
JFP 21 (3): 309–329, 2011. c© Cambridge University Press 2011

doi:10.1017/S0956796811000086

309

A combinator library for the design of railway
track layouts

BARNEY STRATFORD

(e-mail: barney stratford@fastmail.fm)

Abstract

In the design of railway track layouts, there are only a small number of geometric

configurations that are used in practice, and a number of constraints as to how those

configurations can be fitted together to create a whole layout. In order to solve these

problems, we construct a Haskell combinator library. The library has been used for the design

of real-world track layouts.

1 Introduction

Railway preservation is a peculiarly British phenomenon. A preserved railway is

effectively a working museum, offering the public the chance to see how railways

were run in past times. Many of them are operated by steam locomotives that

only the older generation can remember in service. Such railways are staffed almost

entirely by volunteers, who relish the chance to get away from their day jobs and

help to look after big, beautiful, smelly machines.

The Mid-Norfolk Railway is one such organisation. There has developed a

pressing need to be able to efficiently design track layouts to fit within various

constraints, such as the amount and shape of land available, and the facilities

that are required to be included in the design. There is software available to the

professional rail industry to solve such problems, but this is unavailable to a non-

profit organisation, making the present work necessary. The opportunity to study the

underlying geometry, and to work the problems through ourselves seemed too good

to miss, and has resulted in a further “real world” use for functional programming.

The methods used here are similar to those used in the industry 20 years ago, before

computers were powerful enough to display fancy graphical interfaces.

The first use to which this library has been put is the design of a passing loop.

On a single-track railway, it is clearly impossible for trains heading in opposite

directions to pass each other. To overcome this, a short double-track section is

provided (along with the associated signalling systems) where the trains can pass,

thus greatly increasing the number of trains that the line can carry at once (see

Figure 1).

Our new passing loop was built at Thuxton, with construction work starting in

early 2009. Around 1,000 man-days of volunteer labour were used in the building

of the loop and signalling system, and the total cost came to 50,000 UK pounds.

https://doi.org/10.1017/S0956796811000086 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796811000086

310 B. Stratford

Fig. 1. A simplistic passing loop, enabling two trains to pass on a single-track railway.

Our library is developed using Haskell (Bird 1998; Peyton Jones 2003), whose

elegant syntax makes it attractive for our purposes. Haskell has found a wide

application for the design of domain-specific languages, and the present paper

continues this theme. In particular, the problems that we solve here can be expressed

much more elegantly when functions are first-class objects. The paper also provides a

general pattern for combinator libraries that solve numerical problems, particularly

in Section 3.

Why did we take this approach to solving the problem? We wanted our library

to be able to calculate track layouts based on the constraints that they must satisfy.

We want to describe what a layout should look like, or what the end result should

achieve, rather than have to say precisely how the layout is to be built. This naturally

suggests a declarative style of programming, which is the forte of the functional

programming languages. Our declarative approach made it possible to use the system

for rapid prototyping, as it is easy to take pre-built sections of track layout and

simply attach them together to see what the result looks like.

1.1 A little history

The system described here has undergone two or three major design changes and

hundreds of smaller tweaks to get it into its current form. We began with a very

concrete representation of our various datatypes, and special-purpose code to solve

each of the constraints that we encountered. It quickly became clear that this method

was not flexible enough for the intended purpose, as we were finding it necessary to

solve new constraints all the time, and each new situation required new code. It was

quickly becoming an unmaintainable mess.

Instead, we have used a very general datatype to describe all our track layouts

without needing to go into any special cases. We also built a powerful constraint

solver that enables us to specify arbitrary constraints that our layout is to satisfy.

We are not limited to solving only the problems that were considered important by

the designers.

The generality and flexibility of our system are its key strengths, for every rule

has its exceptions, and every general principle will have specific situations in which

it does not apply. Much of the domain-specific knowledge that needs to be applied

to a layout design comes from experience, judgment or knowledge of the site in

question. Human input into the design process is absolutely essential.

In initial versions of this software, we had hoped to use the type system to

provide guarantees of the validity of a track layout. For example, a layout is invalid

if two adjacent sections of track do not meet up: a train would derail in the

gap. When we implemented these kinds of guarantees, we found that it caused the

https://doi.org/10.1017/S0956796811000086 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796811000086

Railway track layouts 311

program’s complexity to increase, and it became too difficult to read code that was

littered with constructors. The ability to produce invalid track layouts is not a great

inconvenience, for a glance at the finished design will show up such glaring errors

in an instant. Experience has shown that an attempt to produce an invalid layout

will usually result in the machine being unable to find a layout that satisfies the

constraints. In any case, it would only have been possible to catch the simplest

kinds of errors using such methods, and human inspection would still be required

to ensure that the many engineering rules are followed.

2 A railway track primer

We begin by giving the basic definitions of the railway-specific technical terms that

are used in this paper. The construction of railway track is a diverse subject, with

many different designs, some experimental, having been used by the various railway

companies that have existed throughout history. An authoritative reference is Cope

(1993).

2.1 Plain line

A section of railway track consists of two steel rails mounted on sleepers (known

as ties in the USA) that hold the rails in place. The track is laid on a bed of small,

angular stones (known as ballast) that transfer and spread the weight of passing

trains to the track bed.

One job of the sleepers is to maintain the gauge of the track, which is the distance

between the inside surfaces of the rails. In current British practice, the gauge is

1435 mm.

In order to ensure a smooth ride and to reduce wear on the track and trains, it is

important that the geometry of the track is maintained. Where the track curves, the

outside rail will be higher than the inside (called cant) so that passing trains lean

into the curve and there is no net horizontal force on the track.

In order to ensure that a train’s passage is as smooth as possible, it is highly

desirable to keep the cant almost constant. When the cant is unchanging over a

section of track, the curvature must also remain constant, and so railway tracks are

mostly designed using circular arcs and straight line segments.

The real-world situation is a little more complicated than this, however, as the

curvature must necessarily change sometimes, for example at the end of a straight

section of track. One can’t abruptly change the curvature, for then the cant would

also have to change abruptly to match, which isn’t allowed. Instead, the curvature

changes linearly from one value to another over a short section of track; this is

a transition curve. In order to keep things simple, we have not included transition

curves in this version of the combinator library although there is no reason why

they couldn’t be added at a later date. For the current application, in which the

trains will be moving fairly slowly, this is not a serious shortcoming.

https://doi.org/10.1017/S0956796811000086 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796811000086

312 B. Stratford

Switches

Common Crossing

Fig. 2. A turnout.

2.2 Switches and crossings

Two tracks will often be required to converge to a single line, and this is achieved

by means of turnouts. A turnout consists of two important parts: the switches that

move to divert a train from one line to another, and a common crossing that enables

the rails of the two routes to cross each other (see Figure 2).

Switches and crossings come in a variety of standard sizes, and which to be used

depends on such factors as the speed of passing trains and the space available. It is

possible to manufacture switches and crossings to any required size, but the use of

a non-standard size greatly increases the cost and time required. The author only

knows of one occasion where this has been necessary (on the London Underground),

and layouts are almost exclusively designed with the standard sizes in mind.

3 Manipulating circles and straight lines

The basic elements of a railway track layout are circular arcs and straight line

segments. A track layout is formed by connecting several such curves together.

This section develops the machinery that we will subsequently use to create and

manipulate circles and lines.

Traditionally, circles are specified by giving their centre and radius. When

designing track layouts, we do not always know this information. Instead, we

may have to specify that an unknown circle is tangent to some given circle, or that

it passes through a certain point. We will define functions that allow us to describe

circles in terms of the conditions that they must satisfy.

In order to manipulate circles and lines in an effective manner, it is necessary to

make a careful choice of representation. Early versions of our combinator library

considered circles and straight lines as separate cases – a very concrete representation.

https://doi.org/10.1017/S0956796811000086 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796811000086

Railway track layouts 313

p = –2

p = –5.464

p = 0

p = 1.464

p = 1

Fig. 3. Oriented circles in �2. Values of p vary and a = b = k = 1.

This led to a number of corner cases and increased the amount of calculation that

was necessary. Instead, we use a slightly more general description of circles due

to Pfeiffer and van Hook (1993) such that straight lines are merely a special case

that does not need separate consideration. Simple continuity arguments can then be

applied to prove – for free – that the library behaves correctly when faced with a

straight line, without further calculation being necessary. Another useful consequence

of the representation is that we only rarely need to use any trigonometric functions.

Hiding these details inside a combinator library means that the end user will not

have to think about them, or even be aware that they exist.

3.1 Basics

We begin by considering how to represent the straight line segments and circular

arcs that our layouts will be constructed from. In all that follows, we will use the

word ‘circle’ to include straight lines, which can be considered to have infinite radius.

Where we wish to exclude straight lines, we will refer to ‘proper circles’. All our

circles will be oriented.

https://doi.org/10.1017/S0956796811000086 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796811000086

314 B. Stratford

(0, 0)

(x, y)

r

d

θ

Fig. 4. Specifying oriented circles and straight lines.

Let (p, a, b, k) ∈ �4 be a non-zero vector. Then, the locus C (p, a, b, k) of points

(x, y) ∈ �2 satisfying

p(x2 + y2) − 2ax − 2by + k = 0

is a circle. In the case where p = 0, then it is readily seen that this equation represents

a straight line. When p �= 0, then the equation can be rearranged to give(
x − a

p

)2

+

(
y − b

p

)2

=

(
a

p

)2

+

(
b

p

)2

− k

p
.

This is the equation of a proper circle. When C (p, a, b, k) is a proper circle with its

centre at (α, β) and of radius r, then

(α, β) =

(
a

p
,
b

p

)

and

r2 =

(
a

p

)2

+

(
b

p

)2

− k

p
.

See Figure 3 for some examples.

Note that C (p, a, b, k) = C (−p,−a,−b,−k). We can use this fact to allow us to

specify the orientation of our circles. When p > 0, then we consider the arrow to be

pointing anticlockwise, and when p < 0, then it is clockwise. When p = 0, then we

have a straight line, and we take the orientation to point in a direction parallel to

the vector (b,−a).

We introduce a datatype to hold this information.

> data Circle a = Circle {p, a, b, k :: a}

We also introduce some simple combinators to build circles. Proper circles are

specified by giving the centre and radius, while lines are given by the angle from

horizontal and the minimum distance to the origin as in Figure 4.

https://doi.org/10.1017/S0956796811000086 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796811000086

Railway track layouts 315

> anticlockwise_circle :: Double -> Double -> Double -> Circle Double

> anticlockwise_circle x y r =

> Circle 1 x y (x ^ 2 + y ^ 2 - r ^ 2)

> clockwise_circle :: Double -> Double -> Double -> Circle Double

> clockwise_circle x y r =

> Circle (-1) (-x) (-y) (r ^ 2 - x ^ 2 - y ^ 2)

> line :: Double -> Double -> Circle Double

> line d theta = Circle 0 (-sin theta) (cos theta) (2 * d)

Finally, we make our Circle type into an instance of Read and Show.

3.2 The Newton–Raphson iteration

One of the main aims of this combinator library is to be able to express a circle

in terms of the properties that it satisfies. For example, we might have surveyed a

site (possibly with a theodolite or GPS receiver) and found that an unknown circle

passes through a known point (x, y) and is tangent to two known circles c1 and c2.

Because there may be more than one solution satisfying these constraints, we have

to estimate roughly where the solution lies. In Haskell code, we would then wish to

say something like:

> c = find estimate $ satisfying

> [passing_through x y,

> tangent_to c1,

> tangent_to c2]

and expect c to be a circle satisfying these constraints.

Each of the constraints can be translated into a function on circles whose value

goes to 0 when the constraint is satisfied. This enables us to turn a difficult geometric

problem into a less-difficult numerical one (zeroing several functions simultaneously),

which can be solved by using a multi-dimensional Newton–Raphson iteration.

Although seen only infrequently in undergraduate mathematics courses, this is a

natural generalisation of the one-dimensional case that finds the zeros of a single

function, and the unfamiliar reader is referred to (Press et al. 2007).

Why are we going to all the effort of setting up this numerical algorithm, when it

is perfectly possible to produce an exact formula for each of the problems we might

wish to solve? In early versions of the library, this was precisely the approach that

we took, producing reams of code, for example to solve the problem just given. We

found that such exact formulæ became big, ugly and unwieldy rather quickly. Each

time a new problem arose, it became necessary to go back to the drawing board and

find yet another new formula to solve it. We were spending a considerable amount

of time on this and found the whole process somewhat dispiriting.

Using the combinator-based approach, complex problems can be built up from

simpler constituent parts, using only a few primitives. This is what functional

programming is all about.

https://doi.org/10.1017/S0956796811000086 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796811000086

316 B. Stratford

When we are using a standard mathematical library to calculate trigonometric

functions, square roots and even floating-point division, it is easy to forget that these

algorithms invariably depend on some kind of iterative process under the bonnet,

and that their ‘exact’ calculations are restricted by the machine’s accuracy limits. The

results given by the ‘approximate’ methods used throughout this paper are therefore

no less valid than the results we would obtain by performing a direct calculation.

3.2.1 Circles: three dimensions or four?

Note that a circle in the plane is specified by giving three coordinates: its centre

and radius. Our representation of circles has four parameters, and one of these must

therefore be redundant. We could perform the Newton–Raphson iteration in four

dimensions, finding values of p, a, b and k for which all the constraints go to zero,

but this would ignore the redundancy in our representation of circles. Failing to use

all the available information would adversely affect the convergence. Instead, we

will show how we can reduce the problem to three dimensions before performing

the iteration.

There are many ways to perform this reduction of dimension. The most important

criterion when selecting one is that it must be surjective (up to multiplication by a

positive constant). We would also like it to be numerically well-conditioned and to

be easy to compute.

Suppose that we initially make a guess that C (p, a, b, k) is a circle that is close to

the solution to whatever problem we are trying to solve. We will specify an arbitrary

circle C (p′, a′, b′, k′) by making k′ into a function of the other three variables, thereby

removing a dimension.

When k < 0, then we define

k′ − k = (p′2 − p2) + (a′2 − a2) + (b′2 − b2).

This defines a paraboloid. Because k < 0, the origin lies inside the paraboloid and

so any straight line that begins at the origin will intersect this paraboloid exactly

once.

For positive values of k, we need to be more careful, since sufficiently large values

of k will cause this paraboloid to move so that the origin is no longer inside it. We

can work around this by negating the left-hand side whenever k � 0:

−(k′ − k) = (p′2 − p2) + (a′2 − a2) + (b′2 − b2).

This gives us our projection function, for suitable types a and b. As a minor

optimisation, we can use the identity x2 − y2 = (x − y)(x + y) to save operations.

> circle :: Circle a -> [b] -> Circle b

> circle (Circle p a b k) [p’, a’, b’] =

> Circle p’ a’ b’ k’

> where

> x = (p’ - p) * (p’ + p) +

> (a’ - a) * (a’ + a) + (b’ - b) * (b’ + b)

> k’

> | k < 0 = k + x

> | k >= 0 = k - x

https://doi.org/10.1017/S0956796811000086 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796811000086

Railway track layouts 317

By construction, our initial guess C (p, a, b, k) is already a point on our paraboloid.

3.3 Handling derivatives

A constraint in our system is expressed as a function taking a circle to a real

number. The real number goes to zero precisely when the constraint is satisfied.

A set of constraints are all satisfied exactly when all of the functions go to zero

simultaneously. In situations where we wish to find the simultaneous zeros of several

functions of several variables, there is really only one method available: Newton–

Raphson.

The problem with using this method is that we need to know not only the values

of the functions, but also all of their partial derivatives. A function on circles takes

three values, which we are denoting by p, a and b. We calculate k from these values

so we can ensure we have only a three-dimensional problem. We give a Haskell type

that can contain not only the value of a function at a point, but also its partial

derivatives (Karczmarczuk 1998).

> data Result = R {value, dp, da, db :: Double} deriving (Read, Show)

A set of constraints then has a Haskell type isomorphic to Circle a -> [Result]

for a suitable type a.

Since Result is really just Double with some extra information added on, we can

make it an instance of Eq and Ord.

> instance Eq Result

> where

> x == y = value x == value y

> instance Ord Result

> where

> compare x y = compare (value x) (value y)

Given a pair of Results, we can perform all the basic arithmetic operations using

the standard rules of differentiation. For example,

> x + y = R (value x + value y) (dp x + dp y)

> (da x + da y) (db x + db y)

This quickly becomes tedious, however, for we have to give almost identical

expressions for dp, da and db. To ease the pain, we give a helper function that

enables us to write the expression for each derivative only once.

> result :: Double -> ((Result -> Double) -> Double) -> Result

> result value derivative =

> R value (derivative dp) (derivative da) (derivative db)

Using this helper function, we can write

> x * y = result (value x * value y)

> (\d -> value x * d y + value y * d x)

https://doi.org/10.1017/S0956796811000086 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796811000086

318 B. Stratford

or even

> sin x = result (sin (value x)) (\d -> d x * cos (value x))

In fact, Result is an instance of Floating, giving access to the full range of

mathematical operations while keeping track of all the partial derivatives with

respect to p, a and b.

3.3.1 Coercions

Any Double value can be coerced to a Result type by assuming that the value is a

constant. Likewise, a constant Circle Double can be coerced to a Circle Result.

> coerce_constant :: Double -> Result

> coerce_constant x = R x 0 0 0

> coerce_circle :: Circle Double -> Circle Result

> coerce_circle (Circle p a b k) =

> Circle (R p 0 0 0) (R a 0 0 0) (R b 0 0 0) (R k 0 0 0)

To perform these coercions at appropriate times, we create a typeclass. For con-

venience, and to avoid clutter later on, our class is a subclass of Floating and

Ord.

> class (Floating a, Ord a) => CircleType a

> where

> coerce_constant :: Double -> a

> coerce_circle :: Circle Double -> Circle a

Both Double and Result are instances of CircleType, with the obvious definitions.

This typeclass will be used extensively when we come to dealing with circle

transformers in Section 4.1.

3.4 Satisfying constraints

We have developed all of the machinery that we will use when finding a circle that

satisfies some given constraints, so we show how to assemble these parts into a

functioning whole.

We have already seen that a constraint has a type isomorphic to Circle a ->

[Result] for suitable a. Let c :: Circle a -> [Result] be a constraint and let

f :: Circle a -> Circle a be some function on circles. Then c . f is a new

constraint, and there are plenty of situations in which we may want to construct such

a constraint. For example, at a common crossing, the right-hand rail of one route

may cross over the left-hand rail of another at a fixed angle. When a section of track

is represented by giving its centre line, then we will have to apply a transformation

to both circles and state that the transformed circles cross over at the given angle.

Suppose that a is Double. A problem arises because all of the derivatives in c . f

may be incorrect, and so the Newton–Raphson iteration may fail to converge on

https://doi.org/10.1017/S0956796811000086 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796811000086

Railway track layouts 319

the correct value. We have transformed a circle using f without applying the Chain

Rule for differentiation.

In fact, the right thing to do is to take a to be Result, for then we can apply

whatever transformations we choose and the derivatives will be calculated correctly.

Observe that circles of type Circle Double are known, constant circles, whereas

circles of type Circle Result are always unknowns that contain the current best

estimate. We can therefore make some highly suggestive type synonym declarations.

> type Known = Double

> type Unknown = Result

Although a constraint function returns a list of Results, these lists are really

rather atomic. It doesn’t make much sense to count their elements, or to split them

up. Their ordering is unimportant and it makes no difference if an element appears

more than once. All we want to be able to do is to combine lists of constraint

functions together.

> newtype Results = Rs {unRs :: [Result]}

> satisfying :: [Circle Unknown -> Results] ->

> Circle Unknown -> Results

> satisfying constraints = concatRs . getRs

> where

> concatRs = Rs . concat . map unRs

> getRs = flip map constraints . flip ($)

Each step in the Newton–Raphson iteration involves calculating the value and

derivatives of all our constraint functions and then applying the inverse of the

Jacobian to the column vector of values. To keep the technicalities to a minimum,

we won’t go into the details of how this works. A function to perform a typical

Newton–Raphson iteration would then be defined as

> find :: Circle Known -> (Circle Unknown -> Results) -> Circle Known

> find c@(Circle p a b k) constraints =

> circle c $ newton_raphson [p, a, b]

> (unRs . constraints . circle c)

where newton raphson has type

> newton_raphson :: [Double] -> ([Result] -> [Result]) -> [Double]

and where newton raphson first guess constraints is a list of values that

satisfy the constraints. This function has been designed so that it can cope with

many of the mishaps that occur in practice. It is not possible to guarantee that

newton raphson can always discover a solution that satisfies the constraints,

however, as they might be contradictory or the initial guess might be too far

from a solution. It will always terminate, and it will signal an error if the resulting

circle is not close enough to a position where the constraints are satisfied.

https://doi.org/10.1017/S0956796811000086 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796811000086

320 B. Stratford

In general, it really is necessary to provide an initial estimate for the result, as

there are often multiple solutions to the problems we wish to solve. Experience has

shown that there are typically two solutions, and we have to distinguish between

them.

4 Circle combinators

Everything is now in place to enable us to find circles that satisfy given constraints.

We only need the combinators that transform circles and evaluate the constraints.

4.1 Circle transformers

4.1.1 Reversing orientation

Railway track layouts are not, in general, orientable. For example, a triangular

junction would enable a train to turn round by doing a three-point turn. As such,

a track layout is only locally orientable: we can paint arrows on the tracks, but

for some layouts it may be inescapable that two tracks converge with their arrows

pointing in opposite directions. To construct layouts where this happens, it will be

necessary to be able to reverse the orientation of our circles. We have defined circles

so this can be achieved by simply negating p, a, b and k.

> reverse_circle :: CircleType a => Circle a -> Circle a

> reverse_circle (Circle p a b k) = Circle (-p) (-a) (-b) (-k)

4.1.2 Offsetting

It is often the case that two railway tracks follow each other side-by-side. We provide

a function to offset a given circle by a given amount to the right when facing in the

direction of the arrow. The new circle is concentric with the old one, or, in the case

of two straight lines, the two are parallel.

Suppose we wish to offset our circle C (p, a, b, k) by an amount δ, giving the circle

C (p, a, b, k′). When the circle is oriented anticlockwise, then we will add δ to its

radius r, whereas δ will be subtracted from the radius of a clockwise circle. Hence,

k

p
=

(
a

p

)2

+

(
b

p

)2

− r2

and

k′

p
=

(
a

p

)2

+

(
b

p

)2

− (r ± δ)2.

Expanding the second expression and substituting the first twice yields

k′

p
=

k

p
∓ 2δ

√(
a

p

)2

+

(
b

p

)2

− k

p
− δ2.

We now multiply through by p. Note that we add δ to the radius when p is positive

and subtract it when p is negative. Hence, ∓p = −|p|, and the multiplication goes

https://doi.org/10.1017/S0956796811000086 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796811000086

Railway track layouts 321

right inside the square root.

k′ = k − 2δ
√

a2 + b2 − kp − pδ2

Although we haven’t considered straight lines as a special case, we can prove

that this function behaves as expected when faced with one by using a continuity

argument at p = 0. It is a recurring theme that everything that works correctly on

proper circles will also work on straight lines for free.

> offset_circle :: CircleType a => Double -> Circle a -> Circle a

> offset_circle amount (Circle p a b k) = Circle p a b k’

> where

> amount’ = coerce_constant amount

> k’ = k - 2 * amount’ * sqrt (a ^ 2 + b ^ 2 - k * p) -

> p * amount’ ^ 2

4.1.3 Others

Other operations on circles could include translation, rotation around the origin and

scaling. These are little used in practice, so are not discussed further. Implementation

of these operations is left as an exercise for the reader.

4.2 Constraints

4.2.1 Passing through a point

Suppose we have surveyed a site and determined that a section of track passes

through the point (x, y). We will wish to express this as a constraint in our system.

By definition, the circle C (p, a, b, k) passes through (x, y) when

p(x2 + y2) − 2ax − 2by + k = 0.

The left-hand side can be used as our constraint function, giving:

> passing_through :: Double -> Double -> Circle Unknown -> Results

> passing_through x y (Circle p a b k) = Rs [value]

> where

> x’ = coerce_constant x

> y’ = coerce_constant y

> value = p * (x’ ^ 2 + y’ ^ 2) - 2 * a * x’ - 2 * b * y’ + k

4.2.2 Common crossings and tangent curves

At a common crossing, the two rails cross over at a fixed, pre-defined angle. We will

therefore require a constraint that says that two circles cross at a fixed angle. It is

also often necessary to specify that two circles are tangent to each other, which can

be achieved as a special case with the angle set to zero. It is not enough that the

curves simply touch each other; the orientations also have to match.

https://doi.org/10.1017/S0956796811000086 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796811000086

322 B. Stratford

φ

θ

r2

r1

Fig. 5. Oriented circles crossing at a given angle θ.

Let C (p1, a1, b1, k1) and C (p2, a2, b2, k2) be two overlapping circles, and let θ be

the angle at their intersection. If one was to stand at the crossing point, facing in the

direction of the arrow of C (p1, a1, b1, k1), then one would have to turn anticlockwise

by an amount θ to be facing in the direction of the arrow of C (p2, a2, b2, k2).

In Figure 5, note that φ = π − θ in the case where the circles have opposite

orientation, and φ = θ where the orientations are the same. Letting r1 and r2 be the

radii of the circles, the cosine rule therefore gives us that(
a1

p1
− a2

p2

)2

+

(
b1

p1
− b2

p2

)2

= r21 + r22 ± 2r1r2 cos θ

where the ± is positive when the orientations of the circles are opposed and negative

when aligned. Multiplying out and cancelling terms gives

−2
a1a2

p1p2
− 2

b1b2

p1p2
= −k1

p1
− k2

p2

± 2

√(
a1

p1

)2

+

(
b1

p1

)2

− k1

p1

√(
a2

p2

)2

+

(
b2

p2

)2

− k2

p2
cos θ.

We now rearrange and multiply through by p1p2. Recall that the ± sign is positive

when p1p2 is negative and negative when p1p2 is positive. Hence, ±p1p2 = −|p1p2|
and so we can multiply right into the square roots, giving

k1p2 + k2p1 + 2

√
a2

1 + b2
1 − k1p1

√
a2

2 + b2
2 − k2p2 cos θ − 2a1a2 − 2b1b2 = 0.

We can use the left-hand side of this equation as the constraint function for the

Newton–Raphson iteration, giving the following code:

https://doi.org/10.1017/S0956796811000086 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796811000086

Railway track layouts 323

> crossing_angle :: Double -> Circle Known -> Circle Unknown ->

> Results

> crossing_angle theta c1 c2 = Rs [value]

> where

> Circle p1 a1 b1 k1 = coerce_circle c1

> Circle p2 a2 b2 k2 = c2

> sqrt1 = sqrt (a1 ^ 2 + b1 ^ 2 - k1 * p1)

> sqrt2 = sqrt (a2 ^ 2 + b2 ^ 2 - k2 * p2)

> value = k1 * p2 + k2 * p1 - 2 * a1 * a2 - 2 * b1 * b2 +

> 2 * sqrt1 * sqrt2 * coerce_constant (cos theta)

The constraint that two circles are tangent to each other is a special case of this:

> tangent_to :: Circle Known -> Circle Unknown -> Results

> tangent_to = crossing_angle 0

4.2.3 Fixed radius

A constraint that is often required is that the radius of the curve is fixed at some

pre-defined value. The radius r of C (p, a, b, k) is given by

r2 =

(
a

p

)2

+

(
b

p

)2

− k

p
.

Rearranging this gives us

rp = ±
√

a2 + b2 − kp.

When r is positive, then we get an anticlockwise circle when p is also positive,

and hence, when we take the positive square root. Similarly, we take the negative

square root when we wish to obtain a clockwise circle. This gives us our constraint

functions.

> anticlockwise_radius :: Double -> Circle Unknown -> Results

> anticlockwise_radius r (Circle p a b k) = Rs [value]

> where

> r’ = coerce_from_double r

> value = r’ * p - sqrt (a ^ 2 + b ^ 2 - k * p)

> clockwise_radius :: Double -> Circle Unknown -> Results

> clockwise_radius r (Circle p a b k) = Rs [value]

> where

> r’ = coerce_from_double r

> value = r’ * p + sqrt (a ^ 2 + b ^ 2 - k * p)

The constraint that ensures we have a straight line is simply p = 0.

> is_line :: Circle Unknown -> Results

> is_line (Circle p a b k) = Rs [p]

https://doi.org/10.1017/S0956796811000086 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796811000086

324 B. Stratford

4.2.4 Concentric circles

We will sometimes need to be able to express the constraint that two sections of track

follow each other side-by-side: they are concentric. Two circles C (p1, a1, b1, k1) and

C (p2, a2, b2, k2) are concentric precisely when the vectors (p1, a1, b1)
T and (p2, a2, b2)

T

are collinear.

Let P be the plane passing through the point (p1, a1, b1)
T and perpendicular to the

line joining that point to the origin. Let x be the real number such that x(p2, a2, b2)
T

lies on the plane P . We can readily see that the two vectors are collinear when

x

⎛
⎝ p2

a2

b2

⎞
⎠ =

⎛
⎝ p1

a1

b1

⎞
⎠ .

It is easily shown that x = |(p1, a1, b1)
T |2/

(
(p1, a1, b1)

T .(p2, a2, b2)
)
, which gives us

that

(
p2

1 + a2
1 + b2

1

) ⎛
⎝ p2

a2

b2

⎞
⎠ = (p1p2 + a1a2 + b1b2)

⎛
⎝ p1

a1

b1

⎞
⎠ .

This rearranges to ⎛
⎝ p2(a

2
1 + b2

1) − p1(a1a2 + b1b2)

a2(p
2
1 + b2

1) − a1(p1p2 + b1b2)

b2(p
2
1 + a2

1) − b1(p1p2 + a1a2)

⎞
⎠ = 0,

giving us our constraint functions. Note that we have three functions, when the

problem of positioning the centre of the circle is a two-dimensional problem. This

is because these three constraints are not independent of each other, but any pair

of constraints is independent. We have designed our Newton–Raphson iteration to

be able to cope with this: it simply deals with it gracefully by throwing away the

redundant constraint.

> concentric_with :: Circle Known -> Circle Unknown -> Results

> concentric_with c1 c2 = Rs [value1, value2, value3]

> where

> Circle p1 a1 b1 k1 = coerce_circle c1

> Circle p2 a2 b2 k2 = c2

> value1 = p2 * (a1 ^ 2 + b1 ^ 2) - p1 * (a1 * a2 + b1 * b2)

> value2 = a2 * (p1 ^ 2 + b1 ^ 2) - a1 * (p1 * p2 + b1 * b2)

> value3 = b2 * (p1 ^ 2 + a1 ^ 2) - b1 * (p1 * p2 + a1 * a2)

We can also give a special case for directly specifying the centre point:

> centred_at :: Double -> Double -> Circle Unknown -> Results

> centred_at x y = concentric_with (Circle 1 x y 0)

https://doi.org/10.1017/S0956796811000086 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796811000086

Railway track layouts 325

4.3 Examples

Having seen these various combinators for transforming circles and for specifying

constraints that they must satisfy, we give a few small examples to illustrate how

they can be combined.

4.3.1 Creating a small layout

Suppose that we have surveyed a site and found that a particular section of track

has radius of curvature r and passes through points (x1, y1) and (x2, y2). Suppose we

wish to orient the circle so that the rotation is in a clockwise direction as we move

from the first to the second point. Then, we can calculate where this section of track

lies as follows:

> circle1 :: Circle Known

> circle1 = find guess1 $ satisfying

> [passing_through x1 y1,

> passing_through x2 y2,

> clockwise_radius r]

Suppose the this circle adjoins a straight line that passes through point (x, y).

Then, the straight line is specified as:

> circle2 :: Circle Known

> circle2 = find guess2 $ satisfying

> [tangent_to circle1,

> passing_through x y,

> is_line]

Now suppose that these two circles are actually on a double-track section of line.

Standard practice is to separate adjacent lines by 3.405 m.

> [circle1’, circle2’] = map (offset_circle 3.405) [circle1, circle2]

4.3.2 Over- and under-specifying circles

The constraint solver is designed so that it can handle under- or over-specified

circles, providing the specification is self-consistent.

> circle3 :: Circle Known

> circle3 = find (clockwise_circle 2 0 2) $ satisfying

> [tangent_to (clockwise_circle 1 1 1),

> tangent_to (clockwise_circle 3 3 1),

> tangent_to (clockwise_circle 5 1 1),

> clockwise_radius 3,

> clockwise_radius 3]

When a circle is under-specified, the result is a circle that satisfies the constraints

and is in some sense close to the initial estimate.

https://doi.org/10.1017/S0956796811000086 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796811000086

326 B. Stratford

> circle4 :: Circle Known

> circle4 = find (clockwise_circle 2 0 2) $ satisfying

> [anticlockwise_radius 1]

This facility comes into its own when trying to find an initial estimate of a solution

but one of the constraints is being awkward: we can temporarily omit the bad

constraint from our list and find a circle that satisfies the remaining constraints.

This then becomes the initial estimate for the problem that includes the difficult

constraint.

4.3.3 More complicated relationships

Imagine that a site has a manhole at known position (x, y) and that we want to

specify that the track passes exactly d metres away from the manhole. How do we

write this constraint?

> near_manhole :: Double -> Double -> Double ->

> Circle Unknown -> Results

> near_manhole x y d = passing_through x y . offset_circle d

We are taking the unknown circle, offsetting it, and specifying that the transformed

unknown circle passes through the known point.

4.3.4 The user’s perspective

The end user of our system does not necessarily know anything about how we’re

representing circles. There’s no hint of the underlying mechanism by which the

calculations are performed. As we can see from these examples, we only have to

tell the system about the relationship between the various elements that the layout

is built from. We can even manipulate unknown circles if we wish, and the system

will happily deal with them in an appropriate manner. Our language is strongly

compositional, with no side effects.

5 PDF file generation

Having calculated the layout of a section of railway track, we want a graphical

representation of it. Adobe’s PDF (Adobe Systems Inc. 2000) seems like a suitable

format, being freely available for use and elegantly designed. This paper is not

the place to discuss the technical details of the PDF format: the reader is referred

to Adobe Systems (2000) instead.

Most of the work of writing to the PDF file will be handled by a plotting monad,

enabling us to say, for example

> main = plotPDF plotter_settings $ do

> colour Red -- Change the colour of the plot.

> plot [circle1, circle2, etc] -- Plot list of tangent circles.

> mark x y -- Put a cross on the map at

> -- these coordinates.

> plot_circle circle3 -- Plot a single circle.

https://doi.org/10.1017/S0956796811000086 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796811000086

Railway track layouts 327

The details of these functions will be elided, as they are not conceptually difficult.

For completeness, we will simply give a type signature and explanation of what they

do.

Because there is no Haskell PDF package available at present that is capable of

modifying a PDF file, plotPDF is rather primitive and requires the PDF file to be

specially prepared. This is discussed further in the comments in the downloadable

code.

In order for the plotter to produce its output, it must be informed of various

pieces of information, such as the name of the file to plot to, the position of the

origin, which way is north, and the scale of the plot.

> data PlotterSettings = PlotterSettings {file :: FilePath,

> origin :: (Double, Double), north :: Double, scale :: Double}

We then convert our plotting monad into an IO computation by using plotPDF:

> plotPDF :: PlotterSettings -> Plot a -> IO a

5.1 Plotting commands

When we wish to plot a section of track onto the map, we will pass a list of circles

to the plot function. All adjacent circles in the list are required to be tangent to

one another. The result will be a PDF plot of those circles, joined at their tangent

points.

> plot :: [Circle] -> Plot ()

As well as plotting the railway lines, it was found useful to be able to change the

colour of the plot. This enhances the clarity of the resulting plot and can be used

to convey further information about what is to be built. In common usage, black

represents track that will not be affected by construction works, while green is for

track that will be removed and red is for track that will be added. (Think: red stops

and green goes.)

> data Colour = Red | Green | Blue | Purple | Black | Grey | Brown

> deriving (Read, Show, Eq)

> colour :: Colour -> Plot ()

It proved to be very useful to be able to mark points and circles onto the plot for

debugging purposes. This was particularly true when trying to find initial estimates

for the Newton–Raphson iteration. It also helped a great deal when the iteration

refused to converge – often, plotting a few circles showed that a solution was

impossible. Even when the iteration did converge, it was reassuring to be able to

check that it had converged on the intended solution.

> mark :: Double -> Double -> Plot ()

> plot_circle :: Circle -> Plot ()

https://doi.org/10.1017/S0956796811000086 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796811000086

328 B. Stratford

6 Conclusion

The practical need for a library for the design of railway track layouts has led to

the use of Haskell for the purpose. A functional programming language is ideally

suited for the task, as it enables us to express the relationships between the various

track layout components in a clean manner. The system described here facilitates the

complete process of designing a track layout, including a wide range of combinators

to cover most situations that arise in practice. It has been used ‘for real’ in the design

of the passing loop at Thuxton and in other places as well.

It came as quite a surprise when we realised how to represent circles and

straight lines in the uniform manner described in Section 3. Previously, we had

been representing these as two separate cases using an algebraic datatype. Our

case-free representation made it possible to specify and solve arbitrary constraints

using our Newton–Raphson iterator, and this proved to be the key step in the

development of our package. A consequence of this is that we don’t need to use

Haskell’s pattern-matching facility at all: each datatype has a single constructor.

The problem is that straight lines are a limiting case of proper circles, whereas

algebraic datatypes would tend to treat the two cases entirely separately and ignore

the continuity that exists in this situation.

A key benefit of the use of a Newton–Raphson iteration has been that our

constraints can be used in arbitrary combinations. We can create new constraints

by applying transformations to existing ones, and we can even introduce completely

novel constraints that were not conceived of when the package was designed – all

without modifying the underlying constraint solver. It has been a recurring theme

during the development of the software that attempting to produce exact solutions

to problems usually resulted in overwhelming complexity, whereas our approximate

solutions are highly accurate and offer many practical benefits.

We have given an illustration of how the Newton–Raphson method can be used,

in general, for finding the zeros of a function without having to explicitly calculate

all of the derivatives by hand. This saves a great deal of time spent debugging and is

much more reliably correct. Although the method is applied to just a single problem

here, a large and important class of numerical constraint problems can be solved

using these methods.

Importantly, the design of this software enables its use for rapid prototyping.

Typically, the user would create a rough layout that may not satisfy all of the

requirements, plot the PDF, and then, successively refine. Even for such a simple

layout as Thuxton, this cycle was repeated many hundreds of times to experiment

with the various different options that were available to us. ‘What would happen if

I were to put that there instead of here?’ ‘Could I use a bigger one of those?’ ‘How

sharp would that curve have to be?’

The code described in this paper can be downloaded from the JFP web site, along

with the actual plans used at Thuxton. Photos of the construction of the passing loop

(including some by the author) can be found at http://www.mnr.org.uk/photos/

thuxton/.

https://doi.org/10.1017/S0956796811000086 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796811000086

Railway track layouts 329

Acknowledgments

Thanks to Ralf Hinze and Colin Runciman for their helpful comments on earlier

drafts of this paper.

References

Adobe Systems (2000) PDF Reference. Adobe Press.

Bird, R. (1998) Introduction to Functional Programming Using Haskell. 2nd ed., Prentice Hall.

Cope, G. H. (1993) British Railway Track. 6th ed., Permanent Way Institution.

Karczmarczuk, J. (2001) Functional differentiation of computer programs. Higher-Order and

Symb. Comput, 14(1), 35–57.

Peyton Jones, S. (ed) (2003) Haskell 98 Language and Libraries—The Revised Report.

Cambridge, England, UK: Cambridge University Press.

Pfeiffer, R. E. & van Hook, C. (1993) Circles, vectors, and linear algebra. Math. Mag., 66(2),

75–86.

Press, W. H., Teukolsky, S. A., Vetterling, W. T. & Flannery, B. P. (2007) Numerical Recipes.

3rd ed., Cambridge, England, UK: Cambridge University Press.

https://doi.org/10.1017/S0956796811000086 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796811000086

