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Abstract

This paper relies on nested postulates of separate, linear and arc-continuity of functions to define
analogous properties for sets that are weaker than the requirement that the set be open or closed. This
allows three novel characterisations of open or closed sets under convexity or separate convexity postulates:
the first pertains to separately convex sets, the second to convex sets and the third to arbitrary subsets of a
finite-dimensional Euclidean space. By relying on these constructions, we also obtain new results on the
relationship between separate and joint continuity of separately quasiconcave, or separately quasiconvex
functions. We present examples to show that the sufficient conditions we offer cannot be dispensed with.
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The notion of continuity depends upon that of order, since continuity is merely a particular
type of order. Mathematics has, in modern times, brought order into greater and greater
prominence. Bertrand Russell [21]

1. Introduction

This paper is motivated by the following basic questions concerning a set A in a
finite-dimensional Euclidean space Rn. Can we tell if A is open or closed just by
considering its intersection with lines? We already know that the intersection of an
open (or closed) set with a line L in Rn that is parallel to a coordinate axis must be
an open (or closed) subset of L, but the question arises as to whether the converse
holds. This is to ask whether A is open (or closed) if the intersections of A with all
lines parallel to the axes are open (or closed) subsets of those lines. Furthermore,
what can we say regarding whether the intersection of A with all possible lines
is open (or closed)? Is that sufficient to conclude A is open (or closed)? These
questions are related to matters of separate continuity of a function: is a function
f : Rn → R necessarily continuous if all possible single-variable functions of the form
g(z) = f (x1, . . . , xi−1, z, xi+1, . . . , xn) are continuous?
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These questions are hardly novel. In [12], Halkin provides a characterisation of
a closed and convex set A in a finite-dimensional Euclidean space Rn by imposing
assumptions on the supporting hyperplanes of A. In another development, Azagra
and Ferrera [1] provide a characterisation of closed and convex sets in a separable
Banach space by seeing them as null sets, and thereby minimisers or maximisers, of
C∞-smooth, real-valued convex functions. What is novel to this note are possibly new
characterisations of closed and of open sets inRn by weakening or completely dropping
the convexity assumption, and thereby generalising the result in [12]. We are motivated
by separate, linear and arc-continuity of functions.

Furthermore, Young [25] and Kruse and Deely [16] show that for separately
monotone functions defined on an open set in Rn, separate continuity is equivalent to
joint continuity. On using the characterisation of sets referred to above, we move from
sets to functions and reset our characterisations of sets to functions in a more general
setting that substitutes separate quasiconvexity or separate quasiconcavity for separate
monotonicity, and by drawing on weaker notions of continuity obtain the results in
[16, 25] as corollaries.

Section 2 presents three results each offering necessary and sufficient conditions
for a set to be open or closed: the first on open sets, and the other two on sets that
can be open or closed. Four supplementary examples illustrate that the assumptions
in these results are not redundant. Section 3 presents a theorem and an example
concerning necessary and sufficient conditions for the semicontinuity of functions.
Section 4 presents three remarks: the first suggesting how the separate convexity
postulate can be replaced by piecewise separate convexity, the second relating to the
intermediate-value property, and the third pointing to the relevance of the results to
correspondences and binary relations and to applications in mathematical economics.
All in all, this interdisciplinary investigation mirrors and consolidates the different
approaches available in the antecedent literature. Section 5 is devoted to the proofs.

2. On closed sets and on open sets in Rn

A straight line in X ⊆ Rn is defined as the intersection of a one-dimensional subset
of the affine hull of X. Next, we introduce a topological property that is motivated
by separate continuity of a function that imposes continuity restricted to straight lines
parallel to a coordinate axis; see [9, 16, 25] for classic results and [4, 10] for recent
surveys on different continuity postulates.

DEFINITION 2.1. A set A ⊆ Rn is separately closed (open) if for any straight line L in
R

n that is parallel to a coordinate axis, L ∩ A is closed (open) in the subspace L.

For any strictly positive natural number n, let [n] = {1, . . . , n}. For all x ∈ A, define
Ai(x) = {z ∈ R | (z, x−i) ∈ A}, where x−i = (x1, . . . , xi−1, xi+1, . . . , xn). For each i and x,
Ai(x) determines the straight line passing through x that is parallel to the coordinate
axis i. Hence, a separately closed (open) set A is equivalently defined as Ai(x) is closed
(open) in R for all x ∈ A and all i ∈ [n]. It is clear that if a set is open, then it is
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FIGURE 1. Illustration of examples in Section 2.

separately open. The following example illustrates a set that is separately open but not
open. (The examples are illustrated in Figure 1.)

EXAMPLE 2.2. Let A = (0, 1)2\{x ∈ (0, 1)2 | x1 = x2, x � 0}. The intersection of a line
parallel to a coordinate axis and A is either the (0, 1) interval or the union of two open
intervals, and hence A is separately open. However, A is not open since every open ball
containing 0 contains a point in the complement of A.

Our first result shows that under a weak convexity assumption, separate openness is
a necessary and sufficient condition for a set to be open.

THEOREM 2.3. Let A ⊆ Rn and J be an (n − 1)-element subset of [n] such that Ai(x) is
convex for all x ∈ A and all i ∈ J. Then, A is open if and only if it is separately open.

Note that the conclusion of Theorem 2.3 can be re-stated as follows: A is open in Rn

if and only if for any straight line L in Rn that is parallel to a coordinate axis, L ∩ A
is open in the subspace L. The convexity assumption in Theorem 2.3 is related to the
literature on sets with convex sections as Ai(x) denotes the ith section of A at x (see for
example [7]). A set A ⊆ Rn is separately convex if Ai(x) is convex for all i ∈ [n] and all
x ∈ A. Example 2.2 illustrates that the convexity assumption in Theorem 2.3, which is
weaker than separate convexity, is not redundant.

Next, we introduce a topological property of a set by imposing assumptions on
straight lines in the set that is motivated by the linear continuity of a function (see for
example [4, 9, 23]).

DEFINITION 2.4. A set A ⊆ Rn is linearly closed (open) if for any straight line L in Rn,
L ∩ A is closed (open) in the subspace L.

Example 2.2 illustrates a set that is separately open but not open and also not linearly
open. The following example illustrates a set that is not open but both separately open
and linearly open.

EXAMPLE 2.5. Let B = (0, 1)2\{x ∈ (0, 1)2 | x2 = x2
1 for x1 > 0, x2 = −x2

1 for x1 < 0,
x � 0}. The intersection of a straight line and B excludes at most finitely many points
of L ∩ (0, 1)2. Hence, B is linearly open. However, B is not open since every open ball
containing 0 contains a point in the complement of B.
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It is clear that every separately closed (open) set is linearly closed (open), and if
A is convex, then Ai(x) is convex for all x ∈ A and all i ∈ [n]. The following theorem
presents a necessary and sufficient condition for a set to be closed under a convexity
and a topological assumption stronger than those in Theorem 2.3.

THEOREM 2.6. A convex set A ⊆ Rn is closed (open) if and only if it is linearly closed
(open).

Since Theorem 2.6 imposes stronger convexity and topological assumptions than
Theorem 2.3, for open sets, it is a corollary of Theorem 2.3. Theorem 2.6 complements
the results of Azagra and Ferrera [1] and Halkin [12] who provide characterisations of
closed and convex sets by using the minimisers of a class of convex functions in [1]
and by using the supporting hyperplanes of the set in [12].

The following example illustrates that for closed sets, the convexity and topological
assumptions in Theorem 2.6 are not redundant.

EXAMPLE 2.7. Let C = {x ∈ R2 | x1 = x2} ∩ (−1, 1]2. It is clear that C is convex and
fails the topological assumption in Theorem 2.6, and it is not closed (in R2). Now let
D = {x ∈ R2 | x2

1 = x2} ∩ (−1, 1]2. It is clear that D is not convex and the intersection
of any straight line L in R2 with D contains at most finitely many elements, hence it
is closed in L, and hence linearly closed. However, D is not closed (in R2). Note that
both C and D are separately closed, and satisfy the convexity assumption in Theorem
2.3. Hence, the weak convexity assumed in Theorem 2.3 is not enough to guarantee a
separately closed set to be closed.

Next, we show that the convexity assumptions in the theorems above can be
dispensed with by imposing a topological assumption on a class of selections of A
that is larger than the set of straight lines, following the restriction continuity of [20]
for functions. An arc in Rn is a continuous injective function m : [0, 1]→ Rn, where
m(λ) = (m1(λ), . . . , mn(λ)). An arc is called smooth if mi is continuously differentiable
for all i and m′(λ) = (m′1(λ), . . . , m′n(λ)) � 0 for all λ ∈ [0, 1]. A curve inRn is the image
of an arc and a smooth curve is the image of a smooth arc. Since an arc m is continuous
and injective, it is a bijection from [0, 1] to its image m([0, 1]). Since [0, 1] is compact
and m([0, 1]) is Hausdorff, m is a homeomorphism between [0, 1] and m([0, 1]) (see for
example [5, Theorem 2.1, page 226]. Therefore, [0, 1] and the curve induced by an arc
are homeomorphic. The following topological property of a set imposes assumptions
on smooth curves in the set that is motivated by the arc-continuity of a function (see
for example [4, 20, 23, 24]).

DEFINITION 2.8. A set A ⊆ Rn is arc-closed (open) if for any smooth curve C in Rn,
C ∩ A is closed (open) in the subspace C.

The following theorem drops the convexity assumption on a set by imposing a
topological assumption on restrictions of the set on smooth curves.

THEOREM 2.9. A set A ⊆ Rn is closed (open) if and only if it is arc-closed (open).
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3. On continuity of functions on Rn

In this section, we study the relationship between separate and joint continuity of a
function under quasiconvexity and quasiconcavity. A real-valued function f (x1, . . . , xn)
defined on a convex subset of Rn is quasiconcave (quasiconvex) in xi if for all x−i =

(x1, . . . , xi−1, xi+1, . . . , xn), f (·, x−i) is quasiconcave (quasiconvex). (The general reader
may want to note an abuse of notation whereby x ∈ Rn is conceived as (xi, x−i) or,
alternatively, (a, x−i) refers to an element of Rn whereby a ∈ R is substituted in the ith
place in x ∈ Rn. Unfortunately, this notation is standard in mathematical economics and
game theory, and we submit to it.) Moreover, f is separately quasiconcave (separately
quasiconvex) if it is quasiconcave (quasiconvex) in each variable.

THEOREM 3.1. Let Y ⊆ Rn be a convex and open set. If f : Y → R is quasiconvex in
n − 1 variables, then it is upper semicontinuous if and only if it is separately upper
semicontinuous. Moreover, if f is quasiconcave in n − 1 variables, then it is lower
semicontinuous if and only if it is separately lower semicontinuous.

The two classical counterexamples of Genocchi and Peano [9] show that the
separate continuity of a function is strictly weaker than its linear continuity, and
that is strictly weaker than its joint continuity. Young [25] and Kruse and Deely [16]
show that these three continuity postulates are equivalent under a weak monotonicity
assumption. Rosenthal [20] shows that imposing continuity of a function restricted
to any smooth curve is enough to obtain its joint continuity. Uyanik and Khan
[23] show that under quasiconcavity, or quasiconvexity, linear continuity and joint
continuity are equivalent. Theorem 3.1 contributes to this literature by studying the
relationship between separate and joint continuity of functions under convexity, or
concavity, an assumption that is weaker than monotonicity. See also [3, 14, 17] for
relationships between separate and joint continuity in infinite-dimensional spaces, and
[4, 10, 18] for surveys. Moreover, lower semicontinuity under concavity and upper
semicontinuity under convexity of functions is studied in [6, 8]. The following example
shows that joint continuity cannot be obtained from separate continuity under separate
quasiconcavity or separate quasiconvexity.

EXAMPLE 3.2. Define f : R2 → R as f (x) = 0 if x1 � 0 or x2 � 0 and
f (x) = 2xy/(x2 + y2) otherwise. For all i and all xi, f (·, xi) is increasing in xj for
xj < xi and decreasing in xj for xj > xi, and hence f is quasiconcave in each variable.
It is easy to see that f is separately continuous. However, f is not jointly continuous
(and also not linearly continuous). Note that f is not upper semicontinuous, and
hence this example also illustrates that separate quasiconcavity is not sufficient for
the equivalence between separate upper semicontinuity and upper semicontinuity.
Analogously, − f illustrates that separate quasiconvexity is not sufficient for the
equivalence between separate lower semicontinuity and lower semicontinuity.

Functions that are quasiconcave in some variables and quasiconvex in other vari-
ables are commonly used in mathematics such as minimax theorems. The following
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simple corollary of Theorem 3.1 shows that on R2, separate continuity is equivalent to
the joint continuity of a function.

COROLLARY 3.3. Let (a1, b1) and (a2, b2) be two open intervals in R and let f be
a function defined on (a1, b1) × (a2, b2) that is quasiconcave in one variable and
quasiconvex in the other variable. Then, f is jointly continuous if and only if it is
separately continuous.

A function f (x1, . . . , xn) on a set A ⊆ Rn is monotone in xi if for all x−i, f (·, x−i) is
either increasing or decreasing. It is easy to see that if a function is both quasiconcave
and quasiconvex in xi, then it is monotone in xi. Therefore, for convex sets, the
following result of [16, 25] is a corollary of Theorem 3.1.

COROLLARY 3.4. Let Y ⊆ Rn be a convex and open set, and f : Y → R be a function
that is monotone in n − 1 variables. Then, f is jointly continuous if and only if it is
separately continuous.

4. Remarks

REMARK 4.1. A real valued function f (x1, . . . , xn) on A ⊆ Rn is piecewise monotone in
xi if there exist mi ∈ N and a1

i < a2
i < · · · < ami

i such that f is monotone on [ak
i , ak+1

i ] for
all k = 1, . . . , mi − 1, and Ai(x) ⊆ [a1

i , ami
i ] for all x ∈ A. This monotonicity property is a

generalisation of the piecewise monotonicity concept of Sohrab [22, page 156] from R
to Rn. We show in the next section that the monotonicity assumption in Corollary
3.4 can be replaced by the weaker piecewise monotonicity assumption. Note that
in Rn, n � 2, the piecewise monotonicity concept neither implies nor is implied by
separate quasiconcavity or separate quasiconvexity properties. To see this, on R, the
sine function is piecewise monotone, but it is neither quasiconcave nor quasiconvex.
Conversely, Example 3.2 illustrates a function on R2 that is separately quasiconcave
but not piecewise monotone in either coordinate.

REMARK 4.2. If a function f (x1, . . . , xn) defined on A ⊆ Rn is piecewise monotone
in xi (or monotone in xi), then the arguments in [22, page 156] imply that separate
continuity is equivalent to the following intermediate value property in the variable
xi: for all x ∈ A and all [ai, bi] ⊆ Ai(x), ai < bi, and all yi between f (ai) and f (bi), there
exists ci ∈ (ai, bi) such that f (ci) = yi. See [10] for an investigation of the intermediate
value theorem in two applied registers.

REMARK 4.3. The separate convexity assumption in Theorem 2.3 can be replaced by
the following weaker convexity property: a set A ⊆ Rn is piecewise convex in xi if there
exist mi ∈ N and a1

i < a2
i < · · · < ami

i such that Ai(x) ∩ [ak
i , ak+1

i ] is convex for all x ∈ A
and all k = 1, . . . , m − 1, and Ai(x) ⊆ [a1

i , am
i ] for all x ∈ A. This piecewise separate

convexity property is motivated by the piecewise separate monotonicity concept for
functions defined above, and is also stronger than (separate) local convexity of a set;
see [15] for a detailed discussion of locally convex sets. We leave it for the interested
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reader to check that the construction of the proof in Theorem 2.3 is essentially the
same.

REMARK 4.4. If a set A ⊆ Rn is piecewise convex in xi, then, as in Remark 4.2, Ai(x)
is open for all x ∈ A if and only if it satisfies the following separate intermediate value
property for sets: if ai, bi ∈ Ai(x), then there exists ci ∈ (ai, bi) such that ci ∈ Ai(x).

REMARK 4.5. Different continuity concepts of a binary relation or a correspondence,
including the properties of straight lines and curves, have been extensively used in eco-
nomics and psychology; see for example [2, 10, 11, 13, 23, 24]. We leave it for future
research to study the extensions of the results in this paper to infinite-dimensional
spaces, and their implications to the continuity of correspondences and binary
relations.

5. Proof of the results

Let {Xi}i∈I be an indexed family of nonempty sets. For any nonempty J ⊆ I, let
XJ =

∏
j∈J Xj and X−J =

∏
j∈Jc Xj. The subscript is omitted for J = I and we use Xi and

X−i if J = {i} for some i ∈ I. For all x ∈ X and all nonempty J ⊂ I, let x = (xJ , x−J). For
A ⊆ X, all x ∈ A and all nonempty J ⊆ I, let AJ(x) = {z ∈ XJ | (z, x−J) ∈ A}.

PROOF OF THEOREM 2.3. We prove the theorem by induction. First, let A ⊆ R2.
Assume that A is separately open and, without loss of generality, that A2(x) is convex
for all x ∈ A. By separate openness, for all x ∈ A, A2(x) = {x′2 ∈ R | (x1, x′2) ∈ A} is open
and A1(x) = {x′1 ∈ R | (x

′
1, x2) ∈ A} is open.

Pick x ∈ A. By separate openness, there exists a neighbourhood [a2, b2] of x2 such
that for all x′2 ∈ [a2, b2], (x1, x′2) ∈ A. That is, [a2, b2] ⊂ A2(x). By separate openness,
A1(x1, a2) = {x′1 ∈ R | (x′1, a2) ∈ A} and A1(x1, b2) = {x′1 ∈ R | (x′1, b2) ∈ A} are open.
Then, there exists a neighbourhood [a1, b1] of x1 such that x′1 ∈ [a1, b1] implies
(x′1, a2) ∈ A and (x′1, b2) ∈ A. That is, [a1, b1] ⊂ A1(x1, a2) ∩ A1(x1, b2). By separate
convexity, x′2 ∈ [a2, b2] implies [a1, b1] ⊂ A1(x1, x′2). Hence, for all x′1 ∈ [a1, b1] and all
x′2 ∈ [a2, b2], (x′1, x′2) ∈ A. Since [a1, b1] × [a2, b2] ⊂ A is a neighbourhood of x and x is
arbitrarily picked, it follows that A is open.

Now, let A ⊆ Rn, n > 2. Assume that A is separately open and, without loss
of generality, that Ai(x) is convex for all x ∈ A and i � 2. Then, by the induction
hypothesis,

A−n(x) = {x′−n ∈ Rn−1 | (x′−n, xn) ∈ A} is open for all x ∈ A. (5.1)

Pick x ∈ A. By separate openness, there exists a neighbourhood [an, bn] of xn such
that for all x′n ∈ [an, bn], (x−n, x′n) ∈ A. That is, [an, bn] ⊂ An(x). By (5.1) above,
A−n(x−n, an) = {x′−n ∈ R | (x′−n, an) ∈ A} and A−n(x−n, bn) = {x′−n ∈ R | (x′−n, bn) ∈ A} are
open. Then, there exists a neighbourhood U =

∏n−1
i=1 [ai, bi] of x−n such that x′−n ∈ U

implies (x′−n, an) ∈ A and (x′−n, bn) ∈ A. That is, U ⊂ A−n(x−n, an) ∩ A−n(x−n, bn). By
separate convexity, x′n ∈ [an, bn] implies U ⊂ A−n(x−n, x′n). Hence, for all x′−n ∈ U and
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all x′n ∈ [an, bn], (x′−n, x′n) ∈ A. Since U × [an, bn] ⊂ A is a neighbourhood of x and x is
arbitrarily picked, A is open. �

We prove Theorem 2.6 by using an important result in convex analysis due
to Rockafellar [19, page 45]. The statement of Rockafellar’s theorem requires the
following additional concepts. Let X be a subset of Rn. Since any lower dimensional
subset of Rn has an empty interior, it is more convenient to work with the concept of
relative interior. A subset X of a (real) vector space is called affine if for all x, y ∈ X and
λ ∈ R, λx + (1 − λ)y ∈ X. It is clear that A is affine if and only if A − {a} is a subspace
of X for all a ∈ A. The affine hull of X, affX, is the smallest affine set containing X.
The relative interior of a subset X of Rn is defined as

riX = {x ∈ affX | there is an ε neighbourhood, Nε, of x such that Nε ∩ affX ⊆ X}.

That is, the relative interior of X is the interior of X with respect to the smallest affine
subspace containing X.

THEOREM 5.1 (Rockafellar). Let X be a nonempty and convex subset of Rn. Then riX
is nonempty, and for all x ∈ riX, y ∈ clX and all λ ∈ [0, 1), yλx ∈ riX.

PROOF OF THEOREM 2.6. For open sets, Theorem 2.6 is a corollary of Theorem 2.3.
Moreover, it is clear that if A is closed, then A is linearly closed. Now, assume A is
convex and linearly closed. If A is empty or a singleton, then it is closed. Otherwise,
pick x ∈ clA. Since A is convex, Theorem 5.1 implies that its relative interior is
nonempty, and that for all y ∈ riA and all λ ∈ [0, 1), xλy ∈ riA. Hence, for any λk → 1,
xλky ∈ A for all k. Pick y ∈ riA and let L denote the straight line in Rn passing through
x and y. Since A is linearly closed, A ∩ L is closed in L. Since xλky ∈ A for all k when
λk → 1, it follows that x ∈ A. Therefore, A is closed. �

The proof of Theorem 2.9 we provide below crucially hinges on the work of
Rosenthal [20, Theorem 3]. We state a slightly stronger version of the theorem of
Rosenthal with the notation of our paper.

THEOREM 5.2 (Rosenthal). Any bounded infinite set in Rn contains an infinite subset
through which a smooth curve can be laid.

PROOF OF THEOREM 2.9. The forward direction is obvious. To prove the backward
direction, assume A is arc-closed. If A is empty or a singleton, then it is closed.
Otherwise, pick x ∈ clA and a sequence xn in A such that xn → x. It follows from
Theorem 5.2 that there exists a smooth curve containing x and a subsequence xnk of xn.
Since A is arc-closed, x ∈ A. Hence, A is closed.

Now assume A is arc-open but not open. Then there exists x ∈ A ∩ cl(Ac). Pick a
sequence xn in Ac such that xn → x. It follows from Theorem 5.2 that there exists a
smooth curve C containing x and a subsequence xnk of xn. This implies that C ∩ A
contains x ∈ A, but every open neighbourhood of x in the subspace C contains x′ ∈ Ac.
This contradicts the assumption that A is arc-open. Hence, A is open. �

https://doi.org/10.1017/S0004972723000667 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972723000667


[9] Separate continuity and separate convexity 549

PROOF OF THEOREM 3.1. First, we prove the result for Y ⊆ R2. Assume without loss
of generality that f is quasiconvex in x2. It follows that, for all α ∈ R and all x ∈ Y ,
{x′2 ∈ R | (x1, x′2) ∈ Y and f (x1, x2) � α} is convex. Next, we show that the quasi-
convexity assumption implies that {x′2 ∈ R | (x1, x′2) ∈ Y and f (x1, x′2) < α} is con-
vex for all α ∈ R and all x ∈ Y . Assume towards a contradiction that there exists
x1, x2, y2 and λ such that f (x1, x2) < α, f (x1, y2) < α and f (x1, λx2 + (1 − λ)y2) � α. Set
β = max{ f (x1, x2), f (x1, y2)} < α. By the quasiconvexity assumption, it follows that
{x′2 ∈ R | (x1, x′2) ∈ Y and f (x1, x′2) � β} is convex. Hence, α � f (x1, λx2 + (1 − λ)y2) �
β < α which yields a contradiction.

By separate upper semicontinuity, {x′2 ∈ R | (x1, x′2) ∈ Y and f (x1, x′2) < α} is open
and {x′1 ∈ R | (x′1, x2) ∈ Y and f (x′1, x2) < α} is open, for all α ∈ R and all x ∈ Y .
Pick α ∈ R and x ∈ Y such that f (x) < α. Hence, pick a neighbourhood [a2, b2] of
x2 such that for all x′2 ∈ [a2, b2], f (x1, x′2) < α. By separate upper semicontinuity,
{x′1 ∈ R | (x′1, a2) ∈ Y and f (x′1, a2) < α} and {x′1 ∈ R | (x′1, b2) ∈ Y and f (x′1, b2) < α}
are open. Then, there exists a neighbourhood [a1, b1] of x1 such that f (x′1, a2) < α
and f (x′1, b2) < α for all x′1 ∈ [a1, b1]. By the quasiconvexity assumption, f (x′1, x′2) < α
for all x′1 ∈ [a1, b1] and all x′2 ∈ [a2, b2]. Since [a1, b1] × [a2, b2] is a neighbourhood of
x, it follows that f is upper semicontinuous.

Now, assume Y ⊆ Rn with n > 2. We proceed by induction. Without loss of gener-
ality, assume f is quasiconvex in each variable xi for i = 2, . . . , n. Since f is separately
upper semicontinuous and quasiconcave in each xi for i = 2, . . . , n − 1, the induction
hypothesis implies that f (·, xn) is upper semicontinuous in x−n = (x1, . . . , xn−1) for each
fixed value of xn. Since f is quasiconvex in xn, for all α ∈ R and all x ∈ Y , the sets
{x′n ∈R | (x−n, x′n)∈Y and f (x−n, x′n)�α} and, as we showed above, {x′n ∈R | (x−n, x′n)∈Y
and f (x−n, x′n) < α} are convex.

Pick α ∈ R and x ∈ Y such that f (x) < α. Since f is upper semicontinuous in
xn, {x′n ∈ R | (x−n, x′n) ∈ Y and f (x−n, x′n) < α} is open, there exists a neighbourhood
[an, bn] of xn such that for all x′n ∈ [an, bn], f (x−n, x′n) < α. Since f is upper semi-
continuous in x−n, {x′−n ∈ Rn−1 | (x′−n, an) ∈ Y and f (x′−n, an) < α} and {x′−n | (x′−n, bn) ∈
Y and f (x′−n, bn) < α} are open. Then, there exists a neighbourhood U−n of x−n
such that f (x′−n, an) < α and f (x′−n, bn) < α for all x′−n ∈ U−n. By the quasiconvexity
assumption, f (x′−n, x′n) < α for all x′−n ∈ U−n and all x′n ∈ [an, bn]. Since U−n × [an, bn]
is a neighbourhood of x, f is upper semicontinuous.

The proof of lower semicontinuity under quasiconcavity is analogous. �

Next, we provide the proof of the following claim that we stated in Remark 4.1.

Claim 5.3. If Y ⊆ Rn is convex and open and f : Y → R is piecewise monotone in
n − 1 coordinates, then f is jointly continuous if and only if it is separately continuous.

PROOF OF CLAIM 5.3. The proof is analogous to that of Theorem 3.1; we consider
only the case when n = 2 and leave the generalisation for an arbitrary finite n to the
interested reader.
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Let Y ⊆ R2 be a convex and open set. Assume without loss of generality that f is
piecewise monotone in x2. Next, we prove that f is upper semicontinuous at x. Pick x ∈
Y and α ∈ R such that f (x) < α. By separate upper semicontinuity, {x′2 ∈ R | (x1, x′2) ∈
Y and f (x1, x′2) < α} is open. Hence, there exists a neighbourhood [a2, b2] of x2 such
that for all x′2 ∈ [a2, b2], f (x1, x′2) < α. If x2 ∈ (ak

2, ak+1
2 ) for some k = 1, . . . , m2 − 1,

then set [a2, b2] ⊂ [ak
2, ak+1

2 ]; if x2 = ak
2 for some k = 2, . . . , m2 − 1, then set [a2, b2] ⊂

[ak−1
2 , ak+1

2 ] (note that since Y is open, x2 ∈ (a1
2, am2

2 )).
By separate upper semicontinuity, the sets {x′1 ∈ R | (x

′
1, x2) ∈ Y and f (x′1, x2) < α},

{x′1 ∈ R | (x′1, a2) ∈ Y and f (x′1, a2) < α} and {x′1 ∈ R | (x′1, b2) ∈ Y and f (x′1, b2) < α}
are open. Then, there exists a neighbourhood [a1, b1] of x1 such that f (x′1, x2) < α,
f (x′1, a2) < α and f (x′1, b2) < α for all x′1 ∈ [a1, b1]. If x2 ∈ (ak

2, ak+1
2 ) for some k =

1, . . . , m2 − 1, then [a2, b2] ⊂ [ak
2, ak+1

2 ], and hence f (x̃1, ·) is monotonic on [a2, b2]
for all x̃1. Therefore, f (x′1, x′2) < α for all x′1 ∈ [a1, b1] and all x′2 ∈ [a2, b2]. If x2 = ak

2
for some k = 2, . . . , m2 − 1, then [a2, b2] ⊂ [ak−1

2 , ak+1
2 ], and hence f (x̃1, ·) is either

monotonic on [a2, b2] or has a unique kink at x2 for all x̃1. Therefore, f (x′1, x′2) < α
for all x′1 ∈ [a1, b1] and all x′2 ∈ [a2, b2]. Since [a1, b1] × [a2, b2] is a neighbourhood of
x, f is upper semicontinuous.

The proof of lower semicontinuity at x is analogous. Therefore, f is continuous
at x. �
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