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1. Triangular maps. Let R be a simply connected closed region in the 
Euclidean plane E2 whose boundary is a simple closed curve C. A triangular 
map, or simply "map," is a representation of R as the union of a finite number 
of disjoint point sets called cells, where the cells are of three kinds, vertices, 
edges, and faces (said to be of dimension 0, 1, and 2, respectively), where each 
vertex is a single point, each edge is an open arc whose ends are distinct 
vertices, and each face is a simply connected open region whose boundary 
consists of the closure of the union of three edges. Two cells of different dimen
sion are incident if one is contained in the boundary of the other. 

Vertices and edges are external if they are contained in the closure of the 
complement of R. Otherwise they are internal. 

A rooted triangular map is a triangular map in which one external vertex is 
distinguished as the root vertex and an external edge incident with the root 
vertex is distinguished as the root edge. Two triangular rooted maps T and T* 
are isomorphic if there exists a bi-unique mapping / of the cells of T onto the 
cells of T* which preserves dimension and rooting, and both / and f~l preserve 
incidence. 

Isomorphism is clearly an equivalence relation and, as usual, we enumerate 
only the number of isomorphism classes of such maps. A map is said to be of 
type [n, m] if it contains precisely m + 3 external vertices and n internal 
vertices. 

We use the symbol tn>m to represent the number of rooted triangular maps of 
type [n, m] and define the generating function T(x, y) as the formal power 
series, 

oo oo 

(1.1) T(x,y)= £ £ tn,mxnym+\ 
n=0 ra=-l 

2. An equation for T(x, y). Every rooted triangular map falls into one of 
two classes, those of the first kind in which the internal triangle incident with 
the root edge is incident with three external vertices, and those of the second 
kind in which one of the vertices is internal. 

Every triangular map of the first kind may be obtained from two rooted 
triangular maps by identifying the non-root vertex of the root edge of one with 
the root vertex of the other and joining the remaining ends of the root edges 
(cf. Fig. 1). The map is rooted by taking the adjoined edge as root edge and 
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FIGURE 1 

choosing the root vertex incident with this as the root vertex of the resultant 
map. Thus the generating function for maps of the first kind is 

y(l + T(x,y)y. 

The 1 in the above expression is to take into account the fact that a single 
edge may be used in the construction as a degenerate map. 

Every map of the second kind of type [n,m] may be obtained from a map 
of type [n — 1, m + 1] by adjunction of an edge, and therefore the adjunction 
of a new triangle. Indeed, since the ends of every edge are distinct, there is an 
edge of the boundary of any map which is incident with the non-root vertex 
of the root edge. We shall call the remaining end of this edge the free vertex. 
The free vertex is also the root vertex if and only if the triangular map is of 
type [n, — 1]. Therefore, by adjoining an edge connecting the root to the free 
vertex in any graph of type [n,m],m > 0, and taking the new edge as root edge, 
and retaining the root vertex, we obtain a map of the second kind. Conversely, 
we obtain a unique map by reversing the process (cf. Fig. 2). Therefore, the 
enumerator for maps of the second kind is 

*(.T(x,y)-L(x)), 

where L(x) enumerates maps of type [n, — 1]. 
Since every map is of the first or second kind, 

T(x, y) = y(l + T(x, y)f + * (T(x, y) - L(x)). 

That is 
(2.1) y2T2(x, y) + (2y2 - y + x)T(x, y) + y2 - xL(x) = 0. 

We denote T(0, y) by T(y), and setting x = 0 we obtain 

y2T2(y) + (2y2 - y)T(y) + y2 = 0. 

https://doi.org/10.4153/CJM-1965-038-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1965-038-x


ROOTED TRIANGULAR MAPS 375 

FIGURE 2 

This yields 

(2.1) T(y) = 
1 - 2y - \/l - \y 

2y = E ( 2 m + 2)! 
(m + 1)! (m + 2)!* 

tm+l 

the negative sign before the radical being chosen to refer to the series with 
constant term — 1 . Therefore the number of maps of type [0, m] is 

(2m + 2)! 
(m + 1)! (m + 2)! ' 

a result which has been obtained in many combinatorial investigations. A 
direct interpretation of our results shows that the number of ways of dividing 
a rooted convex polygon into triangles by non-intersecting diagonals is 

1 / 2 m \ 
+ l\m ) m + 

where m is the number of internal triangular faces. 
Setting y = 0, we obtain the expected result that T(x, 0) = L{x). 
Equation (2.1) uniquely determines the function T(x, y), since it can be 

shown that the equation 

(2.2) y2T2*(x, y) + (2y2 — y + x)T*(x, y) + y2 — xL*(x) = 0 

has a power series solution (that is, a series in positive powers only) for only 
one choice of function L*(x). This solution, of course, will be T(x, y). 

By the quadratic formula, 

(2 .3)r*(x,y) = 
-2y2 + y - x ± V x 2 - 2xy + [1 + 4x + 4xL*(x)]y2 - 4y* 

2y2 
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The ambiguity above will be removed later in accordance with the power 
series condition on T*(x, y). Let us examine the discriminant D of equation 
(2.2). If we write 1 + 4x + 4L*(x) = A(x), 

D = x2 - 2xy + A (x)y2 - Ay\ 

I t has been shown by Brown (4) that D must have a repeated factor if T(x, y) 
is to be a power series. Experimentation suggests that we define a parameter u 
by the relation x = uw~*, where w is a function of u which is yet to be deter
mined. Consider the expression 

M\2{ 1 , \ u2 2u{\ + 2u) , 1 + Su 2 l 3 

y — - ) \—2 — 43; J = — — 4 y + 2— y — ±y . 
w/ \w / w w w 

This is identical with D if 
-, , ^ 1 A / \ I + Su 

w = 1 + 2u, and A (x) = 2— • 
w 

We note that the function w defined by 

x = uw~z, w = 1 + 2u, 

may be expanded as a power series in x by Lagrange's theorem; hence we can 
find power series expansions for A(x), 1/w and w2 as well. Writing (2.3) in 
terms of u and w, 

(2.4) T*(pc, y) = \-2y2 + y - x - ±[y - ^) y/i - 4yw2j/2y\ 

which clearly may be expanded as a power series in x and y. This must be the 
generating function T(x, y). 

Expanding (2.4), we obtain 

(2 Ï) T(x v) = - 1 4- Y (2^ + 2)! <vm+1w2m+* 
{2.0) l{x,y) 1 + f 2 . 1 ( w + i ) ! ( w + 2 ) ! : y w 

f, (2m + 4)! w+1 2m+3 
U nki (iff + 3)! (m + 2)\y W ' 

Applying the Lagrange expansion to u = xwz, we obtain 

* _ f. 2nk(Sn + k-l)\ n 

h nl(2m + k)\ X-

Therefore 

T(x, y) 

, , f m+ii (2m + 2)! ^ 2"(3w + 2m + 2)! (2m + 3) „ 
+ Jïiy l ( m + l ) ! ( m + 2 ) ! ^ »! (2» + 2m + 3)! * 

_ (2m + 4) ^ 2"(3w + 2m + 5)! (2m + 6) K+1\ 
(m + 2 ) ! (m + 3)! S w! (2re + 2m + 6)! * J ' 
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After simplification, for n > 0 and m > — 1, 

_ 2"+1(2m + 3)! (3n + 2m + 2)! 
(»*+ l)!2w! (2n + 2m + 4)\ 

with the exception that /o,-i = 0. For fixed tn, we observe by Stirling's formula 
that as n —» °° 

e22"+1(2w + 3) ! (3n + 2m + 2)3"+2m+2 / 3w + 2m + 2 
n'm ~ (m + l)!2 »"(2» + 2m + 4)2"+2m+4 V 2w(2ra + 2m + 4)ir 

l^m±Z)\(27\(9\m+1 -m./z 
~I(m+l)!2V"2"/ W " T x -

3. Simple triangular maps. As shown in Section 2 all rooted triangular 
maps with a + 1 internal faces can be obtained from those of a faces by one of 
two simple operations. Further, there is an obvious connection between tri
angulations and triangular maps, namely all of the former may be obtained from 
the latter by contracting triangulated digons to single edges. With respect 
to the four-colour problem, the statements 

(1) every triangulation is vertex four-colourable, 
(2) every triangular map is vertex four-colourable, 

are clearly equivalent. 
A map is simple triangular if it is the degenerate map of type [0, —1] or if 

it cannot be obtained from a map (other than that of type [0, 0]) of fewer 
regions by replacing edges by maps of type [n, — 1], then replacing triangular 
faces by simple border maps of type [n, 0]. It can be shown that every map 
may be obtained from a simple map by applying either or both of the operations 
mentioned above. Moreover, no map may be thus generated from two distinct 
simple maps. Simple triangular maps could justifiably be called simple 
triangulations since no pair of edges have the same ends. They are triangulations 
in the sense of Brown (3) since an interior edge may have exterior vertices for 
both its ends, a possibility not admitted by Tutte (6). The statement 

(3) every simple triangular map is vertex four-colourable, 
can be shown to be equivalent to (1) or (2) above. 

A map is called a simple border map if no pair of external vertices is joined 
by more than one edge. This clearly rules out the possibility of simple border 
maps of type [n, — 1]. If sn>m represents the number of simple border maps of 
type [n, m] we define 

OO CO 

(3.1) S(x,y) = E I Sn,mxnym. 
n=0 ra=0 

Every map of type [n, m] (m > 0) can be obtained uniquely from a simple 
border map by replacing some of the external edges by lunes, that is, maps 
of type [n, —1]. Hence we have 
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OO CO 

ra+3 Ti(x,y) = E Z sn,mxnyn[l + L(x)] 

where 
OO CO 

Ti(x,y) = Z E tn,mxnym, cf (1.1), 

and L(x) enumerates lunes. If 

Mix) = 1 + L(x) and F = y[M(x)], 

S(x, Y) = [M(x)]-*T[x, Y/M(x)]. 

We set x = uw~z, where w = 1 + 2^, and v = 1 — u. By (2.5) 

(3.2) 1 + L(x) = vw; 

therefore 

crv ,,<> - V (2^ + 2)! vT_ f, (2m + 4)! «T 
^ x ' ^ ~ ^ „ (m + 1)! (» + 2)\vm+*y U h {m + 2)! (m + Z)\vm+'y ' 

In particular, if 
CO 

O(X) = 2^f sn,0% » 

S(x) is represented parametrically by 

(3.3) S(x) = (1 - 2u)v~\ x = uw~\ 

We define the generating function K(x, y) by 

GO CO 

(3.4) K(x,y)=Y, E *»A™+' 
w=0 rre=—1 

where kn,m is the number of rooted simple triangular maps of type [n, m] for 
[n, m] 9^ [0, 0]. We define &o,o = 0. Every map of type [m, n] contains 
3n + 2m + 3 edges and 2n + m + 1 triangular faces, and every map can be 
obtained from a unique triangular map by subdividing triangular faces and 
replacing edges by lunes; hence we have the relation 

CO CO 

E E kn.mxnym+1M(x)3n+im+zS(x)in+m+1 = T(x, y) + 1 - y[M(x)\\ 
n=0 m——l 

In the above expression L(x), S(x), and T{x,y) enumerate lunes, simple 
border maps of type [n, 0], and rooted triangular maps respectively. The term 
;y[ikf(x)]3 is subtracted to account for the fact that since &0,o is defined to be 
zero, we cannot include maps which are derived from the map of type [0, 0] 
by substitution of link maps for edges. The term 1 is present to enumerate 
the degenerate map of type [0, — 1]. This relation may be written 

[M(x)]K{x[M(x)]*S2(x), yM2(x)S(x)} = T(x,y) + 1 - y[M(x)]\ 
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We define 
X = x[M(x)]sS2(x), Y = y[M(x)]2S(x), 

and hence 

K(X, Y) = [M(x)]-l{T(x, Y/S(x)[M(x)]*) + 1} - Y/S(x). 

We define u, v, w, and t by the relations 

x = uw~3, w = 1 + 2u, v = 1 — u, t = 1 — 2u. 

Let 5 = vt~l - 1; then by (3.2), (3.3), and (2.5), S = X(l + S)3, 

(3.5) K(X, Y) 

_ yJL+iL . V (2^ + 2)! n 4- "̂Yl -4- 9 « ^ i 
- - Y (1 + 25)2 + m k (« + 1)! (m + 2)! ( 1 + ô ) ( 1 + 2 5 ) F 

. V (2m + 4)! . ,^mvm+l 

Consider the special case of m = 0. We employ the generating function 

h(x) = J2 Kxn, 
rc=0 

where hn is the number of simple triangular maps of type [n, 0]. By (3.5) 

^ - 1 = 1-FT#-
By Lagrange's theorem 

from which 

* - ; 5 C-Ï"-,)<-'>> + •>*• 
a simplified version of a result due to Tutte (6, p. 33). It is shown in (6, p. 37) 
that as n —> oo 

, 1 , / 3 _5 / 2 /27V+ 1 

For m > 0, we apply Lagrange's expansion to (3.5) to obtain 

, , fis , (2m + 2)!(3w + m - l ) ! 
^ . o ; «».» w ! ( w _ ! ) ! (OT + 2 ) ! (2w + w + l ) ! -

As w —» °° for fixed w, 

ro 7^ t (2m+ 2)! l (g\ (jY 6/2 /¥ 

(3.7) kn,m ~ (m_1)! (w + 2)! ë W W W V 2̂ r • 
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4. A coincidence? It was pointed out by Tutte that by comparing the 
formula for the number of rooted simple triangulations of type [n, 1] in the 
preceding section with the formula for the number of rooted non-separable 
maps obtained by Tutte (7, p. 257) one might observe that the number of 
rooted simple triangulations of a quadrilateral with n internal vertices is equal 
to the number of rooted non-separable maps with n + 1 edges. This author 
knows of no direct correspondence which can be established between the two 
classes of maps. I t has been observed also by Tutte and Brown that the number 
of rooted quadrangulations (5) of a quadrilateral with n internal vertices is 
equal to the number of rooted non-separable maps with n + 2 edges, with the 
exception that there are two non-separable maps with one edge and no quad
rangulations with — 1 internal vertices. A direct correspondence between the 
latter pair of systems is shown in (5). Perhaps it might be more natural to 
attempt to establish a direct relation between simple triangulations and 
quadrangulations of a quadrilateral. 

5. Polygons in triangular maps on the sphere. One may consider 
triangular maps of type [n, 0] as being drawn on the surface of a sphere. In 
this event it is convenient to consider the map as rooted by distinguishing three 
mutually incident elements of dimension 0, 1, and 2 as root vertex, edge, and 
face respectively. We shall call such an entity a rooted global map of n + 3 
vertices and shall determine the average number of polygons of k > 3 edges 
passing through the root edge. Such a polygon divides the sphere into two 
regions, one of which is distinguished by the fact that it contains the root face. 
If we consider the boundary as being contained in both regions, we may 
consider each as the rooted triangular map by retaining the root edge and vertex 
as distinguished elements. Therefore the number of rooted global maps of n 
vertices which may be derived from a polygon with k > 3 edges is the coeffi
cient of xn~k in the expansion of Tk

2 (x), where 

Tjb(x) = X) tn fc-3 OC 
n=0 

where tn,m is defined as in Section 1. By equation (2.5), 

Tk{x) = kf(k~-%w2k~S[k ~ 2(2k ~ Z)u]' 

where x = uw~z and w = 1 + 2u. Therefore 

ttn T *(x) (2k - 4 ) ' 2 4 2 Y (4k ~ 6)2"(3w + ék ~ 7>! » (5.1) Tt (x) - kf {k _ 2),2 ^ 2 , n[ {2n + u_6)[ x 

- « 0 » - 3) Ê ^-3)2"(3 W + ^ T 4 ) ! , 
tA n\ (2n + 4k — 3)1 

^o n\ (2n + 4&)! J 
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Hence the coefficient of xn in (5.1) is 

(2k - 3)! (2k - 4)! 2n+2(Sn + 4fe - 7)! 
k\(k - 1)! (k - 2)!2 (n - 2)\ (2n + 4& - 6)! 

[8£3 - 18&2 + 10& + 3nk - 3n] 
X »(» - 1) (2n + 4& - 5) (2w + 4& - 4) 

and therefore the number of triangular maps derivable from the preceding 
construction is 

(2k - 3)! (2k - 4)! 2n~k+2(3n + k - 7)\ F(n, k) 
k\ (k - 2)!3 (n - k)\ (2n + 2k - 4)! 

where F(n, k) = Sk2 — \?>k + 3n. The number of rooted global maps of n 
vertices is, of course, ^_3,o (where n > 3) or 

S.2n~\3n- 7)! 
( n - 3 ) ! ( 2 » - 2 ) ! ' 

Hence, the average number of polygons of k edges passing through the root 
of a global map of n vertices is 

(n - 3)! (2n - 2)! (2k - 3)! (2k - 4)! (3n + k - 7)! F(n, fe) 
3.2*"3ife! (3» - 7)! (fe - 2)!3 (w - *)! (2n + 2ŷ  - 4)! 

For fixed k, as w —> °o (5.2) is asymptotically 

4 / 3 V - 1 (2k - 3)! (2ife - 4)! (Sk2 - 13k + Sn) 
n\S/ k\ (k - 2)!3 

which is asymptotically 

3Y (2fe - 3 ) ! (2fe - 4 ) 1 
jfe! (* ~ 2 ) ! 3 32 I ̂ y vrTl —3 

an expression independent of n, which is not too surprising. 
To find the average number of digons through the root of a global map we 

note that xT%(x) = T2(x); hence the average number of digons through the 
root of a global map n + 2 vertices is the same as the number of triangles 
through the root of a global map of n vertices, since to each pair of digons in 
the construction of this section there is a corresponding pair of triangles with 
a total of two fewer vertices, and the correspondence is one to one. 

The author wishes to thank the referee for his suggestions in the revision of 
this paper. 
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