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Abstract
Climate change is expected to increase the frequency and intensity of extreme weather events. To properly
assess the increased economical risk of these events, actuaries can gain in relying on expert mod-
els/opinions from multiple different sources, which requires the use of model combination techniques.
From non-parametric to Bayesian approaches, different methods rely on varying assumptions potentially
leading to very different results. In this paper, we apply multiple model combinationmethods to an ensem-
ble of 24 experts in a pooling approach and use the differences in outputs from the different combinations
to illustrate how one can gain additional insight from using multiple methods. The densities obtained
from pooling in Montreal and Quebec City highlight the significant changes in higher quantiles obtained
through different combination approaches. Areal reduction factor and quantile projected changes are used
to show that consistency, or lack thereof, across approaches reflects the uncertainty of combination meth-
ods. This shows how an actuary using multiple expert models should consider more than one combination
method to properly assess the impact of climate change on loss distributions, seeing as a single method can
lead to overconfidence in projections.
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1. Introduction
Climate change and global warming are expected to lead to increases in catastrophic weather
events such as wildfires, droughts, and extreme precipitation. These changes can havemany effects
such as crop damage, soil erosion, and increased risk of flooding. Quantifying severe weather
events is of particular interest to actuaries, since events such as flooding account for a large part
of global economic losses (Boudreault et al., 2020). An increase in extreme rainfall can lead to a
possibly greater increase in river discharge (Breinl et al., 2021). Therefore, one would gain from
obtaining reliable rainfall projections to assess flood risks.

Modelling precipitation behaviour, and weather events in general, requires complex models.
For example, seasonality needs to be taken into account (e.g. Kodra et al., 2020), and one fur-
ther needs to model spatial interpolation (Wagner et al., 2012; Hu et al., 2019, etc.). As such,
projecting changes in extreme precipitation would mean combining these elements with extreme
value theory in a limited data context. Given that different models may capture different elements
of a system’s behaviour, when interested in extreme precipitation, one will often receive diverg-
ing information from multiple sources and may wish to combine these sources of information.
These sources can often be considered as expert opinions, which are used in actuarial science,
for example, particularly in mortality studies, where deterministic projections are incorporated
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into mortality forecasting via Continuous Mortality Investigation (Huang & Browne, 2017) and
P-Splines (Djeundje, 2022). Combining expert opinions and models is especially important for
actuaries to set credible hypotheses when modelling losses from weather events.

Extreme weather events caused $2.1 billion in insured damage in Canada alone in 2021
(Insurance Bureau of Canada, 2022), and losses from natural catastrophes have been increasing
over the last 20 years. In this context, the last few years have seen increased demand for catas-
trophe insurance, particularly flood insurance, and private insurers have been developing new
products to respond to this demand. The challenge with modelling flood losses, or severe weather
events in general, is that the covered events do not occur frequently, and the changing nature of
climate implies that only relatively short spans of time can be considered to have similar risks.
This compounds the lack of data necessary for developing actuarial models with traditional tech-
niques requiring a high volume of frequency and severity data. Given that expert climate models
specialise in the complex dynamics of weather events, combining these models offers an appealing
solution for insurers by allowing for an alternate way of obtaining reliable models for catastrophic
events.

To efficiently combine models, one needs to determine how much weight to give to each
expert’s opinion. Clemen (1989) reviewed forecast combination literature, concluding that com-
bining individual forecasts substantially improves accuracy and that simple methods work
reasonably well relative to more complex methods. By reviewing statistical techniques for com-
bining multiple probability distributions, Jacobs (1995) showed that independent experts yield
more information than dependent experts, where dependent experts might for example have
models relying on one another. Cooke (1991) also reviewed expert combination and offered a
non-parametric approach for attributing weights to experts based on specific quantiles. From a
different perspective allowing for the potential use of a prior opinion about each of the experts,
Mendel & Sheridan (1989) and Raftery et al. (1997) used Bayesian approaches to combine expert
distributions.

Such methods have been further developed, in particular with Bayesian Model Averaging
(BMA) gaining popularity in recent years. For example, Broom et al. (2012) considered BMA
in a limited data context, and Fragoso et al. (2018) provided a review of its applications in 587
articles from 1990 to 2014, covering biology, social sciences, environmental studies, and finan-
cial applications. In the last few years, the concept of BMA has been generalised into Bayesian
Predictive Synthesis (BPS) in a financial time series context (e.g. Johnson, 2017; McAlinn &West,
2019; McAlinn et al., 2020). Model combination can be useful in areas such as climate modelling,
where significant uncertainty is present, especially in the context of climate change, and different
models rely on different hypotheses. BMA is currently used to this end, for exampleMassoud et al.
(2020) used BMA to study mean precipitation changes in the US by region.

In the context of extreme rainfall leading to flooding, spatial distribution becomes impor-
tant as it can significantly change risk exposure, where a local rainfall does not lead to the same
risks as widespread rainfall. To analyse this spatial distribution, areal reduction factors (ARF) are
often used to convert point rainfall into areal rainfall (see for example Svensson & Jones, 2010).
The impact of climate change on ARFs was studied by Li et al. (2015) for the region of Sydney,
Australia. A limitation of this study is that the authors used a single expert model to obtain pre-
cipitation projections. One would seek to improve this type of analysis by combining multiple
expert projections. A challenge with this idea is that combination methods often require larger
datasets than are available in an extreme precipitation context. This is especially true given that
precipitation patterns are changing, where considering an extended span of time means differ-
ences in precipitation distribution within the dataset. To circumvent this issue, Innocenti et al.
(2019) used a model pooling approach with a 50-member ensemble when studying extreme pre-
cipitation in Northeastern North-America, allowing the authors to use 3-year periods of data.
Supposing that all expert projections are equally likely, the authors could then apply frequency
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analysis to study 99th quantiles. An advantage of this method, beyond its simplicity and effective-
ness, is that it allows for observing how variability between expert models can be used to improve
the estimation of annual maxima statistics. A question that naturally arises is whether attributing
weights to each expert based on combination methods instead of supposing all projections are
equally likely would yield significantly different projections. This question is of particular interest
to actuaries, since changing the underlying precipitation hypotheses would have an effect on event
probabilities, and thus affect both pricing and reserving.

We thus focus on the impact of model combination methods on quantile and ARF projec-
tions when applied to the pooling approach of Innocenti et al. (2019) in Montreal and Quebec,
Canada. The paper is divided as follows: section 2 provides details regarding parametric and non-
parametric model combination methods, section 3 applies these methods to pooling to obtain
extreme precipitation quantile and ARF projections and briefly explains how such projections can
be used for flood damage modelling. Finally, section 4 provides concluding comments. Additional
material can be found in Appendices A–C.

2. Model Combination Methods
Expert climate research groups often provide diverging information based on varying methods
and underlying hypotheses regarding greenhouse gas emissions, changes in global convection
patterns, the impact of topography, etc. One may seek to combine this information by using an
array of tools such as non-parametric approaches or Bayesian approaches. This section presents
approaches from various combination methods relying on different hypotheses. To easily analyse
the differences between approaches, we choose well known approaches allowing for establishing
weights to attribute to each expert, as compared to less transparent machine learning methods
such as neural networks, for example. Such methods are however increasing in popularity, as
highlighted in a review of recent AI applications in actuarial science by Richman (2021). As will
be shown in section 3, the choice of method can lead to very different probabilities attributed
to each expert’s projections, suggesting that one can benefit from investigating the differences
between expert models with higher probability.

Before going into each method’s details, the following notation will be used throughout the
remainder of this paper. Consider a vector of years �τ = {s, s+ 1, . . . , t}, where s ∈ {0, . . . , t},
t ≤ T, with T ∈N the latest available year. Let �Y�τ ,x be a vector of random variables represent-
ing the precipitation annual maxima of G(x, �τ , d), the daily precipitation at site x for day d, for
years in �τ . Further let the vector of random variables �Y�τ ,A be the annual maxima of H(A, �τ , d)
for the same period from s to t, where H(A, �τ , d) is the average areal rainfall for day d, such that
H(A, �τ , d)= 1

card(X)
∑

x∈X G(x, �τ , d) for a collection of sites x ∈ X within the areaA. The respective
realisations of G(x, �τ , d) and H(A, �τ , d) are then �y�τ ,x and �y�τ ,A, with length t − s+ 1.

Consider n experts providing a model Me allowing for projections of annual maxima for site
x and area A, �y (e)�τ ,x and �y (e)�τ ,A, respectively, where e ∈ {1, . . . , n}, over a period �τ as described above.
With a certain weight we attributed to each expert, the objective is then to obtain a precipitation
projection with a weighted sum of the experts’ projections, that is,

�̃y�τ ,x =
n∑

e=1
we�y (e)�τ ,x .

The goal of each method is then to obtain these we from calibration variables. These are vari-
ables for which we know the true values, while the experts providing their opinion do not. This
information then allows us to calibrate how much weight we give to each expert. Consider K such
calibration variables V1, . . . ,VK . We specifyM percentages for which each one of n experts pro-
vides corresponding quantiles v(e)k,m, k= 1, . . . ,K; m= 1, . . . ,M; and e= 1, . . . , n. In the context
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of extreme precipitation projection, we would have card(X) calibration variables corresponding
to �Y�τ ,x for a calibration period �τ .

2.1 Inverse distance weighting
A first possible approach to model combination is to intuitively build weights based on the dis-
tance between an expert’s projection about a variable of interest, or vector of variables, and the
true value of this variable. This idea can be achieved through Inverse Distance Weighting (IDW).
The advantage of this approach is its intuitiveness and ease of use.

Classically, IDWwas usedwith Euclidean distance. In a geometric context, Shepard (1968) used
IDW to consider distance while taking angles into account. In a probabilistic setting, the challenge
with this method is then to determine an appropriate distance measure. One such measure is
the Wasserstein distance, which Kantorovitch & Rubinštein (1958) first realised was applicable to
probability distributions. This idea was expanded on by Givens & Shortt (1984) and used recently
by Pesenti et al. (2021) for sensitivity analysis. In the univariate case, the distance for expert e over
time period �τ at location x is defined as

D(e) =
∫ ∣∣∣FY(e)

�τ ,x
(y)− FY�τ ,x

(y)
∣∣∣dy,

with FY�τ ,x the real cumulative distribution function and FY(e)
�τ ,x

the expert’s CDF.
With this distance, the weight attributed to each expert’s projection is then

we = 1/D(e)∑n
l=1 1/D(l) .

2.2 Non-parametric calibration
From a literature-based approach, model combination can be approached from many angles.
Cooke (1991) offered a review of early expert combination methods. Clemen & Winkler (1999)
further elaborated on this review, suggesting issues that need to be considered when combining
expert opinions such as expert selection and the role of interaction between experts. Since then,
Cooke & Goossens (2008) and Hammitt & Zhang (2012) compared the performance of multi-
ple combination methods, among which a classical approach which was first presented by Cooke
(1991).

This combination method uses desirable properties of scoring rules, namely that they should
be coherent, strictly proper, and relevant (see Cooke, 1991 for details). A three-part method was
established attributing weights to each expert distribution based on a relative information com-
ponent, a calibration component, and an entropy component. This method has the advantage
of being non-parametric, suggesting that an expert does not need to have a complete statistical
model. Such a method can be appropriate for example in actuarial science, where an expert might
reasonably provide an estimate for a small, medium, and large loss, but not a full loss distribution.

From the calibration variables V1 to VK defined previously, we set vk,0 and vk,M+1 such that

vk,0 < v(e)k,m < vk,M+1 ∀ m, e.

We compare these selections and expert-provided values with the true observed values to find the
proportion of calibration variables in each interquantile space. This forms an empirical distribu-
tion q= {q1, . . . , qM+1} that we can compare to the theoretical proportion p= {p1, . . . , pM+1}.
As shown by Cooke (1991), we can obtain the calibration and entropy components, C(e) andO(e)
respectively, as

C(e)= 1− χ2
K−1((2K)I(q, p)),
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where

I(q, p)=
M+1∑
k=1

qk ln
(
qk
pk

)

is the relative information component, and

O(e)= 1
K

K∑
k=1

(
ln (vk,M+1 − vk,0)+

M+1∑
m=1

pm ln

(
pm

v(e)k,m − v(e)k,m−1

))
.

It can readily be shown that the relative information component I(q, p) multiplied by 2K (i.e.
twice the number of calibration variables) follows a chi-squared distribution. The calibration com-
ponent uses this fact to measure the goodness of fit of each expert forecast, while the entropy
component measures the distance of expert forecasts from a uniform distribution. The intuition
for this component is that a uniform model provides very little useful information. From these,
we finally obtain

w′
e = C(e)O(e)I{C(e)>α}

for a specified threshold α chosen by optimising the score of the combined distributions, where
0<α < 1. This α can be seen as a hyperparameter representing the minimal calibration level that
each model needs to satisfy to receive weight. As such, a higher α means we give probability to
less models. This also implies that the maximal value for α is the highest value of C(e). We can
then recalibrate the weights to make their sum equal to 1 by dividing w′

e by the sum over all
experts:

we = w′
e∑n

l=1 w′
l
.

These we do not require the analyst to have a prior opinion of each expert’s projections. We will
refer to this method as Cooke’s method for the sake of brevity. In the context of daily precipitation
annual maxima, the corresponding calibration variable is then �Y�τ ,x, where we considerK different
sites x.

2.3 Bayesianmodel averaging
As an alternative to the previous approaches, one may seek to exploit their prior knowledge using
Bayesian methods, updating a prior belief with observed data to obtain a posterior distribution
more representative of recent data.

Bayesian Model Averaging (BMA) is a widely used tool for model combination. Recently, in
the United States, BMA was used to study extreme rainfall density as well as daily mean rainfall
by Zhu et al. (2013) and Massoud et al. (2020), respectively. First made popular by Raftery et al.
(1997) in linear models, BMA uses observed data to update weights to different models based
on their likeliness. This relies on the premise that any of the models could be right, but selecting
only one model would fail to capture the uncertainty around this choice. This in turn leads to
reducing overconfidence from ignoring a model’s uncertainty. BMA however implicitly relies on
the assumption that one of the models must be right (Hoeting et al., 1999). Note that the method
presented in Cooke (1991) relies on a similar assumption, given that the optimal α requires at least
one model to be chosen.

LetM be a discrete variable representing this best model, with possible values {M1, . . . ,Mn}.
An analyst has some prior belief about the probability that each expert’s model is right, Pr (M=
Me), which we will denote Pr (Me), normalised such that

∑n
e=1 Pr (Me)= 1. In the absence
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Algorithm 1: Generalised Likelihood Uncertainty Estimation

1: Resample y�τ ,x,m to obtain B bootstrap iterations y�τ ,x,m,b.

2: Calculate the variance for quantilem as σ 2
m = 1

B
∑B

b=1

(
y�τ ,x,m,b − 1

B
∑B

i=1 y�τ ,x,m,i
)2
.

3: Calculate the likelihood assuming residuals follow a normal distribution:

L
(
�y (e)�τ ,x ,m

)
= 1√

2πσm
exp

(
−

1
B
∑B

b=1

(
y�τ ,x,m,b−y(e)�τ ,x,m,b

)2
2σ 2m

)

L
(
�y (e)�τ ,x

)
= 1

M

M∑
m=1

L
(
�y (e)�τ ,x ,m

)
.

4: Update the probability of each expert as

Pr
(Me|�y�τ ,x

)= L
(
�y (e)�τ ,x

)
Pr(Me)∑n

l=1 L
(
�y (l)�τ ,x

)
Pr(Ml)

.

5: Calculate posterior distribution as

Pr
(
y|�y�τ ,x

)=∑n
e=1 Pr

(
y|Me

)
Pr
(Me|�y�τ ,x

)
.

of prior information, then Pr (Me)= 1/n, ∀ e. Given data �y�τ ,x, the analyst can update these
probabilities through Bayesian updating, that is

Pr
(Me|�y�τ ,x

)= Pr
(�y�τ ,x|Me

)
Pr (Me)∑n

l=1 Pr (�y�τ ,x|Ml) Pr (Ml)
,

where Pr
(�y�τ ,x|Me

)
is the probability of observing �y�τ ,x under model Me. Since we divide by∑n

l=1 Pr
(�y�τ ,x|Ml

)
Pr (Ml), it follows that

∑n
e=1 Pr

(Me|�y�τ ,x
)= 1, and posterior probabilities

Pr
(Me|�y�τ ,x

)
can therefore be considered as updated weights attributed to each expert. This sup-

poses that all models are independent since we ignore possible interactions between models.
This assumption is appropriate in this case since all experts rely on different approaches, but
this will be discussed in section 4. There are different ways of calculating the expert-associated
probabilities.

A first possibility is to use an expectation-maximisation (EM) algorithm, as shown by
Darbandsari & Coulibaly (2019), where the residuals between the model projections �y (e)�τ ,x , rep-
resenting an expert’s projection generated from model Me about the variable �Y�τ ,x, and actual
data are assumed to follow a Gaussian distribution. This assumption allows for iterating through
these residuals’ Gaussian likelihood while updating the weights attributed to each expert model
until the difference between iterations is less than some threshold β . The algorithm is out-
lined in Appendix A. The algorithm allows for projecting a posterior distribution for a period
�ψ = {s′, s′ + 1, . . . , t′}, with s′ ∈ {t, t + 1, . . . , t′}, t< t′ ≤ T. This approach must be used carefully
as it can lead to overfitting. With a low threshold, EM will be optimised for training data, but will
also learn the noise surrounding the signal. Because of this, the algorithm can then perform poorly
on testing data. This limitation of the EM algorithm will be further explored in section 3.

The same hypothesis that residuals follow a normal distribution was used by Zhu et al. (2013),
but with a different approach due to limited datasets, where the authors used bootstrapping under
Generalised Likelihood Uncertainty Estimation (GLUE, see Beven & Freer, 2001) to obtain the
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posterior likelihoods. The algorithm is presented in Algorithm 1, where y�τ ,x,m is themth quantile
of the vector �y�τ ,x, y�τ ,x,m,b is the bth bootstrap resampling of this quantile with B resamplings, and
Pr (Y �ψ ,x = y|Me) is the probability distribution of extreme precipitation under model Me for a
future period �ψ .

3. Application to Areal Reduction Factors
In the context of extreme precipitation, where projections from multiple models are available,
model combination can become a particularly useful tool. The issue with combining models with
annual maxima data is that datasets are limited. To find projected precipitation trends in annual
maxima at a 1 in 100 return level, Innocenti et al. (2019) pooled �y (e)�ψ ,x across all experts for projected
time period �ψ , thus significantly increasing available data for small spans of time. Let �Y �ψ ,x be the
vector of random variables describing annual maxima for period �ψ . The pooled “observations”
for this variable are then

�y �ψ ,x =
(
�y (1)�ψ ,x, �y

(2)
�ψ ,x, . . . , �y

(n)
�ψ ,x
)
,

where all elements of �y �ψ ,x are considered equiprobable, such that

Pr
(
Y �ψ ,x = y

)
= 1

(t′ − s′ + 1)n
,

with y ∈ �y �ψ ,x, n experts, and �ψ having length t′ − s′ + 1.
Applying frequency analysis to this pooled set, we define the quantile corresponding to a certain

frequency R as Y ∈ �Y �ψ ,x such that

Y �ψ ,x,R =min
{
Y �ψ ,x: Pr

(
Y ≤ Y �ψ ,x

)
≥ 1− 1/R

}
,

where for example for a 1 in 20-year return level, we would have 1− 1/20= 0.95.

3.1 Non-equiprobable pooling
In the previous section, we saw different methods to attribute weights to expert opinions depend-
ing on the probability of each expert projection being accurate. We can incorporate these ideas
into the pooling idea of Innocenti et al. (2019). We use their pooling method as a baseline,
where one may consider all expert-provided models as equally likely, which we will refer to
as the equiprobable scenario. Instead of supposing that all model projections are equally likely
(Pr (Me)= 1/n), we can update our belief about the probability of each model with observed
data. By defining

Pr
(
Y �ψ ,x = y

)
= Pr

(Me|�y�τ ,x
)

t′ − s′ + 1
,

with y ∈ �y �ψ ,x, we obtain a shifted distribution reflecting this updated belief, where t′ − s′ + 1 is the
number of years in the future projection period �ψ , and �τ is the historical observed period.

3.2 Calculating areal reduction factors
We can now incorporate the model combination methods and pooling presented previously into
ARFs to investigate their impact on extreme precipitation quantile and ARF projections.

Although there are slightly varying definitions of ARFs, we will focus on the one used by
Le et al. (2018), which can be thought of as a quantile of average areal precipitation over an average
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of point precipitation quantiles. This particular definition has the advantage of being applicable
to any station within a region and not only one station. Starting from the notation introduced in
section 2, let Y�τ ,A,R and Y�τ ,x,R, respectively, represent the areal and point rainfall for area A, point
x, and frequency R over period �τ . The ARF based on daily precipitation is then

ARF(A,R,�τ ) = Y�τ ,A,R
1

card(X)
∑

x∈X Y�τ ,x,R
,

where there are a collection of sites x ∈ X within area A.
An issue that arises when calculating ARFs with climate models is that expert projections are

often not available at each point x, but rather at a grid scale. This issue can however be solved by
assuming that scaling from point precipitation to grid average precipitation is time invariant. Li
et al. (2015) demonstrated the validity of this hypothesis, enabling the use of grid cells for ARF
calculation, where we would have grid-to-area instead of point-to-area.

With this notion of time-constant scaling, we can thus consider the points x as grid cell coor-
dinates instead of stations. This enables us to calculate ARFs using grid data, as made available by
climate agencies such as Climate Data Canada and Copernicus Climate Change Service. Grid cells
are available at a resolution of approximately 0.1 degrees of latitude and longitude and represent
average precipitation over the grid cell. We consider zones of 6× 4 grid cells in the regions of
Montreal and Quebec. We have access to 24 different climate models using historical data from
1951 to 2005 to project precipitation from 2006 to 2100. These models rely on three different
Representative Concentration Pathways (RCP) emission scenarios: a low emissions scenario (RCP
2.6), a moderate emissions scenario (RCP 4.5) and a high emissions scenario (RCP 8.5). In keep-
ing with Innocenti et al. (2019), we will focus on the 8.5 scenario, corresponding to a 4.5 degree
increase by 2100. We calibrate weights using data from 2001 to 2020, for which we have both real
and projected precipitation. This allows us to compare quantiles for BayesianModel Averaging, or
interquantile space for Cooke’s method and inverse Distance Weighting, and so calibrate combi-
nation weights using each method. With the obtained weights, all future time periods are then
forecasted. It is worth noting that this relies on the hypothesis that weights remain the same
whether forecasting near or far future.

To use pooling, we need to have sufficient data for frequency analysis. Due to having 24 mod-
els instead of the 50 in Innocenti et al. (2019), we consider 6-year periods, such as precipitation
from 2016 to 2021, rather than 3-year periods to obtain a similar number of data points. Applying
weights calculated using the different methods presented in section 2, we calculate shifted den-
sities reflecting these adjusted weights, as can be observed in Figures 4 and 5. However, before
using the BMA-EM algorithm, a threshold or number of iterations must be chosen to prevent
overfitting. This is because too many iterations of the expectation-maximisation algorithm will
lead to learning the signal as well as the noise in the training data. Figure 1 illustrates the average
MSE resulting from splitting data from 2001 to 2020 into ten-year training and testing periods.
Overfitting occurs passed 4 iterations of the expectation-maximisation algorithm, where we see
that the testing sample MSE starts increasing significantly while the training sample MSE sta-
bilises and even slightly increases. To prevent this overfitting, we choose to stop the algorithm
after 4 iterations. This is a known issue of BMA (see e.g. Domingos, 2000), added to BMA tend-
ing to select only one model asymptotically, as BMA implicitly relies on the assumption that one
of the models is true (Hoeting et al., 1999). An α of 0.65 is also selected for Cooke’s method by
optimising the error as shown in Figure 1.

We first note that different combination methods can yield very different weights attributed to
each model. Figure 2 illustrates the difference in weights for the cities of Montreal and Quebec
for a period from 2001 to 2020. Note that for the rest of the article, when we refer to Quebec, this
will imply Quebec City and not the province. We see that for Montreal, the two BMA methods
generally agree, whereas they do not for Quebec. On the other hand, both Cooke and IDW lead
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Figure 1. Grid cell MSE of the expectation-maximisation algorithm (left) and Cooke’s method (right) in the Montreal region
from 2001 to 2020.

Figure 2. Model weight by method for Montreal (left) and Quebec (right) for precipitation from 2001 to 2020.

Figure 3. Cumulative distribution for model MPI_MR and real data in Montreal for a grid cell between 2001 and 2020.

to relatively similar weights in both locations, but they differ from BMA results. These different
weight attributions can lead to different projected quantiles.

One may seek to investigate the expert models with larger probability to ensure they agree with
those models’ hypotheses. For example, in Montreal, the next to last model (MPI_MR) receives a
large weight from the EM algorithm, but gets truncated by the calibration approach. This happens
because the model has a jump in precipitation level around the 50th quantile, as illustrated in
Figure 3. 7 observations out of 20 fall in the 45–50% interquantile space for model MPI_MR. This
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Figure 4. Upper tail of empirical cumulative distribution functions of pooled annual maximum daily rainfall (mm) for
Montreal from 2016 to 2021 with different weighting methods.

Figure 5. Upper tail of empirical cumulative distribution functions of pooled annualmaximumdaily rainfall (mm) for Quebec
from 2016 to 2021 with different weighting methods.

causes a poor fit in calibration in terms of Cooke’s method, but the quantile-to-quantile residuals
are quite small, meaning that we still have a good fit in terms of low residuals when compared to
real data, making the BMAmethods give this model high weight. In similar fashion, one can gain
additional insight by comparing the outputs of different combination approaches.

Figures 4 and 5 illustrate the upper tail of the resulting empirical cumulative distribution func-
tions under different possible combination methods for Montreal and Quebec, respectively. We
see that the quantiles obtained from varying combination methods are substantially different
depending on the weights attributed to each model. From a risk management perspective, such
differences can alter conclusions reached by an analyst concerning risk level. As such, one would
benefit from considering multiple combination methods, given that this would allow for better
understanding of projection uncertainty.

Since different combination methods yield different results, one may be interested in the vari-
ability induced by attributing weights to each expert. Let F(e)�τ ,x be the cumulative distribution
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Figure 6. Upper tail of empirical cumulative distribution functions of pooled annual maximum daily rainfall (mm) for
Montreal from 2001 to 2020 with different weighting methods, andminimum andmaximum boundaries.

function corresponding to modelMe. We define the CDF of Y�τ ,A as

F�τ ,A(y)=w1F(1)�τ ,A(y)+ . . .+wnF(n)�τ ,A(y),

where w1, . . . ,wn are the weights attributed to each expert (which correspond to probabilities
Pr (Me|�y�τ ,A)). It is easy to show that for a given return level, the boundaries for Y�τ ,A,R will be the
minimum and maximum of

{
Y(1)

�τ ,A,R, . . . , Y
(n)
�τ ,A,R

}
. Indeed, we have

Y�τ ,A,R =min
(
Y�τ ,A: Pr (Y ≤ Y�τ ,A)≥ 1− 1/R

)
=min

(
Y�τ ,A:F�τ ,A

(
Y�τ ,A

)≥ 1− 1/R
)

=min
(
Y�τ ,A:w1F(1)�τ ,A

(
Y�τ ,A

)+ . . .+wnF(n)�τ ,A
(
Y�τ ,A

)≥ 1− 1/R
)
.

Now suppose F(i)�τ ,A
(
Y�τ ,A

)≥ F(j)�τ ,A
(
Y�τ ,A

)
for some i ∈ {1, . . . , n} and ∀ j ∈ {1, . . . , n}. Then,

it follows that F(i)�τ ,A
(
Y�τ ,A

)≥w1F(1)�τ ,A
(
Y�τ ,A

)+ . . .+wnF(n)�τ ,A
(
Y�τ ,A

)≥ 1− 1/R, provided that
w1, . . . ,wn ∈ [0, 1] with

∑
wi = 1, and so F−1

�τ ,A
(
Y�τ ,A

)
must be the minimum for Y�τ ,A,R for any

combination of weights. Similarly, the reverse logic allows for stating that the lowest CDF must
yield the maximum quantile.

From this reasoning, Figure 6 illustrates the CDF obtained with each combination method in
Montreal between 2001 and 2020 compared to the minimum and maximum boundaries of quan-
tiles, where the period is expanded to 20 years to allow for empirical quantiles from each expert in
a short enough period that precipitation is not expected to change significantly. We notice that the
combination methods are grouped within a much narrower range than the theoretical boundaries
from the minimum and maximum projections.

We can suppose that the weights provided by the different combination methods will improve
the variance around a quantile estimate compared to having no information about each expert.
While we cannot obtain this variance mathematically, we can use bootstrap resampling to com-
pare the quantile distribution under each scenario. Figure 7 illustrates the resulting density
distributions for the 95th quantile in Montreal between 2001 and 2020. In keeping with inter-
vals presented in Climate Data Canada, the 10% and 90% quantiles of the distribution supposing
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Table 1. Comparison of mean and variance of uniform weight attribution
and model combination weights for Montreal and Quebec from 2001 to
2020 at the 95th quantile.

Montreal Quebec

Mean Variance Mean Variance

No information 78.4 40.2 72.3 3.4
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Cooke 76.4 33.1 72.2 4.3
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Wasserstein 77.4 34.8 71.3 3.9
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

EM 70.0 28.4 70.1 3.7
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

GLUE 69.3 26.9 70.0 4.0

Figure 7. Comparison of bootstrap densities under different combination methods for the 90th quantile (left) and 95th
quantile (right) in Montreal between 2001 and 2020 for 10,000 iterations.

no information about experts are shown (corresponding to the equiprobable scenario), which can
be thought of as the lower and upper bounds that a user with no evaluation of the expert models
might consider as plausible. We notice that the two BMA methods differ largely from the other
twomethods, withmodes lying outside the 10–90% boundaries, while the other methods are more
similar to not evaluating experts, particularly for the 95th quantile.

This difference is driven by the same phenomenon as the difference in weight attribution. BMA
methods rely on the assumption that residuals between projections and real data follow a nor-
mal distribution, whereas Cooke’s method and IDW using Wasserstein distance use the distance
between (cumulative) densities of the projections and real data. If expert distributions have jumps
in their CDFs, this will cause aggregation for both Cooke and Wasserstein, leading to these mod-
els receiving little weight. Nonetheless, the residuals between these experts’ projections and real
data might still be small, such that BMA methods will attribute larger weight to these models.
These different weights cause the gap between quantile values of BMA methods compared to the
othermethods, as observed in Figure 6. Given the similarity in results between the non-parametric
methods using densities, and the BMAmethods using residuals as in Figure 7, it is natural to sup-
pose that keeping only one method using densities and another using residuals provides sufficient
information for analysis purposes.

Moreover, these combination methods allow for alternate confidence bounds based on an eval-
uation of expert models as opposed to supposing all expert projections are equally likely. Table 1
also highlights the reduction in variance for the 95th quantile in Montreal, while the much lower
variance is similar for all methods in Quebec.

Applying the same exercise to multiple grid cells within the Montreal region, we can calculate
the resulting ARF for each method. Given that we observe a 10% difference in 95th quantiles
between methods, we can expect different weights to yield significantly different ARF curves.
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It is worth noting that directly using quantiles found with model combination methods can
yield non-sensical results when computing ARFs. This is because the spatiotemporal relation
between the full region Y�τ ,A,R and the underlying grid cells Y�τ ,x,R for each expert’s projection is
broken when comparing a weighted average of y(e)�τ ,x,R and y(e)�τ ,A,R, leading to ARFs possibly exceed-
ing 1. From a point-to-area point of view, this would notmake sense, seeing as a whole area cannot
have more intense precipitation than its maximal component, limiting the applicability of such a
method. This effect is lessened by using the same weights for all grid cells within an area.

From the significant variability in higher quantiles observed in the previous figures depending
on the weights attributed to model projections, we choose to study percentage changes in ARF
and quantiles because they yieldmore comparable information between the different combination
methods than actual quantile and ARF values. Mathematically, the modelled quantile change for
areaA corresponds to	quant = Y �ψ ,A,R/Y�τ ,A,R, and the ARF change to	ARF =ARFA,R, �ψ/ARFA,R,�τ
for future period �ψ and current period �τ .

Using the quantile boundaries found previously, we can establish boundaries for possible quan-
tile change by comparing the future maximum to the current minimum and vice versa for the
minimum possible change. This exercise is not well-defined for ARFs, since the area value depends
on the underlying grid cells, and so we cannot for example use the highest area quantile with the
lowest grid quantiles, as this would not make sense from a rainfall perspective. Keeping the same
20-year period, we compare it to a near-future period of 2011–2030 and a far future of 2071–2090.
The idea behind comparing two future periods is that the variability in near future should be lower
than for a later period. Figures 8 and 9 show the change in quantiles and ARFs in Montreal for
the near future and far future at a 1 in 20-year return level. While we observe the expected change
in variability for quantiles, Figure 9 shows that change in ARF does not significantly vary between
near and far projections. This could be explained by looking at the underlying composition of the
ARF, where

	ARF =ARFA,R, �ψ/ARFA,R,�τ =

(
Y �ψ ,A,R

1
card(X)

∑
x∈X Y �ψ ,x,R

)
(

Y�τ ,A,R
1

card(X)
∑

x∈X Y�τ ,x,R

)

= Y �ψ ,A,R
Y�τ ,A,R

∑
x∈X Y�τ ,x,R∑
x∈X Y �ψ ,x,R

=	quant

∑
x∈X Y�τ ,x,R∑
x∈X Y �ψ ,x,R

,

such that the first ratio is the change in quantiles, but the second ratio has the current period
and future period inverted, suggesting that it will be approximately inversely proportional to the
quantile change. As such, the two ratios will cancel out, other than the random noise between
different grid cell precipitation, which is what we observe in Figure 9. The fatter tails for Bayesian
methods are induced by the distribution of quantile change, which is less centred around a mode,
as seen in Figure 8.

The same idea is applied to Quebec in Appendix B, where all methods generally agree, and
the Bayesian quantile change projections are more centred around their mode than for Montreal,
such that the ARF change projection has smaller tails. The distributions resulting from differ-
ent combination methods can provide valuable information about the uncertainty of projections,
where for example in this case the confidence level is higher regarding Quebec projections than
Montreal projections. Moreover, compared to the 10–90% confidence bounds usually presented,
we see that the resulting distributions from combination methods provide alternate bounds based
on an evaluation of expert projections. In an actuarial context, this could be very important as it
can highlight whether a projection is too conservative or not conservative enough.

Figures 10 and 11 compare the mean percentage change in ARF and quantiles respectively for
a 1 in 20-year return level for Montreal between Cooke’s method and BMA-EM, divided into
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Figure 8. Distribution of projected quantile change at a 1 in 20-year return level in Montreal between 2001–2020 and 2011–
2030 (left) or 2071–2090 (right).

Figure 9. Distribution of projected ARF change at a 1 in 20-year return level in Montreal between 2001–2020 and 2011–2030
(left) or 2071–2090 (right).

Figure 10. Percentage change in quantiles for a 1 in 20-year return level between 2001–2020 and 2071–2090 for the region of
Montreal using Cooke’s method (left) and BMA-EM (right).

approximately 24 km × 22 km areas. These two methods are chosen to illustrate the substan-
tial variation between a density-based method and a residuals-based method. For example, both
methods project increases in quantile, but one projects a 10% increase with little change to the
ARF, while the other projects a 22% increase with a reduction to the ARF. From a risk manage-
ment perspective, this would imply differing scenarios of a moderate increase with similar spatial
distribution and a heavier increase with more localised precipitation, which can lead to different
losses (see for example Cheng et al., 2012 and American Academy of Actuaries, 2020).
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Figure 11. Percentage change in ARFs for a 1 in 20-year return level between 2001–2020 and 2071–2090 for the region of
Montreal using Cooke’s method (left) and BMA-EM (right).

Flood losses provide a particular example of how Cooke’s method and Bayesian model aver-
aging with expectation-maximisation would lead to different loss projections. While the link
between extreme rainfall and flooding is complex, the difference in scenarios between Cooke’s
method and BMA-EM allows for a theoretical discussion of its impact for an actuary. Through a
combination of hydrological and hydraulic models such as Hydrotel (Fortin et al., 2001), HEC-
RAS (Brunner, 2016) or the Hillslope Link Model (Demir & Krajewski, 2013), one can produce
discharge flood projections under different rainfall scenarios. Breinl et al. (2021) used elasticity
to illustrate the relationship between extreme precipitation and flooding, where depending on
ground dampness, an increase in precipitation will have an at least equivalent increase in river
discharge, leading to increased flood severity. Supposing that the reduction in ARF will mitigate
the impact of an increase in quantiles due to more localised rainfall, such that for example we
have an approximately 7% and 19% increase under, respectively, the Cooke and BMA-EM scenar-
ios, the relationship between discharge and rainfall would clearly imply a greater risk of increased
flood losses in the latter case.

Using a hierarchical model such as the one used by Boudreault et al. (2020), flood intensities are
associated with different levels of discharge, and their respective probabilities are established from
frequency analysis. In their study, the second and third levels of flood intensities have discharges of
1,570 m3/s and of 1,740 m3/s, respectively, with occurrence probabilities of 0.01496 and 0.00842.
This 10.8% difference in discharge is lower than the projected increase in extreme precipitation
using BMA-EM, which is not the case for Cooke’s method. All else being equal, the probability
of observing more severe flooding in the BMA-EM scenario would increase relative to the Cooke
scenario. This change in probability can then be used to calculate premiums and/or reserves for
flooding, where BMA-EM would lead to a more conservative estimate than the other method
in this case. In a changing climate perspective, the range of scenarios resulting from different
combination methods becomes even more important to have a fuller understanding of the impact
of climate change on insurable losses. An analyst using only one method would fail to obtain a
complete picture of projection uncertainty and may find themselves being overconfident in the
result of a single combination method.

Similar graphics are available in Appendix C for Quebec. Projections for this city are much
more similar across methods, leading to smaller confidence intervals in this case.

In summary, we see that the different combination methods considered can yield varying sets
of weights, or probabilities, assigned to each model, which impacts projected quantiles. From the
similarities between methods using densities compared to methods using residuals, we see that

https://doi.org/10.1017/S174849952300009X Published online by Cambridge University Press

https://doi.org/10.1017/S174849952300009X


474 Sébastien Jessup et al.

one only needs to use one method from each approach to obtain a picture of the underlying
projection uncertainty, and the difference between the approaches provides a measure of this
uncertainty. In cases where methods agree, one could more confidently reach conclusions about
the analysed data, but in cases where methods disagree, using only one method would fail to
capture projection uncertainty. Moreover, combination methods can yield alternate confidence
bounds based on an evaluation of expert models and offer an improved pooling projection over
considering all expert projections as equally likely.

4. Conclusion
In this paper, we applied model combination methods to the pooling approach used by Innocenti
et al. (2019) to highlight the resulting difference in quantile estimation and areal reduction factor
(ARF) calculation. More specifically, we compared Cooke’s method, an inverse distance weight-
ing approach, and two Bayesian model averaging approaches to equiprobable pooling when
considering precipitation annual maxima.

Our main focus was to investigate the impact, if any, of various model combination meth-
ods on quantiles obtained through pooling and therefore on the resulting ARFs. We considered
two non-parametric approaches, namely Cooke’s method as well as Inverse Distance Weighting
using Wasserstein distance, in addition to Bayesian Model Averaging using an Expectation-
Maximisation algorithm, and a Generalised Likelihood Uncertainty Estimation algorithm. The
choice of these methods was motivated by having an approach not requiring much information,
an easy to use and intuitive method, and Bayesian approaches frequently used in recent studies.

We focused on a 1 in 20-year return level in Montreal and Quebec to show that different
weighting methods lead to significantly different results for both quantiles and ARF curves. By
considering the projected percentage change in quantiles and ARFs from 2001–2020 to 2071–
2090, the variability in results offered insight into the uncertainty of future projections, where
results seemed to generally agree around Quebec, whereas results varied significantly between
methods for Montreal. This suggests that despite past literature demonstrating that combination
methods significantly increase accuracy (Clemen, 1989), one should use more than one combina-
tion method, given that a single method may lead to overconfidence about projections. Moreover,
it may be sufficient to compare a method using densities to another using residuals to obtain alter-
nate confidence bounds instead of the standard bounds used in weather projections. Combination
methods can be of particular interest to actuaries in a changing climate context to have a better
understanding of the impact of projected changes on potential losses.

A limitation of this study is that the combination methods used ignored the potential depen-
dence between different expert projections by assuming independence between experts. The new
method of Bayesian Predictive Synthesis presented in McAlinn &West (2019) would be an inter-
esting extension, as it is a generalisation of Bayesian Model Averaging taking dependence into
account in a time series context.
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Appendix A. Expectation-Maximisation Bayesian Model Averaging Algorithm

The following table illustrates the algorithm followed for expectation-maximisation under
Bayesian model averaging for n experts and M quantiles, where y(e)�τ ,x,m is the mth quantile of
vector �y (e)�τ ,x , y�τ ,x,m is the mth quantile of real values, σ 2

e and we are, respectively, the variance
and weight for each expert’s model, φ(y�τ ,x,m|y(e)�τ ,x,m, σ

2) is the density of a normal distribu-
tion evaluated at y�τ ,x,m with mean y(e)�τ ,x,m and variance σ 2, and θ is a vector of parameters s.t.
θ = {we, σ 2

e , e= 1, . . . , n}.

Algorithm 2: Expectation-Maximisation Bayesian Model Averaging

1: Initialise variance and weights as

σ 2(0) = 1
nM

M∑
m=1

n∑
e=1

(
y�τ ,x,m − y(e)�τ ,x,m

)2
,

w(0)
e = 1/n ∀e.

2: Calculate initial likelihood as

l(θ (0))=
M∑

m=1
log

( n∑
e=1

w(0)
e φ

(
y�τ ,x,m|y(e)�τ ,x,m, σ

2(0)
))

.

3: while |l(θ (j))− l
(
θ (j−1)) |>β , do

4: Obtain proportion from normal densities for each expert e and quantilem as

z(j)e,m =
w(j−1)
e φ

(
y�τ ,x,m|y(e)�τ ,x,m, σ

2(j−1)
)

∑n
e=1 w

(j−1)
e φ

((
y�τ ,x,m|y(e)�τ ,x,m, σ 2(j−1)

) .
5: Update weights and variance to each expert, that is

w(j)
e = 1

M

M∑
m=1

z(j)e,m
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Algorithm 2: Continued

σ 2
e
(j) =

∑M
m=1 z

(j)
e,m
(
y�τ ,x,m − y(e)�τ ,x,m

)2
∑M

m=1 z
(j)
e,m

.

6: Calculate updated likelihood as

l(θ (j))=
M∑

m=1
log

( n∑
e=1

w(j)
e φ

(
y�τ ,x,m|y(e)�τ ,x,m, σ

2(j)
))

.

7: Update iteration count j= j+ 1.

8: end while

9: Update the probability associated to each expert as Pr
(M=Me|�y�τ ,x

)=w(j)
e .

10: Calculate posterior distribution as

Pr
(
Y �ψ ,x = y|�y�τ ,x

)
=∑n

e=1 Pr
(
Y �ψ ,x = y|Me

)
Pr
(M=Me|�y�τ ,x

)
.

Appendix B. Quantile and ARF Changes Bootstrap Distribution for a 1 in 20-year
Return Level for Quebec

Figure B.1. Distribution of projected quantile change at a 1 in 20-year return level in Quebec between 2001–2020 and 2011–
2030 (left) or 2071–2090 (right).

Figure B.2. Distribution of projected ARF change at a 1 in 20-year return level in Quebec between 2001–2020 and 2011–2030
(left) or 2071–2090 (right).
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Appendix C. Quantile and ARF Percent Changes for a 1 in 20-year Return Level for
Quebec

Figure C.1. Percentage change in quantiles for a 1 in 20-year return level between 2001–2020 and 2071–2090 for the region
of Quebec using Cooke’s method (left) and BMA-EM (right).

Figure C.2. Percentage change in quantiles for a 1 in 20-year return level between 2001–2020 and 2071–2090 for the region
of Quebec using Cooke’s method (left) and BMA-EM (right).
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