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THE GENERALISED COUPON
COLLECTOR PROBLEM

PETER NEAL,∗ University of Manchester

Abstract

Coupons are collected one at a time from a population containing n distinct types of
coupon. The process is repeated until all n coupons have been collected and the total
number of draws, Y , from the population is recorded. It is assumed that the draws
from the population are independent and identically distributed (draws with replacement)
according to a probability distributionXwith the probability that a type-i coupon is drawn
being P(X = i). The special case where each type of coupon is equally likely to be drawn
from the population is the classic coupon collector problem. We consider the asymptotic
distribution Y (appropriately normalized) as the number of coupons n → ∞ under
general assumptions upon the asymptotic distribution of X. The results are proved by
studying the total number of coupons,W(t), not collected in t draws from the population
and noting that P(Y ≤ t) = P(W(t) = 0). Two normalizations of Y are considered, the
choice of normalization depending upon whether or not a suitable Poisson limit exists for
W(t). Finally, extensions to the K-coupon collector problem and the birthday problem
are given.
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1. Introduction

The classic coupon collector problem has a long history; see, for example, [3]. The classic
problem is as follows. A collector wishes to collect a complete set of n distinct coupons,
labelled 1 through to n. The coupons are hidden inside breakfast cereal boxes and within each
cereal box there is one coupon which is equally likely to be any of the n distinct coupons. The
collector purchases one box of breakfast cereal at a time, collecting the coupons, stopping when
the collector has completed the set of n distinct coupons. The total number of cereal boxes, Yn,
which the collector needs to purchase is the quantity of interest. Elementary calculations show
that

E[Yn] = n

n∑
i=1

1

i
≈ n log n.

Furthermore, if Z is a standard Gumbel distribution with P(Z ≤ z) = exp(−e−z) (z ∈ R) then

1

n
(Yn − n log n)

d−→ Z as n → ∞,

where ‘
d−→’ denotes convergence in distribution; see, for example, [4].
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622 P. NEAL

The generalised coupon collector problem assumes that, whilst the cereal boxes are inde-
pendent and identically distributed, the probability that a box contains coupon i is pi . No
assumption is placed upon the {pi}s except that pi > 0 (i = 1, 2, . . . , n). We allow for the
possibility that some boxes may not contain a coupon by only assuming that

∑n
i=1 pi ≤ 1. The

random coupon collector problem [4], [5] is an alternative departure from the classic problem.
The proofs in [4] rely upon a Poisson embedding argument and although our proofs are different
we shall also exploit a Poisson approximation approach.

The paper is structured as follows. In Section 2 the main result, Theorem 2.1, is presented
and proved. An alternative result is given in Theorem 2.2 which is applicable when the Poisson
arguments of Theorem 2.1 fail. A number of examples are considered in Section 3. Finally, in
Section 4 extensions of Section 2 are discussed. These include theK-coupon collector problem,
the total number of draws from the population that are required to haveK coupons of each type,
and the K-birthday problem, the total number of draws from the population that are required
to have K coupons of any (unspecified) type.

2. Coupon collecting problem

For the asymptotic results of this paper, we consider a sequence of coupon collections
{Cn}, where the number of coupons to be collected, n, tends to ∞. For n ≥ 1, Cn requires
the collection of n coupons, labelled 1 through to n. Coupons are collected as follows. Let
Xn1 , X

n
2 , . . . be independent and identically distributed according to Xn, where

P(Xn = i) =
{
pni, i = 1, 2, . . . , n,

0, otherwise,

where
∑n
i=1 pni ≤ 1 and min1≤i≤n pni > 0. Then Xnk is the kth coupon drawn from the

population (of coupons) and the process is continued until all n coupons have been collected.
Let Yn denote the total number of coupons which need to be collected to obtain the full set of
coupons in Cn.

Before stating the main result, we introduce some useful notation. For n ≥ 1, i =
1, 2, . . . , n, and t = 1, 2, . . . , let χni (t) = 1 if coupon i has not been collected in the first
t coupons drawn from the population and χni (t) = 0 otherwise. Let Wn(t) = ∑n

i=1 χ
n
i (t), the

total number of distinct coupons which still need to be collected after t coupon draws. Thus,
for t ≥ 1, Yn ≤ t if and only if Wn(t) = 0.

Theorem 2.1. Suppose that there exist sequences {bn} and {kn} such that kn/bn → 0 asn → ∞
and that, for y ∈ R,

n∑
i=1

exp(−pni{bn + ykn}) → g(y) as n → ∞ (2.1)

for a nonincreasing function g(·) with g(y) → ∞ as y → −∞ and g(y) → 0 as y → ∞.
Then, if Ỹn = (Yn − bn)/kn,

Ỹn
d−→ Y as n → ∞,

where Y has cumulative distribution function

P(Y ≤ y) = e−g(y), y ∈ R.

https://doi.org/10.1239/jap/1222441818 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1222441818


The generalised coupon collector problem 623

The key restriction in Theorem 2.1 is that (2.1) implies that min1≤i≤n pnibn → ∞ as
n → ∞. This condition is needed for the Poisson limit (2.2), below, since it implies that
max1≤i≤n E[χni ([bn + ykn])] → 0 as n → ∞. In Theorem 2.2, below, we explore the case
where min1≤i≤n pnibn → c as n → ∞ for some 0 < c < ∞. By Jensen’s inequality,

n∑
i=1

exp(−pnibn) ≥
n∑
i=1

exp

(
−1

n
bn

)
= n exp

(
−bn
n

)
.

Therefore, bn ≥ n log n, and this will be used in Lemma 2.2, below. The only restriction placed
upon the sequence {Xn} is (2.1). Discussion of a natural construction of suitable sequences
{Xn} is deferred to Section 3.

The proof of Theorem 2.1 relies upon two preliminary lemmas which are motivated and
proved in the following discussion.

Since, for t ≥ 1, Yn ≤ t if and only Wn(t) = 0, it suffices to show that, for all y ∈ R,

Wn([bn + ykn]) d−→ Po(g(y)), y ∈ R. (2.2)

The first step in proving (2.2) is to show that, for any t ∈ N, {χni (t)} are negatively related
[1, p. 24]. For n, t ≥ 1 and 1 ≤ j ≤ n, let {θni,j (t); i = 1, 2, . . . , n} be random variables
satisfying

L(θni,j (t); i = 1, 2, . . . , n) = L(χni (t); i = 1, 2, . . . , n | χnj (t) = 1).

Lemma 2.1. For n, t ≥ 1, the random variables {χni (t)} are negatively related, i.e. for each
1 ≤ j ≤ n, the random variables {θni,j (t); i = 1, 2, . . . , n} and {χni (t); i = 1, 2, . . . , n} can
be defined on a common probability space (�,F ,P) such that, for all i �= j , χni (t)(ω) ≥
θni,j (t)(ω) for all ω ∈ �.

Proof. The lemma is proved by a simple coupling argument.
Fix n, t ≥ 1 and j = 1, 2, . . . , n. Draw Xn1 , X

n
2 , . . . , X

n
t from Xn. For k = 1, 2, . . . , t , let

X̃nk (t)
d=Xnk | χnj (t) = 1, where ‘

d=’ denotes equality in distribution. For k = 1, 2, . . . , t , if

Xnk �= j , set X̃nk (t) = Xnk . If Xnk = j , set X̃nk (t) = X̂nk , where

P(X̂nk = i) =
⎧⎨
⎩

pni

1 − pnj
, i �= j,

0, otherwise.

Thus, X̃n1 (t), X̃
n
2 (t), . . . , X̃

n
t (t) have the correct distribution and, by construction, χni (t) ≥

θni,j (t) for i �= j .

Note that

E[Wn([bn + ykn])] =
n∑
i=1

(1 − pni)
[bn+ykn] → g(y) as n → ∞.

Therefore, by Lemma 2.1 and [1, Corollary 2.C.2], (2.2) holds if

var(Wn([bn + ykn])) → g(y) as n → ∞. (2.3)
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Now var(Wn([bn + ykn])) is equal to

n∑
i=1

var(χni ([bn + ykn]))+
n∑
i=1

∑
j �=i

cov(χni ([bn + ykn]), χnj ([bn + ykn])). (2.4)

Equation (2.1) ensures that

n∑
i=1

exp(−pni[bn + ykn])2 → 0 as n → ∞.

Therefore, by (2.1), the first term in (2.4) converges to g(y) as n → ∞. Thus, (2.3) holds if
the latter term in (2.4) converges to 0 as n → ∞.

Lemma 2.2.
n∑
i=1

∑
j �=i

|cov(χni ([bn + ykn]), χnj ([bn + ykn]))| → 0 as n → ∞.

Proof. For any i �= j ,

|cov(χni ([bn + ykn]), χnj ([bn + ykn]))|
= |(1 − pni − pnj )

[bn+ykn] − (1 − pni)
[bn+ykn](1 − pnj )

[bn+ykn]|

= (1 − pni)
[bn+ykn](1 − pnj )

[bn+ykn]
∣∣∣∣
(

1 − pnipnj

(1 − pni)(1 − pnj )

)[bn+ykn]
− 1

∣∣∣∣
≤ (1 − pni)

[bn log n+yn](1 − pnj )
[bn+ykn] [bn + ykn]pnipnj

(1 − pni)(1 − pnj )
,

with the inequality coming from |1 − (1 − y)m| ≤ my for 0 ≤ y ≤ 1 and m ∈ N.
Therefore,

n∑
i=1

∑
j �=i

|cov(χni ([bn + ykn]), χnj ([bn + ykn]))|

≤
(√[bn + ykn]

n∑
i=1

pni

1 − pni
(1 − pni)

[bn+ykn]
)2

. (2.5)

Let An = {i;pni ≤ b
−3/4
n }. Then

√[bn + ykn]
n∑
i=1

pni

1 − pni
(1 − pni)

[bn+ykn]

= √[bn + ykn]
∑
i∈An

pni

1 − pni
(1 − pni)

[bn+ykn]

+ √[bn + ykn]
∑
i∈Ac

n

pni

1 − pni
(1 − pni)

[bn+ykn]

≤ b
−3/4
n

√[bn + ykn]
1 − b

−3/4
n

n∑
i=1

(1 − pni)
[bn+ykn] + √[bn + ykn]

∑
i∈Ac

n

(1 − b
−3/4
n )[bn+ykn]−1

→ 0 as n → ∞,
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since
∑n
i=1(1 − pni)

[bn+ykn] → g(y) and bn ≥ n log n as n → ∞. Therefore, the right-hand
side of (2.5) converges to 0 as n → ∞ and the lemma is proved.

Proof of Theorem 2.1. For any y ∈ R, Ỹn ≤ y if and only ifWn([bn+ykn]) = 0. Therefore,
by (2.2), for y ∈ R,

P(Ỹn ≤ y) = P(Wn([bn + ykn]) = 0)

→ e−g(y)

= P(Y ≤ y) as n → ∞,

and the theorem is proved.

The proof of Theorem 2.1 presents a straightforward bound for |P(Ỹn ≤ y) − P(Y ≤ y)|,
y ∈ R. For t ≥ 0, let Z(t) ∼ Po(t) and, for y ∈ R, let gn(y) = E[Wn([bn + ykn])]. By the
triangle inequality and [1, Corollary 2.C.2],

|P(Ỹn ≤ y)− P(Y ≤ y)|
= |P(Wn([bn + ykn]) = 0)− P(Z(g(y)) = 0)|
≤ |P(Wn([bn + ykn]) = 0)− P(Z(gn(y)) = 0)| + |P(Z(gn(y)) = 0)− P(Z(g(y))=0)|
≤ (1 − exp(−gn(y)))

(
1 − var(Wn([bn + ykn]))

gn(y)

)
+ |exp(−gn(y))− e−g(y)|.

We now turn our attention to the situation where the natural scaling {bn} is such that
min1≤i≤n pnibn → c as n → ∞ for some 0 < c < ∞.

Theorem 2.2. Suppose that there exist sequences {bn} such that, for y ∈ R
+,

n∑
i=1

exp(−pniybn) → g(y) as n → ∞ (2.6)

for a nonincreasing function g(·) with g(y) → ∞ as y → 0 and g(y) → 0 as y → ∞.
Suppose that there exists a function h(·) such that, for all y ∈ R

+,

n∏
i=1

(1 − exp(−pniybn)) → h(y) as n → ∞.

Then (2.6) ensures that h(y) → 0 as y → 0 and h(y) → 1 as y → ∞, and if Ŷn = Yn/bn,

Ŷn
d−→ Y as n → ∞,

where Y has cumulative distribution function

P(Y ≤ y) = h(y), y ∈ R
+.

Proof. The proof has a number of similarities and differences to the proof of Theorem 2.1.
We shall again exploit the fact that Yn ≤ t if and only Wn(t) = 0.

Let ηn∗ be a homogeneous Poisson point process with rate 1, and let Tn(t) denote the time of
the [tbn]th point on ηn∗ . Let V n1 , V

n
2 , . . . be independent and identically distributed according

to Xn. Let ηn1 , η
n
2 , . . . , η

n
n be independent homogeneous Poisson point processes with rates
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pn1, pn2, . . . , pnn, respectively, constructed from ηn∗ and V n1 , V
n
2 , . . . as follows. For k =

1, 2, . . . , let snk denote the time of the kth point on ηn∗ . Then there is a point on ηnj at time snk
if V nk = j . Furthermore, χn1 (t), χ

n
2 (t), . . . , χ

n
n (t) and, hence, Wn(t) can be constructed using

V n1 , V
n
2 , . . . , V

n
t .

Let ψni (t) = 1 if there is no point on ηni [0, t], and note that the {ψni (t)}s are indepen-
dent. For t ≥ 0, let W̃n(t) = ∑n

i=1 ψ
n
i (t). Then Wn([ybn]) = W̃n(Tn([ybn])). Since W̃n(·) is

nondecreasing, if [ybn] − ([ybn])3/4 ≤ Tn([ybn]) ≤ [ybn] + ([ybn])3/4 then

W̃n([ybn] + ([ybn])3/4) ≤ Wn([ybn]) ≤ W̃n([ybn] − ([ybn])3/4). (2.7)

Since (1/(ybn)3/4)(Tn([ybn]) − [ybn]) p−→ 0 as n → ∞ (where ‘
p−→’ denotes convergence

in probability), it follows from (2.7) that P(Wn([ybn]) = 0) → h(y) if

P(W̃n([ybn] ± ([ybn])3/4) = 0) → h(y) as n → ∞.

By independence, for all y ∈ R,

P(W̃n([ybn] ± ([ybn])3/4) = 0) =
n∏
i=1

(1 − (1 − pni)
[ybn]±([ybn])3/4)

→ h(y) as n → ∞.

The main benefit of Theorem 2.1 over Theorem 2.2 is that g(y) is usually much easier to
calculate than h(y).

3. Examples

A natural construction of {Xn} is to take a (continuous) distribution X with probability
density function f (·) on [0, 1] and, for n = 1, 2, . . . and i = 1, 2, . . . , n, set

pni =
∫ i/n

(i−1)/n
f (x) dx.

A number of results can be proved concerning various choices ofX with Lemma 3.1 illustrating
the point using a class of distributions with f (·) being continuous.

Lemma 3.1. Let 0 ≤ σ ≤ 1 be such that, for all 0 ≤ x ≤ 1 and x �= σ , 0 < f (σ) < f (x).
For p = 1, 2, let

up = lim
ε→0+

f (σ + ε)− f (σ)

εp
, lp = lim

ε→0−
f (σ + ε)− f (σ)

|ε|p .

(i) Suppose that 1{σ>0} l1 + 1{σ<1} u1 > 0. Then bn = (n/f (σ ))(log n − log(log n)) and
kn = n with

g(y) = f (σ)

(
1{σ>0}
l1

+ 1{σ<1}
u1

)
e−f (σ)y .

(ii) Suppose that 1{σ>0} l1 + 1{σ<1} u1 = 0 and 1{σ>0} l2 + 1{σ<1} u2 > 0. Then bn =
(n/f (σ ))(log n− 1

2 log(log n)) and kn = n with

g(y) =
√
πf (σ)

2

(√
1{σ>0}
l2

+
√

1{σ<1}
u2

)
e−f (σ)y .
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Proof. We outline the proof of (i), with (ii) being proved similarly.
Let bn = (n/f (σ ))(log n− log(log n)) and kn = n. Note that

n∑
i=1

exp(−pni(bn + ykn)) ≈
n∑
i=1

exp

(
−(bn + ykn)

1

n
f

(
i − 1/2

n

))

= n

n∑
i=1

1

n
exp

(
−

(
bn

n
+ y

)
f

(
i − 1/2

n

))

≈ n

∫ 1

0
exp

(
−

(
bn

n
+ y

)
f (x)

)
dx.

Therefore, it is straightforward to show that

g(y) = lim
n→∞ n

∫ 1

0
exp

(
−

(
1

f (σ)
(log n− log(log n))+ y

)
f (x)

)
dx.

Linearizing f (x) about σ and considering the left- and right-hand limits separately yields the
result.

Examples of probability density functions on [0, 1] satisfying Lemma 3.1 include f (x) =
2
3 (1 + x), f (x) = 6

5 (1 − x(1 − x)), and f (x) = 12
7 max(1 − x, x/2).

Suppose instead that X is piecewise constant with, for 1 ≤ j ≤ k,

f (x) = λj , πj−1 < x ≤ πj ,

where λ1, λ2, . . . , λk > 0 and 0 = π0 < π1 < · · · < πk = 1. Without loss of generality,
assume that λ1 < λ2 < · · · < λk . Then bn = (1/λ1)n log n, kn = n, and g(y) =
π1 exp(−λ1y).

In the above examples, kn/bn → 0 and Theorem 2.1 holds. In all cases, the limiting
distribution Y is a Gumbel distribution with bn/n log n → 1/min0≤x≤1f (x) as n → ∞.

An example of where Theorem 2.2 is necessary is f (x) = 2x (0 ≤ x ≤ 1), giving pni =
(2i − 1)/n2 (i = 1, 2, . . . , n). Then, for y ∈ R

+,

n∑
i=1

exp(−pniyn2) =
n∑
i=1

exp(−(2i − 1)y) → g(y) = ey

e2y − 1
as n → ∞,

and Theorem 2.2 holds with bn = n2 and h(y) = limn→∞
∏n
i=1(1 − exp(−(2i − 1)y)).

4. Extensions

The methodology outlined in Section 2 can be extended to find the total number of coupons,
YKn , which need to be collected in order to have (at least)K coupons of each type. In this case,
simply let χni (t) = 1 if at mostK − 1 coupons of type i have been collected in the first t draws
from the population and let χni (t) = 0 otherwise. Then set WK

n (t) = ∑n
i=1 χ

n
i (t), and note

that YKn ≤ t if and only if WK
n (t) = 0. It is straightforward to adapt Lemmas 2.1 and 2.2 to

this case and, consequently, Theorem 2.1 holds with (2.1) replaced by

bK−1
n

(K − 1)!
n∑
i=1

pK−1
ni exp(−pni{bn + ykn}) → g(y) as n → ∞. (4.1)
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Since kn/bn → 0 implies that min1≤i≤n bnpni → ∞ as n → ∞, (4.1) holds if and only if

E[WK
n ([bn + ykn])] → g(y) as n → ∞.

Theorem 2.2 can also be adapted to the K-coupon collector problem.
At the other end of the spectrum, the Poisson arguments above can be applied to the

generalised birthday problem. That is, forK ≥ 2, letUKn denote the total number of draws from
the population that are required to obtain K coupons of any (unspecified) type. Let χ̃ni (t) = 1
if at least K coupons of type i have been collected in the first t draws from the population and
let χ̃ni (t) = 0 otherwise. Then, if W̃K

n (t) = ∑n
i=1 χ̃

n
i (t), U

K
n > t if and only if W̃K

n (t) = 0.
Along the lines of Lemma 2.1, it can be shown that the {χ̃ni (t)} are negatively related and
straightforward bounds for the covariance terms can be obtained. We then have the following
theorem.

Theorem 4.1. For fixed K ≥ 2, suppose that there exists a sequence {ln} such that

lKn

n∑
i=1

pKni → 1 (4.2)

and max1≤i≤n lnpni → 0 as n → ∞. Then

UKn

ln

d−→ UK as n → ∞,

where UK has cumulative distribution function

P(UK ≤ u) = 1 − exp(−uK), u ∈ R
+.

Proof. The conditions imposed on {ln} are sufficient forWK
n ([uln]) d−→ Po(uK), from which

the theorem follows immediately.

The limiting distribution UK obtained in Theorem 4.1 is identical to that obtained in
[4, Theorem 5.2] for the random birthday problem. For the case in whichK = 2, Theorem 4.1
follows immediately from [2, Example 2], since given (4.2), max1≤i≤n lnpni → 0 if and only
if l3n

∑n
i=1 p

3
ni → 0 as n → ∞.

Finally, it is worth noting that, for the establishing of Poisson limits for WK
n ([bn + ykn])

and W̃K
n ([uln]), it is crucial that

max
1≤i≤nE[χni ([bn + ykn])] → 0 and max

1≤i≤nE[χ̃ni ([uln])] → 0 as n → ∞,

respectively. That is, for theK-coupon collector problem, we require that min1≤i≤n bnpni →∞
as n → ∞ (none of the probabilities are too small) and, for theK-birthday problem, we require
that max1≤i≤n lnpni → 0 as n → ∞ (none of the probabilities are too large).
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