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We experimentally demonstrate quadrupolar electro-osmotic flows around charged
dielectric microspheres immersed in an electrolyte when subjected to an alternating
current electric field. We present an electrokinetic model that predicts the flow
characteristics based on the phenomena of surface conductance and polarization of the
electrolyte concentration around the particles. We refer to these flows as concentration
polarization electro-osmosis. We anticipate that these flows may play a major role in
the electric-field-induced assembly of colloids and on the electrokinetic manipulation of
dielectric micro- and nanoparticles.
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1. Introduction

Solid particles immersed in aqueous electrolytes usually carry a net surface charge which
is screened by a diffuse ionic layer on the electrolyte side of the interface. Relative
motion between the solid and liquid can occur when an external electric field acts on
these charges, giving rise to particle motion known as electrophoresis (Hunter 1993).
For diffuse layers much thinner than the particle size, the electrophoretic velocity is
given by the Helmholtz–Smoluchowski formula (Hunter 1993) as U = (εζ/η)E, where
ε is the medium permittivity and η its viscosity, E the applied electric field and ζ the
zeta potential (the electrical potential at the slip plane; Delgado et al. 2005). In the
presence of an alternating current (AC) field with amplitude E0, electrophoresis manifests
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E

5 µm

Figure 1. Experimental paths of 500 nm particles around a fluorescent latex sphere of 3 µm diameter along
with streamlines predicted by (2.32). The applied field magnitude and frequency are 80 kV m−1 and 292 Hz.

itself as an oscillatory motion of the particle at the same frequency as the field, with
a displacement amplitude given by (εζ/η)E0/ω, where ω is the angular frequency of
the electric field. Observations of the fluid flow around micron-scale solid dielectric
particles in an AC field has revealed a previously unobserved fluid flow pattern. Here
we report fluid patterns around 3 µm spheres exposed to low-frequency AC field imaged
using fluorescent tracer particles (500 nm diameter). Figure 1 shows an example of
these flow patterns. Significantly, the observed quadrupolar flow is not oscillatory. This
paper presents a theoretical model that describes these observations by considering the
effect of perturbations in the electrolyte concentration on the electro-osmotic flow around
the particles. The gradients in electrolyte concentration occur due to particle surface
conduction. The model for these phenomena predicts the previously reported stationary
flows observed around dielectric micropillars (20 µm diameter) subjected to AC fields
(Calero et al. 2021). The surface conduction of these micropillars is relatively small,
and the model was based on the approximation for small Dukhin number (the ratio
of surface to bulk conductance; Delgado et al. 2005). However, this is not small for
particles with a typical size around 1 µm or smaller. As a first attempt to model stationary
flows for arbitrary values of the Dukhin number, we develop a theoretical scheme for
weak electric fields. Gamayunov, Murtsovkin & Dukhin (1986) argued that stationary
quadrupolar flows may appear around charged dielectric spheres as a consequence of
concentration polarization and/or induced charge within the electrical double layer (EDL).
The flow pattern due to EDL polarization in a DC field was analysed in detail by Dukhin
& Murtsovkin (1986). Here we extend the analysis of Schnitzer & Yariv (2012) to the case
of AC electric fields and describe the stationary flow around a charged colloidal sphere as
a function of frequency, albeit with the restriction of a binary electrolyte with equal ionic
diffusivities. The latter assumption is valid for our experiments with KCl aqueous solutions
and greatly simplifies the theoretical treatment of the problem. In this work we focus on the
simplest system, in which stationary flows for AC fields arise due to surface conduction,
where there is already an asymmetry between counter-ions and co-ions. Experimental data
on the stationary electro-osmotic flow around microparticles are in agreement with the
predictions of the model. These flows could be important in controlling the interaction
between microscopic particles subjected to low-frequency AC electric fields (around 1 kHz
or less) and in general for any technique relying on AC fields for electrical manipulation
of dielectric particles.
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Stationary electro-osmotic flow driven by AC fields

2. Theory

Schnitzer & Yariv (2012) derived a mathematical model for the electrokinetic flows of
symmetric electrolytes at large zeta potentials in the limit of thin EDL, including surface
conduction effects. Building on this work, we modelled the stationary flows induced by
AC fields around charged cylinders with small Dukhin number (Calero et al. 2021). We
now explore the case of finite Dukhin number and weak electric fields (Schnitzer et al.
2013). To this end, we consider a negatively charged dielectric sphere immersed in a binary
electrolyte and subjected to an AC electric field with amplitude E0 and angular frequency
ω. We assume that this frequency is low enough so that the EDL is in quasi-equilibrium
(ω � σ/ε, with ε and σ denoting the liquid permittivity and conductivity, respectively).
We use a dimensionless formulation where length is scaled with the radius of the particle
a, electric potential with the thermal voltage φther = kBT/ze (where kB is Boltzmann’s
constant, T absolute temperature, z ionic valence and e elementary charge), time with
η/εE2

ther (where Ether = φther/a is the thermal electric field), pressure with εE2
ther, and

ion concentrations with typical salt concentration c0. Thus, diffusion constants are
non-dimensionalized with εa2E2

ther/η, velocities with εE2
thera/η, and the typical Reynolds

number is Re = ρmεE2
thera2/η2, with ρm the liquid mass density. The surface charge on

the dielectric is non-dimensionalized with εφther/λD, where λD is the Debye length.
The conservation equations for the concentration of positive (c+) and negative (c−) ions

are, respectively,

∇ · (−c+∇φ − ∇c+) + α+u · ∇c++α+
∂c+
∂t

= 0, (2.1)

∇ · (c−∇φ − ∇c−) + α−u · ∇c−+α−
∂c−
∂t

= 0, (2.2)

where α+ and α− are the reciprocals of the non-dimensional diffusion constants D+ and
D− for positive and negative ions, respectively, and the liquid velocity is u. In the bulk
electrolyte outside the EDL, electro-neutrality (c+ = c− = c) means that these equations
can be combined to give

D∇2c = u · ∇c + ∂c
∂t

, (2.3)

∇ · (c∇φ) = γ

(
∂c
∂t

+ u · ∇c
)

, (2.4)

where D = 2/(α+ + α−) and γ = (α+ − α−)/2. Equation (2.3) is the diffusion equation
for the ion concentration. Equation (2.4) is essentially the equation for the electric
potential, where γ is a parameter that is related to the asymmetry in ion mobility.

The boundary conditions on the surface of the charged dielectric sphere are as follows
(Schnitzer & Yariv 2012). The normal flux of co-ions (anions in our case) is zero:

c
∂φ

∂n
− ∂c

∂n
= 0. (2.5)

The normal flux of counter-ions (cations in our case) equals the surface divergence of EDL
cation flux:

− c
∂φ

∂n
− ∂c

∂n
= 2 Du∇2

s (φ + ln c), (2.6)

where Du is a Dukhin number defined as Du = (1 + 2α+)|qs|λD, with qs denoting the
non-dimensional intrinsic surface charge. Here the normal derivative is from the dielectric
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to the electrolyte. In the literature (Delgado et al. 2005), the Dukhin number is defined as
Duo = Ks/(σa), where Ks is the surface conductance. For large negative zeta potential (the
case in this work), the relation between these two definitions is Duo ≈ Du 2D+/(D+ +
D−). Here Du can be considered a fixed quantity if the surface charge is fixed. In this
work we assume this to be the case, i.e. variations in salt concentration do not lead to
variations in the intrinsic surface charge. Also, note that the boundary conditions (2.5) and
(2.6) neglect the charging of the EDL at the particle surface, in contrast to the modelling
of induced-charge electro-osmosis (ICEO) phenomena with AC fields (Squires & Bazant
2004). As shown in Schnitzer & Yariv (2014) for dielectric particles and moderate fields,
the induced zeta potential associated with induced charges in the EDL is negligibly small
compared with the thermal voltage.

The liquid velocity and pressure satisfy the Navier–Stokes equations for negligible
Reynolds number:

0 = −∇p + ∇2u + ∇2φ∇φ, ∇ · u = 0, (2.7a,b)

where the Coulomb term is present because gradients in ion concentration can lead to
induced charge in the bulk, through (2.4). In these equations we neglect the term Re∂u/∂t
because it is negligible for particles with radii of the order of microns and frequencies
less than 100 kHz. In other words (using dimensional quantities), this is negligible when
ρmωa2/η � 1. Thus, (2.7a,b) are quasi-static in the sense that time is implicit. The
boundary condition at the particle surface is u = U + us, where U is the translational
velocity of the particle centre and us is the slip velocity generated at the EDL (Prieve et al.
1984):

us = ζ∇sφ − 4 ln (cosh(ζ/4)) ∇s ln c. (2.8)

The zeta potential ζ is related to the intrinsic charge by the following (Hunter 1993):

qs = 2
√

c sinh(ζ/2). (2.9)

The translational velocity U is determined by the condition that the total hydrodynamic
stress equals zero at the surface of the sphere (Schnitzer et al. 2013). Far from the particle,
at infinity, the fluid velocity is zero. At this point, the reference frame can be changed to
one that is attached to the particle. The quasi-static equations for velocity and pressure are
the same, and the new boundary conditions are u = us at the particle surface, u = −U at
infinity. Under an applied AC electric field, the sphere velocity U is an oscillating function
of time, with zero time average (from symmetry).

Following Schnitzer et al. (2013), we now perform a power expansion of the amplitude
of the applied AC electric field β ≡ E0/Ether: c = 1 + βc1 + β2c2 + . . . , φ = βφ1 +
β2φ2 + . . . , u = βu1 + β2u2 + . . . , p = βp1 + β2p2 + . . . The linear approximation
provides a fluid velocity that is oscillatory in time, while the stationary electro-osmotic
flow around the sphere is found at second order in β.

2.1. Linear response
Salt concentration and potential satisfy

D∇2c1 = ∂c1

∂t
, ∇2φ1 = γ

∂c1

∂t
, (2.10a,b)

with boundary conditions as follows: at r = 1,

∂c1

∂r
+ Du ∇2

s (φ1 + c1) = 0,
∂c1

∂r
− ∂φ1

∂r
= 0, (2.11a,b)
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Stationary electro-osmotic flow driven by AC fields

where ∇2
s is the surface Laplacian, and at r → ∞,

c1 = 0, φ1 = − cos(ωt)r cos θ. (2.12a,b)

Assume that positive and negative ions have the same mobility, so that γ = 0. Since the
applied field is an oscillating function in time with angular frequency ω, we write c1 and
φ1 as c1 = Re[c̃1eiωt], φ1 = Re[φ̃1eiωt]. The complex functions satisfy

D∇2c̃1 = iωc̃1, ∇2φ̃1 = 0. (2.13a,b)

Given that both c̃1 and φ̃1 are of the form f (r) cos θ , the solutions are found as

c̃1 = Ce−k(r−1) 1 + kr
r2 cos θ, φ̃1 = −r cos θ + F

cos θ

2r2 , (2.14a,b)

where k = √
iω/D, and

C = 3 Du
2 + 2k + k2 + Du(k + 2)2 , F = 2 Du(1 + k + k2) − (2 + 2k + k2)

2 + 2k + k2 + Du(k + 2)2 . (2.15a,b)

The limit of zero frequency (k = 0)

c̃1 = 3 Du
2 + 4 Du

cos θ

r2 , φ̃1 = −r cos θ + Du − 1
2 + 4 Du

cos θ

r2 (2.16a,b)

is coincident with that given by Schnitzer & Yariv (2012), and by Hunter (1993) for thin
double layers and a highly charged surface. At infinite frequency (k → ∞),

c̃1 = 0, φ̃1 = −r cos θ + 2 Du − 1
2 + 2 Du

cos θ

r2 . (2.17a,b)

Here it can be seen that F/2 = (2 Du − 1)/(2 Du + 2) is the low-frequency value of
the Maxwell–Wagner–O’Konski dipole coefficient (O’Konski 1960). The frequency
dependence of the dipole coefficient F/2 is coincident with that given in Shilov et al.
(2001) for a highly charged surface, with thin double layer and equal ion mobilities,
because γ = 0 is set in (2.10a,b).

The fluid flow is oscillatory in time and governed by the equations

∇2u1 = ∇p1, ∇ · u1 = 0, (2.18a,b)

with slip velocity at r = 1 given by

us1 = ζ0∇sφ1 − 4 log (cosh(ζ0/4)) ∇sc1. (2.19)

At infinity the fluid velocity goes to u1 → −Re[U1eiωt]ẑ. Here U1 is determined by the
condition that the total hydrodynamic stress is zero on the sphere, which leads to

U1 = ζ0
2 + 2k + k2 + 2 Du(1 + k)
2 + 2k + k2 + Du(k + 2)2 + 8 log (cosh(ζ0/4))

Du(1 + k)
2 + 2k + k2 + Du(k + 2)2 .

(2.20)
The slip velocity is then us1 = 3

2 Re[U1eiωt] sin θ θ̂ . At the limit of zero frequency,

U1 = ζ0(1 + Du) + 4 Du log (cosh(ζ0/4))

1 + 2 Du
; (2.21)

taking into account that ζ0 is negative, this agrees with the expression given by Schnitzer
et al. (2013). The latter was shown to be equivalent to the expression provided by O’Brien
(1983) for large absolute zeta potential.
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2.2. Quadratic response
The equations for salt concentration and potential at second order in β are

D∇2c2 = ∂c2

∂t
+ u1 · ∇c1, ∇2φ2 = −∇φ1 · ∇c1, (2.22a,b)

with boundary conditions at r = 1 given by

∂c2

∂r
+ Du ∇2

s (φ2 + c2) = Du
2

∇2
s c2

1,
∂c2

∂r
− ∂φ2

∂r
= c1

∂φ1

∂r
, (2.23a,b)

while at r → ∞ both c2 and φ2 go to zero.
The time-averaged velocity and pressure satisfy

∇2〈u2〉 = ∇〈p2〉, ∇ · 〈u2〉 = 0. (2.24a,b)

Here the body force is zero since ∇2φ1 = 0. The boundary condition at r = 1 is a
time-averaged slip velocity,

〈u2s〉 = ζ0∇s〈φ2〉 + 〈ζ1∇sφ1〉 − 4 ln
(

cosh
(

ζ0

4

))
∇s

〈
c2 − c2

1
2

〉
−tanh

(
ζ0

4

)
〈ζ1∇sφ1〉,

(2.25)
with ζ1 = −c1 tanh(ζ0/2) from (2.9) and fixed qs. From symmetry, at infinity u2 → 0.
Therefore, the time-averaged velocity can be derived from the time averages 〈c2〉 and 〈φ2〉.
The equations for 〈c2〉 and 〈φ2〉 are

∇2〈c2〉 = 1
2D

Re
[∇c̃1 · ũ∗

1
]
, ∇2〈φ2〉 = −1

2
Re

[∇φ̃1 · ∇c̃∗
1
]
, (2.26a,b)

where the time-averaged product of two oscillating functions satisfies 〈 f (t)g(t)〉 =
1
2 Re[ fg∗]. The boundary conditions at r = 1 are now written as

∂〈c2〉
∂r

+ Du ∇2
s 〈φ2 + c2〉 = Du

4
∇2

s |c̃1|2,

∂〈c2〉
∂r

− ∂〈φ2〉
∂r

= 1
2

Re

[
c̃1

∂φ̃1

∂r

]
.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.27)

The source terms in the equations (2.26a,b) and the independent terms in the boundary
conditions (2.27) are linear combinations of P0(cos θ) and P2(cos θ), where Pn(x) is
the Legendre polynomial of degree n. Therefore, 〈c2〉 and 〈φ2〉 can be written as
〈c2〉 = c20(r) + c22(r)P2(cos θ) and 〈φ2〉 = φ20(r) + φ22(r)P2(cos θ). Only the terms
proportional to P2(cos θ) are important for the slip velocity (2.25). The general solutions
of (2.26a,b) for these terms that decay at infinity are of the form

c22 = A
r3 + Re[Gc(r)], φ22 = B

r3 + Re[Gφ(r)], (2.28a,b)

where A and B are constants that are determined from the boundary conditions, and Gc
and Gφ are particular solutions of the equations

1
x2

∂

∂x

(
x2 ∂Gc

∂x

)
− 6Gc

x2 = CU∗
1kek

2D
e−xgc(x),

1
x2

∂

∂x

(
x2 ∂Gφ

∂x

)
− 6Gφ

x2 = −Ckek

2
e−xgφ(x),

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.29)
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Figure 2. (a) Streamlines of the field represented by (2.32). (b) Slip velocity U as a function of ω/D. Here
ζ = −4, D = 4.5.

where x = kr, and

gc(x) = 2x−3 + 2x−2 + 2
3 x−1 − k3(x−6 + x−5 + 2

3 x−4),

gφ(x) = 2x−3 + 2x−2 + 2
3 x−1 + k3F∗(x−6 + x−5 + 2

3 x−4).

}
(2.30)

Note that the operator D2
r ≡ (1/r2) d/dr(r2(d/dr)) − 6/r2 comes from the Laplacian

operator in spherical coordinates when using solutions of the form f (r)P2(cos θ). The
right-hand sides in (2.29) are linear combinations of terms like xme−x. A solution of the
equation D2

xG = xme−x that decays at infinity is

G(m, x) = 1
5(Γ (m + 5, x)x−3 − Γ (m, x)x2), (2.31)

where Γ (m, x) is the incomplete Gamma function. Therefore, we construct Gc and Gφ as
linear combinations of G(m, x) with m = −6, −5, . . . , −1, and from here we obtain c22
and φ22.

Finally, the time-averaged slip velocity (2.25) is obtained as 〈u2s〉 = U sin(2θ)θ̂ , where
U is given in Appendix A. With this slip velocity on the sphere, the time-averaged velocity
field is as follows (Gamayunov et al. 1986; Squires & Bazant 2004):

〈u2〉 = U
(

(1 − r2)(1 + 3 cos 2θ)

2r4 r̂ + sin 2θ

r4 θ̂

)
. (2.32)

The streamlines of this velocity field are shown in figure 2(a).
Figure 2(b) shows U as a function of ω/D (ωa2/D with dimensions) for different values

of the Dukhin number. While the theory for small Dukhin number leads to a velocity that
scales linearly with Du, the current model predicts a saturation. For example, figure 2(b)
shows that the slip velocities for Du = 0.1 and Du = 1 differ by around 10 %. It is clear
that the intensity of the flow around the particle decreases beyond the characteristic
dimensional frequency ωc = D/a2, which is the reciprocal of the ion diffusion time
for the radius a. For frequencies much greater than this, U decays as ω−1/2, and this
frequency-dependent behaviour stems from the diffusion equation for the salt (2.13a,b).
The mechanism that produces the quadratic flow is a consequence of the polarization of
ion concentration, which decreases as ω−1/2.
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3. Experiments

The flows around single particles were imaged using a simple microfluidic channel. This
consists of a straight polydimethylsiloxane (PDMS) channel 1 cm long with inlet and
outlet reservoirs, fabricated using standard soft lithography. The channel cross-section is
50 µm × 50 µm. The inlet and outlet reservoirs are sealed with metal cylinders that serve
as the electrodes for the electric field. Fluorescent (500 nm and 3 µm) carboxylate particles
were suspended in an aqueous solution of potassium chloride (KCl) with a conductivity of
σ = 1.7 mS m−1. The 3 µm particle concentration was very low (no more than three or
four particles in the channel at any one time). In order to prevent particles from sticking to
the channel walls, these were pretreated with a solution of 0.1 % (w/v) Pluronic F-127 in
deionized water (a non-ionic surfactant that adsorbs onto the PDMS) for at least 30 min.
The peak-to-peak amplitude of the AC applied voltages was 1600 V over the frequency
range from 100 Hz to 5 kHz. Below 100 Hz, the 3 µm particle oscillations due to the
combination of electro-osmosis and zero-order electrophoresis are too large in amplitude
to allow accurate measurement of the steady flows around the particles. For frequencies
above 5 kHz, the magnitude of the quadrupolar flow is too weak compared to the Brownian
motion of the tracer particles.

The trajectories of the 500 nm tracers were imaged using fluorescent microscopy.
These tracers describe a three-dimensional flow pattern around the 3 µm particles. The
microscope objective was focused at approximately a horizontal plane at the centre of the
large particle. Out of all the tracer trajectories, only those that were approximately within
the focal plane were used (as shown in figure 1).

The 3 µm particles oscillate due to electrophoresis, but also have a small drift due to
small pressure fluctuations within the microchannel. Thus, in order to measure the fluid
velocity around these particles with respect to them, a MATLAB program was developed
to track the position of single 3 µm particles and to place this large particle in the centre
of a reference frame. This process is described in the supplementary movie available at
https://doi.org/10.1017/jfm.2021.650. The videos of fluid flow thus have the large particle
at a fixed position in the centre of the image, with the smaller tracer particles flowing
around it. Particle tracking velocimetry of the tracers provides a set of velocities at given
positions in the plane that are then compared with the theoretical flow field (2.32) through a
least-squares fitting analysis with a single fitting parameter, U, the maximum slip velocity.
Finally, the slip velocity and the experimental error are estimated from the average and
dispersion of the values determined from analysis of each streamline.

Figure 3 shows experimental data on the slip velocity as a function of frequency, along
with the predictions of the model. Typical parameters for carboxylated latex beads are ζ =
−75 mV and Ks = 1 nS (Ermolina & Morgan 2005). The figure shows that for the expected
Dukhin number (Du = 0.392), the theoretical prediction overestimates the velocity by a
factor of between 2 and 3.

4. Discussion and conclusions

This paper describes observations of stationary flows around dielectric spheres.
Quadrupolar fluid flows driven by electro-osmosis have been predicted around metal
spheres (Squires & Bazant 2004). However, in this case the slip velocity has a different
origin, namely, ICEO. In the case of a charged dielectric sphere, the rectified fluid
flow arises from the polarization of electrolyte concentration (concentration-polarization
electro-osmosis, CPEO) that results from the surface conductance around the sphere.
As shown in Calero et al. (2021), the induced charge on a dielectric sphere leads to an
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Figure 3. Experimental slip velocity U versus frequency of the applied field (E0 = 80 kV m−1, σ =
1.7 mS m−1, a = 1.5 µm and zeta potential is set to ζ0 = −75 mV). Theoretical curves are shown for different
values of Du: Duo = Ks/(σa) with Ks = 1 nS (——); Du = (1 + 2α+)|qs|λD (- - - -); Duo = Ks/(σa) with
Ks = 0.12 nS as obtained by a least-squares fitting (· · · · · · ).

associated induced zeta potential that is much smaller than the variation in zeta potential
due to concentration polarization. This implies that CPEO velocities are much higher than
ICEO velocities for the case of dielectric surfaces.

Our mathematical model predicts quadrupolar flows with a velocity magnitude
that vanishes for frequencies higher than ωc = D/a2, in agreement with experimental
observations. A quantitative comparison between theory and experiment shows that the
velocity magnitude is overestimated by the present model for typical values of Du
measured for latex spheres. The nonlinear model assumes weak electric fields (E0a <

kBT/e), but in the experiments E0a ≈ 120 mV ≈ 5kBT/e. However, for AC fields the
characteristic scale of the ion diffusion equation is the smaller of a or the diffusion
penetration depth

√
D/ω. This suggests that the condition of weak fields could be relaxed

for high frequencies and rewritten as E0� < kBT/e, with � the smaller of the two scales.
For example, for f ≈ 3 kHz, the characteristic length is � ∼ a/5 and E0� ∼ kBT/e.

The effects of this flow pattern on the pair interactions between particles have been
theoretically studied in the context of induced-charge electrophoresis and compared to that
of dielectrophoresis (DEP) (Saintillan 2008). Interestingly, the induced motion between
particles decays for large distances as (a/r)2 due to the hydrodynamic interaction, and
as (a/r)4 due to the DEP interaction (with r the distance between particle centres).
Clearly, the hydrodynamic interaction is more important than the DEP interaction when
the particles are separated by distances of several diameters. From our experiments and
theory for CPEO around dielectric spheres, we expect hydrodynamic interactions between
particles to decrease with ionic strength and vanish for frequencies much greater than
D/a2. Curiously, these trends have been found by Mittal et al. (2008) in experiments with
latex microparticles subjected to AC fields, although they attributed this behaviour to the
interaction between induced dipoles on the particles.

Supplementary movie. Supplementary movie is available at https://doi.org/10.1017/jfm.2021.650.
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Appendix A. Expression for U

In this appendix we provide the expression for the maximum stationary slip velocity on the
sphere, U (see (2.32)). We have checked that U coincides with the expression of Schnitzer
et al. (2013) for k = 0. It is given by

U = −3
2
ζ0Re

[
B1 + B2 + Gφ(k)

] − 1
4

tanh (ζ0/2) Re
[
(1 + k)C(1 − F∗/2)

]
+ 6 log (cosh(ζ0/4)) Re [A1 + A2 + Gc(k)]

−
(

4 log
(

cosh
(

ζ0

4

))
+ tanh

(
ζ0

4

)
tanh

(
ζ0

2

)) |C(1 + k)|2
4

, (A1)

where

A1 = −2 Du
3Gφ(k) + kG′

φ(k)

3 + 12 Du
+ 2

3
Du

(1 + k)(1 + F∗)C
3 + 12 Du

+ Du
|C(1 + k)|2
3 + 12 Du

,

B1 = A1 + 3kG′
φ(k) − (1 + k)(1 + F∗)C

9
,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(A2)

A2 = (1 + 2 Du)kG′
c(k) − 6 DuGc(k)

3 + 12 Du
, B2 = −2 DukG′

c(k) − 6 DuGc(k)
3 + 12 Du

, (A3a,b)

Gc(x) = CU∗
1kek

2D
[2G(−1, x)/3 + 2G(−2, x) + 2G(−3, x)

− k3(2G(−4, x)/3 + G(−5, x) + G(−6, x))], (A4)

Gφ(x) = −Ckek

2
[2G(−1, x)/3 + 2G(−2, x) + 2G(−3, x)

+ k3F∗(2G(−4, x)/3 + G(−5, x) + G(−6, x))]. (A5)
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