) be the Frattini subgroup of G and let G = G/$(G). By 
[6, III, Satz 4.5], 

|G:F(G) | = \G:F(G) | and F(G) = Nl X . . . X Nk, 

where each Nt is a minimal normal subgroup of G. For 1 â / ^ t , let Ct 

be the centralizer in G of Nt. By Lemma 1.1, each \G\Ct\ = \Nt\
9/4, and an 

obvious subdirect product argument yields 
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\G:F(G)\ ^ \F(G)\9/\ 

Hence 

\G:F(G) | ^ \F(G) |9/4 = |F(G)|9/4 ^ \F(G) |9/4. 

LEMMA 1.3. Lef P be ap-group and let V be a faithful F[P]-module for a 
finite field F of characteristic different from p. Then there exists v e V such 
that\CP(v)\ ^ \P\m. 

Proof This follows from [9, Corollary 2.4]. 

COROLLARY 1.4. Let N be a nilpotent group and let V be a faithful 
F[N]-module for a finite field F of characteristic not dividing \N\. Then there 
exists v G V such that \CN(v) | ^ |tf|1/2. 

Proof We proceed by induction on the number of prime divisors of 
\N\. 

The hypotheses imply that V is completely reducible. Suppose that 
V = Vx 0 V2, where Vx and V2 are F[JV]-submodules of V. Let 
C = CN(V2). Then C acts faithfully on F, and N/C acts faithfully on V2. 
Suppose we could find v, e F, and v2 e F2 so that 

| C c ( v , ) | S | q 1 / 2 and \CN/c(v2)\^\N/C\m. 

Let v be the vector (vl5 v2) in V. Then 

C„(v)C/C ^ C,/C(v2), 

so that 

\CN(v):C n CN(v)\ = \CN(y)C:C\ ^ \N/C\X,\ 

Since 

\c n cN(v)\ = |cc(v,)l =i |C|1/2, 
it follows that 

|C^(v) | = \CN(v):C n C„(v) | \C n C„(v) | ë |iV|1/2. 

Thus we may assume V is irreducible. 
Let P be a fixed Sylow subgroup of N. We may consider V an 

F[P]-module by restriction. Let ê be the endomorphism ring EndFrPjK 
Let R be the ^-complement of N, so that N = R X P. We view R as a 
subgroup of the group of units of <f. Since R ^ <f, R stabilizes each 
homogeneous component of V\P. Therefore F is a homogenous F[P]-
module. Let Wbe a fixed simple F[P]-submodule of V and let 

E = End F[P]W. 

Thus E is a finite field containing F. Let 

m = àimFV/àimFW. 

By [1, Lemma 2.2], <f is isomorphic to the ring of all m X m matrices 
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over E. Let Em denote the vector space of all row vectors of size m with 
entries in E. The embedding of R in <f and the isomorphism of <f with the 
ring of m X m matrices over E makes Em a faithful E[R]-module. Since \R\ 
has fewer prime divisors than |JV|, we may choose a vector x e Em so 
that 

\CR{x)\ S \R\m. 

There is a simple F[P]-submodule X of F such that C^(JC) = C^(X), the 
set of elements of R which fix and centralize X. By Lemma 1.3 we may 
choose v e X so that 

\CP(v)\ ^ \P\m. 

Since CN(v) = CP(v) X C^(v), it remains to show that CR(v) = 
CR(X). 

Since CR(v) ta ê and X is the unique simple ^[PJ-submodule of V 
containing v, it follows that CR(v) stabilizes X. Since nonidentity elements 
of End^pjX = E have no fixed points in X, it then follows that 

Q ( v ) ^ C*(*). 

Thus CR(v) = CR(X), completing the proof. 

LEMMA 1.5. Let G be a nilpotent group with largest character degree b(G). 
Then G has an abelian subgroup A with \G\A\ ^ b(G) . 

Proof. This is a special case of [7, Theorem 12.26]. 

Proof of Theorem A. Let N be the Fitting subgroup of G. Since N < G, V 
is a completely reducible F|7V]-module. Thus Corollary 1.4 applies and we 
may choose v e V so that \CN(y) | ^ |7V|1/2. 

We have \CG(v) | ^ \G:N\ \CN(v) |. Thus 

\G:CG(v) | ^ \G\/( \G:N\ \CN(v) | ) = \N:CN(v) \ i? \N\l/2. 

By Corollary 1.2, |G| ^ |JV|13/4 and so \N\U2 ^ |G|2/13. Therefore 

\G:CG(v)\ ^ \N\U2 ^ \G\2n\ 

and thus 

|CG(v)| =§ |G|11/13. 

Before proving Theorem B, we must extend Theorem A to modules in 
mixed characteristic. 

LEMMA 1.6. Let G be solvable and let Vt(\ = i = k) be completely 
reducible Ft[G]-modules, for various finite fields Ft. Let V = Vx X . . . X 
Vk, and let G act componentwise on V. Let C = CG(V). Then there exists 
v G V such that 

|CG(v):C| ë |G:C|11/13. 
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Proof. We proceed by induction on k. Let G = G/C and let 
D = CG(VX). Then G/D acts faithfully on Vv By Theorem A we may 
choose V! s. Vx so that 

|C<j/Z>(v,) I ^ |G/£>| n / ' 3 . 
Since D < G, D acts faithfully and completely reducibly on F2 X . . . X 
Fj., so by induction we may choose (v2,. • . , vk) e F2 X . . . X F^ so 
that 

| C D - ( v 2 , . . . , v , ) | ^ | 5 | 1 1 / 1 3 . 

As in the second paragraph of the proof of Corollary 1.4, we have 

| C c ( v „ . . . , v i t ) | ^ | G | 1 1 / 1 3 . 

The conclusion of the lemma follows. 

Proof of Theorem B. Let G = G/$(G) as in the proof of Corollary 1.2. 
Since \G:F(G) | = \G:F(G) | and b(G) ^ 6(G), we may assume that 
0(G) = 1. By [6, III, Satz 4.5] we may write 

F(G) = PxX...XPk9 

where the Pt are the nonidentity Sylow subgroups of F(G), and each Pt is a 
direct product of minimal normal subgroups of G. Let V = Irr(F(G) ), the 
multiplicative group of linear characters of F(G). Then 

V = IrrOPj) X . . . X lrr(Pk) 

and the usual conjugation action of G on Vleaves each Irr(Pz-) invariant. 
Moreover, for \ ^ i ^ k, Pt and Irr(Pz) are dual GF(/?z)[G]-modules, 
whereby denotes the prime divisor of |PZ-|. 

In particular, each Irr(P;) is a completely reducible GF(pt)[G]-module 
and CG(V) = F(G). We may apply the preceeding lemma to obtain X e V 
such that 

\CG(X):F(G)\ ^ \G:F(G)\u/l3. 

Since CG(X) is the inertia subgroup of X in G, Clifford's theorem implies 
that 

b(G) ^ \G:CG(X)\ = \G:F(G)\/\CG(X):F(G) \ ^ |G:F(G) |2/13. 

Hence |G:F(G) | ^ Z>(G)13/2, as required. 

Proof of Theorem C. By Lemma 1.5 we may choose A = F(G) with 

\F(G):A\ ^ b(F(G))\ 

Theorem B yields 

\G:A\ = \G:F(G)\\F(G):A\ ^ b(G)u/2b(F(G) )4 

^ b(G)l3/2b(G)4 = b(G)2]/2. 
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Remarks. Of course the bounds in Theorem A, B, and C are not the best 
possible. In fact we know of no solvable group G in which \G:F(G) \ > 
b(G)2. Moreover, if it were true that \G:F(G) \ ^ b{G)2 for all solvable 
groups G, we would not be able to prove it by sharpening the exponent in 
Theorem A. 

Indeed to obtain \G:F(G) | ^ b(G)2 by the method we used to prove 
Theorem B, we would have to show in the situation of Theorem A, that 

|C c (v) | ^ |G|1/2 for some v e V. 

However, the natural imprimitive action of the wreath product GL(2, 2) 
Wr S4 on an 8-dimensional vector space over GF(2) shows that this 
stronger version of Theorem A does not hold. 

2. Nonsolvable groups. We begin this section by stating the analogs of 
Theorems B and C for arbitrary finite groups. 

THEOREM D. There exists a constant L such that \G:F(G) | ^ b(G)L for 
every finite group G. 

THEOREM E. There exists a constant K such that every finite group G 
contains an abelian subgroup A with \G\A\ = b(G) . 

We will prove the existence of L and K without giving specific values for 
them. We will use the classification of simple groups only in Lemma 2.4 
below. 

LEMMA 2.1. Let G be a primitive permutation group of degree n which does 
not contain the alternating group An. Then \G\ < An. 

Proof. This is [10, Theorem]. 

LEMMA 2.2. Let G be a permutation group of degree n. Suppose that no 
nonabelian simple alternating group is involved in G. Then \G\ < 16". 

Proof. Since G is a subdirect product of transitive groups, we may 
assume that G is transitive on n points. If G is primitive, the result follows 
from Lemma 2.1. Otherwise there is an integer m with 1 < m < n and a 
partition of the set permuted by G into m blocks of imprimitivity, such 
that the stabilizer in G of each block induces a primitive group on that 
block. Let G0 be the normal subgroup of G consisting of those elements of 
G which stabilize all m blocks. Then G0 is isomorphic to a subgroup of a 
direct product of m primitive groups which satisfy the hypotheses of 
Lemma 2.1. Thus 

|G0| < (4n/m)m = 4n. 

Since G/G0 is a transitive group of degree m which satisfies the hypotheses 
of Lemma 2.2, induction yields that \G/G0\ < 16m. Thus 
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\G\ < 4n\6m ^ 4"16"/2 = 16". 

LEMMA 2.3. Let bn denote the largest irreducible character degree of the 
symmetric group Sn. Then for all sufficiently large n, bn > \Sn\ 

Proof Let p(n) be the number of partitions of n. If the lemma is false, 
then 

p(n) |5J2/3 ^ |5„| 

for infinitely many values of n. Then 

logp{n) ^ (log n\)/3 > n/3 

for infinitely many values of n. But the asymptotic formula for log p(n) 
[5, p. 40] shows that this is not the case. 

LEMMA 2.4. There exists a constant N > 0 such that 

b(S)/\Out(S)\ > \Aut(S)\VN 

for any nonabelian simple group S. Also 

\Aut(S) | = |5| for any such group S. 

Proof First suppose S is an adjoint group of Lie type, of characteristic 
p. Let \S\p = pa. The order formulas [2, p. 491] show that 

|S| < p3a and |Out(S) | < pla/\ 

Since the Steinberg character of S has degree pa, it follows that 

b(S)/\Out(S) | >pa/3 = (p4a)l/l2 > |Aut(S)|1 / 1 2 . 

Next suppose that ,S is an alternating group An. Since A5 and A6 are 
isomorphic to groups of Lie type, we may assume n è 7. Then 

|Out(S) | = 2 and b(S) ^ b{Sn)/2 > \Out(S) |. 

It follows from Lemma 2.3 that there exists N2 > 0 such that 

fc(S)/|Out(S)| > |Aut(,S)|1/iV2 

for all such groups S. 
Finally suppose that S is a sporadic group or the Tits simple group. 

Then |Out(S) | g 2 ( [3, Theorem 4.239] and [4] ) and b(S) > 2. Thus 
there exists N3 > 0 such that 

6(5)/|Out(S') | > |Aut(S)|1/7V3 

for all such groups S. 
We may let TV be the maximum of 12, 7V2, and 7V3. The assertion that 

|Aut(S) | ^ \S\2 

is clear. 
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Notation. We denote by Sol(G) the solvable radical of a group G. 

PROPOSITION 2.5. Let M < G with G/M solvable. Then 

|G:Sol(G) | ^ \M\\ 

Proof. Use induction on \M\. If there exists K<$ G with 1 < K < M, let 
U/K = So\(G/K). Then 

\G:U\ ^ \M/K\3 and \U:So\(U)\ ^ |# |3 

by the inductive hypothesis. Thus 

|G:Sol(G) | ^ |G:Sol(t/) | ^ |M|3. 

Now assume M is minimal normal in G. We may assume M is 
nonabelian, so that M is the direct product of isomorphic simple groups 
St(l ^ i ^ r). Let TV be the kernel of the permutation action of G on 
the St. Thus |G:7V| ^ 16r by Lemma 2.2. Also, N/CN(M) injects into 
I I Aut(5'/) and so 

\N:CN(M)\ ^ \M\2 

by Lemma 2.4. 
Since CN(M) n Af = 1, CN(M) is solvable. Since 16 < \S}\9 we have 

|G:Sol(G)| ^ \G:CN(M)\ ^ \6r\M\2 ^ \M\\ 

LEMMA 2.6. Le/. M = Sx X . . . X Sn where the St constitute a conjugacy 
class of subgroups of G. Let 6 G Irr(M) be G-invariant and let N = NG(SX). 
Write 

0 = ax X . . . X ar and y = a , X 1 X . . . X 1 G Irr(M), 

where az G Irr(^) . Let /? G Irr(7V|y). Then (/3®G)M is a multiple of 6. 

Proof. Observe that fiM = ey for some integer e. We have for m G M 

/3®G(m) = I I P(tmrl) = erU y(tmt~l) = er0(m) 

where t runs over a right transversal for N in G; see [8, Lemma 4.1]. 

Notation. If M = Sx X . . . X Sn where the St are nonabelian simple 
groups, write a (M) = H l O u t ^ ) |. 

COROLLARY 2.7. Let M < G be a direct product of nonabelian simple 
groups and let 0 G Irr(M) be G-invariant. Then there exists x G Irr(G|0) 
with 

X(l)/0(1) ^ a(M). 

Proof Use induction on \M\. If M = Mx X M2, with both factors 
nontrivial normal subgroups of G, write 0 = 0X X 02. Choose 
X, G Irr(G|^) with 
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•X/O)/0/(l) ^ a(Mt) for i = 1, 2. 

Then let x be an irreducible constituent of XiX2-
We may thus assume M is minimal normal. Write 

M = Sx X . . . X Sr 

with the Sj simple and G-conjugate. Write 

0 = a{ X . . . X ar and y = ax X 1 X . . . X 1. 

Let N = NG(SX) and C = CG(SX). Observe that y extends to SXC and so 
there exists /? e Irr(7V|y) with 

j8(l)/y(l) ^ \N:SXC\ ^ \Out(Sx)l 

Thus 

/ S ® c ( l ) ^ y ( l / | O u t ( S 1 ) r = 6(\)a{M). 

Take x t 0 be any irreducible constituent of /? - B y Lemma 2.6, 
X e Irr(G|0). 

LEMMA 2.8. Le/1 M < G tfftd 0 G Irr(M). Let T = IG(6)> the inertia group. 
Let x e lrr(T\9). Then 

b(G/M) ^ b(G)x(\)/0(\)2. 

Proof. Observe that b(G/M) ^ \G\T\b{T/M). Let j8 G Irr(77M) with 
/?(1) = b(T/M). Let i// be any irreducible constituent of /?x- Now 
[7, Theorem 12.7] yields 

^(1)X(1) ^ j8(l)0(l)2. 

Since \p e lrr(r |0), i//G is irreducible, so that 

M\)\G:T\ ^ b(G). 

Now 

b(G/M) â \G:T\b(T/M) = \G:T\ft\) = |G:r|^(l)x(l)/6»(l)2 

ë b(G)X(l)/e(l)2. 

PROPOSITION 2.9. Le/ M < G be nonabelian and minimal normal Then 

b(G/M) ^ b(G)/\M\l/N, 

where N is as in Lemma 2.4. 

Proof. Choose 0 e Irr(M) with 0(1) = b(M). Let T = IG(d). By 
Corollary 2.7, choose 

X e Irr(L|0) with xO) /#0) = Û ( M ) . 

Lemma 2.8 yields 
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b(G/M) g b(G)x(\)/6(\)2 ^ b(G)a(M)/6(l) 

= b(G)a(M)/b(M). 

By Lemma 2.4, b(M) ^ a(M) \M\]/N and so b(G/M) ^ b(G)/\M\]/N. 

THEOREM 2.10. Let G be arbitrary and N as in Lemma 2.4. Then 

|G:Sol(G) | ^ b(G)3N. 

Proof. We may assume Sol(G) = 1. Let M be minimal normal in G and 
let U/M = Sol(G/M). Then Sol(U) = 1 and \U\ ^ \M\3 by Proposition 
2.5. Induction on \G\ and Proposition 2.9 yield 

\G:U\ ^ b(G/M)3N ^ b(G)3N/\M\3. 

Thus |G| ^ Z>(G)3Ar. 

Proof of Theorem D. Let TV be as above. Theorem 2.10 and Theorem B 
yield 

\G:F(G) | = |G:Sol(G) | |Sol(G):F(G) | 

^ ^(G/Sol(G))3^(Sol(G))1 3 / 2 ^ b(G)3Nb(G)l3/2 = Z>(G)3Am3/2. 

Pr6>o/ o/ Theorem E. Theorem E follows from Theorem D and Lemma 
1.5 in the same way that Theorem C followed from Theorem B and 
Lemma 1.5. 
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