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§ 1. Much has been written, from the algebraical as well as from
the geometrical standpoint, on the subject of pencils of quadrics:
algebraically the problem consists of the canonical reduction of a
pencil of quadratic forms, and the classical paper on the subject is
by Weierstrass.1 But among the different kinds of pencils of
quadratic forms there is the " singular pencil," in which the
discriminant of every form belonging to the pencil is zero; inter-
preted geometrically this means that every quadric belonging to the
pencil is a cone. This case was expressly excluded from consideration
by Weierstrass, and the canonical reduction was only accomplished
later by Kronecker.2 But, although Weierstrass and Kronecker
together solved completely the problem of the canonical reduction of
a pencil of quadratic forms, a much clearer insight into the nature of
the problem was gained when Segre gave the geometrical solution.
He published two papers, one3 dealing with the non-singular pencils
and the other4 with the singular pencil.

A new method of carrying out the canonical reduction of a
singular pencil of quadratic forms has been given quite recently by
Turnbull and Aitken,5 although these authors make no reference to

1 "Zur Theorie der bilinearen und quadratischen Formen," Berliner Monatsberichte
(1868), 310-338.

2 " U e b e r Schaaren von quadratischen Formen," Berliner Monatsberichte (1874),
69-76. Kronecker also wrote a later paper on the subject; see the Berliner Hitzungs-
berichte (1890), 1375, and the continuation of this paper, ibid. (1891), 9 and 33.

3 Memorie Ace. Torino (2), 36(1884), 3-86.

* "Ricerche sui fasci di coni quadrici in uno spazio lineare qualunque," Atti Ace.
Torino 19 (1884), 878.

6 An Introduction to the Theory of Canonical Matrices (Blackie, 1932) ; Ch. 9. The
authors solve the more general problem of the canonical reduction of a singular pencil
of matrices ; when the matrices are symmetric the problem reduces to that of the
reduction of a singular pencil of quadratic forms.
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Segre's work (nor, it seems, does Kronecker in his paper of 1890).
They introduce the idea of the minimal order of dependence of the
rows, and similarly of the columns, of a matrix upon one another;
a matrix thus has associated with it two sets of minimal indices, one
set arising from the rows, the other from the columns. In the case
however of a symmetric matrix these two sets of minimal indices are
the same, and the canonical form of a singular pencil of quadratic
forms depends upon this set of minimal indices m]; m2, . . . . , mk.
These numbers are the same as those which occur in Segre's second
paper. The number k of different minimal indices is one greater
than the dimension of the space [k — 1] which is the vertex of a
general quadric of the pencil. The sum m1 + m2 + . . . . + mk of the
minimal indices is the order of the locus Vk of the vertices of the
quadrics, while the indices TOX, m2, . . . . , mk themselves are simply
the orders of the minimum directrix curves on Vk.

It is rather surprising that, notwithstanding the great importance
and wide publicity of the above writings, nothing seems yet to have
been written about a net of quadrics, except for the case of a net of
quadric surfaces in ordinary space; at any rate I have not succeeded
in finding a paper, and others whom I have asked know of none.
The three-dimensional case is of course very well known, and it
derives great interest from Hesse's use of it in studying the configura-
tion of the bitangents of a non-singular plane quartic.1 A paper by
Sturm is also fundamental2; he obtains several original results, but
his work would have gained considerably had he made use of that of
Hesse, to whose paper he never refers. But apart from the three-
dimensional case there does not seem to be any work, either
geometrical or algebraical, on the subject. It may well be that, in
view of the papers on a pencil of quadratic forms, an algebraist could
not approach the study of a net of quadratic forms without serious
misgivings; but Segre's work does not afford any such excuse to a
geometer. It seems as though the net of quadrics in [4] is in some
ways the most interesting of all, and a paper on this is now in an
advanced stage of preparation.

1 Journal fur Math., 49 (1855), 279-332.

2 Journal fur Math., 70 (1869), 212-240.
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THE JACOBIAN CURVE OF A NET OF QUADKICS 261

The present note considers briefly the Jacobian curve of a net
of quadrics in [n]; in particular the existence of certain secant spaces
of the curve is established and a few properties of these spaces are
obtained. These spaces, being of dimension n — 2 and each meeting
the curve in \n (n — 1) points, are analogous to the trisecants of the
Jacobian curve of a net of quadric surfaces in [3]; but, whereas any
twisted curve (of order greater than three) in [3] has a single infinity
of trisecants, it is not usual for a curve in [n] to have an infinity of
spaces [n — 2] meeting it in \n (n — 1) points when n > 3.

§ 2. We consider a doubly-infinite linear system of quadric
primals in w-dimensional space; the system is given algebraically by
an equation

* Qo + y Qi + * Q2 = o,

where x:y:z are variable parameters and Qo, Qu Q2 are three linearly
independent homogeneous quadratic functions of n + 1 coordinates $.
Such a system of quadrics is called a net of quadrics; it will be denoted
by N. All the quadrics of N have in common a base locus Vft_3 of
dimension n — 3 and order 8; F®_3.is met by any solid in a set of
eight associated points and by any [4] in a canonical curve of genus 5.

Of the oo 2 quadrics belonging to N, oo ] are cones, and the locus
of the vertices of these cones is a curve &. When a quadric is a cone
it has a double point at the vertex of the cone, so that the curve & is
given algebraically by the vanishing of all the three-rowed deter-
minants of a' matrix of three rows and n + 1 columns, the elements
of this matrix being the partial derivatives of the quadratic forms Q
with respect to the coordinates | , and so being linear in the
coordinates £. Thus & is of order1 \n{n-\-\); it is called the
Jacobian curve of N.

If we regard for the moment x:y:z as the homogeneous
coordinates of a point in a plane a then the quadrics of N are repre-
sented by the points of a; to each quadric of N there corresponds a
definite set of values of the parameters x:y:z and so a definite point
of a, and conversely. In this representation the cones of N will be
represented by the points of some curve in a, and the points of i? are
clearly in (1,1) correspondence with the points of this plane curve,

Salmon, Higher Algebra (Dublin 1885), Lesson 19.
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whose genus is therefore the same as the genus of &. Now the
condition that a quadric should be a cone is that its discriminant
should vanish; hence the curve in a whose points represent the cones
of N is given algebraically by equating to zero a symmetrical
determinant, of n + 1 rows and columns, whose elements are homo-
geneous linear functions of x, y, z. The curve is therefore of order
n -f 1 and, since it is actually without double points or cusps, its
genus is \n (n — 1). Hence the genus of & is also \n(n — 1).

§ 3. Those quadrics of N which pass through an arbitrary point
0 of [ri] are quadrics belonging to a pencil; they all pass through the
same quartic locus F*_2 and n + 1 of them are cones, the vertices of
these n + 1 cones being the vertices of a simplex which is self-
conjugate in regard to all the quadrics of the pencil. But the
pencil of quadrics of N which pass through a point P on & includes
only n — 1 cones whose vertices are at points of # other than P ; the
cone whose vertex is P counts twice among the n + 1 cones of the
pencil. Moreover1 the base locus F*_2 of the pencil has a node at P,
and all the quadrics of the pencil have the same tangent prime CT at P.
This prime cr contains the vertices Ax, A2, . . . . . An_1oi those cones of
the pencil whose vertices are not at P. Every line which passes
through P and lies in vy lies on a quadric of N.

Since & is of order \n (n -\- 1) the prime cr meets & in the n
points P, Aiy A2, . . . . . An_1 and in \n(n— 1) further points
-^l> - ^ 2 J • • • • J %in (n-1)-

The cone of N whose vertex is at the point P of & will be denoted
by the symbol (P), and similarly for any other point of &.

§ 4. In order that a quadric should contain a line it must satisfy
three linear conditions, hence, since the quadrics of N have only
freedom 2, there is no quadric of N containing an arbitrary line of
[»]. But each quadric of N contains oo 2n~5 lines,2 so that there are
in all oo2"-3 of the oo 2"~2 lines of [n] which do lie on quadrics of N.
The lines of [»] which lie on quadrics of N therefore form a complex

1 For these statements cf. Segre : Mem. Ace. Torino (2), 36 (1884), 70. The pencil
of quadrics has the characteristic [211 1], the number of l's occurring in the
symbol being n — 1.

- Cf. Segre, loc. dt., p. 36.
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T\ This may also be defined as the complex of lines which are cut
in involution by the quadrics of N. The involution cut out on any
line of V by the quadrics of N has two double points, and these
double points are conjugate points in regard to every quadric of N;
hence we have a third definition of V as the complex of lines which
join pairs of points that are conjugate in regard to every quadric
of N.

I t is seen at once, for example by taking a section of the figure
by an arbitrary [3], that F is a cubic complex; the lines of F which
pass through a point 0 generate a cubic cone of n — 1 dimensions.
If however we consider those lines of F which pass through a point P
of # the cubic cone breaks up into the quadric cone (P) and the lines
which pass through P and lie in zs. I t follows that if a line of F
meets # in a point P and is not a generator of (P) then it must lie in
the prime vs associated with P . Now there are -j!n(n + l) lines
passing through an arbitrary point 0 of [n] which belong to F and
meet #; they are the lines common to the cubic cone generated by
the lines of V which pass through 0 and the two-dimensional cone of
order \n (n + 1) which projects # from 0. Of these i}n (n + 1) lines
n + 1 are generators of cones of N, since the pencil of quadrics of N
which pass through 0 includes n + 1 cones. Hence the remaining
\ (n + 1) (3n — 2) lines, although they meet #, are not generators of
cones of N and so lie in the primes at associated with their respective
intersections with #. Clearly no other points of # can give rise to
primes vs which pass through 0, hence there are | ( n + 1) (3n — 2) of
the primes VJ passing through an arbitrary point of [n\. We may say
that the primes — form a developable of class J (n + 1) (3w — 2). The
genus of the family of primes w is of course \ n (n — 1), the same as
the genus of 8.

§5. The quadrics of N form a doubly-infinite linear system ;
hence the polar primes of an arbitrary point 0 in regard to them also
form a doubly-infinite linear system and so have in common a space
[n — 3]. Every point of [n — 3] is conjugate to 0 in regard to every
quadric of N, so that we may speak of the space [n — 3] itself as the
space conjugate to 0. This space [n — 3] conjugate to 0 is determined
as the space common to the polar primes of 0 in regard to any three
quadrics of N which do not belong to the same pencil. The space
[n — 2] which joins 0 to its conjugate space is the tangent space
at 0 of the base locus F*_2 of the pencil of quadrics of N which pass
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through 0. 0 lies in the space conjugate to it when and only when
it lies on the base locus F*_3 common to all the quadrics of N.

Consider now the polar primes of a point P of # in regard to the
quadrics of N. The polar prime of P in regard to any quadric of N
which passes through P is ~> ; hence the polar prime of P in regard to
any quadric of N not passing through P meets ~> in a space [?t — 2]
through which the polar primes of P in regard to all the quadrics of
N must pass. The space conjugate to a point P of & is therefore not
an [n — 3] but an [n — 2]. Each prime passing through the [n — 2]
is the polar prime of P in regard to all the quadrics of a pencil.

Take now any one of the \n (n — l) points X in which zn meets &.
Since the line PX passes through P and lies in v> it belongs to F, and
is therefore cut in involution by the quadrics of N. The two double
points of this involution are P and X, since the line is not a generator
either of (P) or of (X). Wherefore each of the \n{n — 1) points X is
conjugate to P in regard to all the quadrics of N, so that all these
points X must lie in the [n — 2] conjugate to P. Hence the [n — 2]
conjugate to P meets & in \n (n — 1) points; it will therefore be called
a secant space of &, or, when its relation to P is relevant to the
discussion, the secant space conjugate to P .

There is no point P of & lying in its conjugate secant space; for
such a point P would have to lie in its polar prime in regard to any
quadric of N, and therefore on the base locus Ff(_3. But, if the net
N is a general net of quadrics, & does not meet F®_3.

I t has been remarked that a prime passing through the secant
space conjugate to P is the polar prime of P in regard to all the quadrics
of a pencil belonging to N. Corresponding to two primes through the
secant space conjugate to P there are two different pencils of quadrics;
these two pencils, since they both belong to the same net, have a
quadric in common, and the two primes are both polar primes of P in
regard to this quadric. The quadric must therefore be the cone (P)
itself. A prime through the secant space conjugate to P is therefore
the polar prime of P in regard to the quadrics of a pencil, one of the
w + 1 cones belonging to the pencil being (P). The prime is there-
fore one of the bounding primes of the common self-conjugate simplex
of all the quadrics of the pencil. Whence we have the following: any
prime passing through the secant space conjugate to P meets & in n
further points; these n points and P form a set of n + 1 points which are
vertices of cones of N belonging to the same pencil. The converse is
also true.
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§6. The cc x secant spaces, being in (1, 1) correspondence with
the points of &, form a family of genus \n (n — 1) and generate a
primal R. If the secant space conjugate to the point P of & meets &
in a point Q then P and Q are conjugate points in regard to all the
quadrics of N, and so the secant space conjugate to Q passes through
P; conversely, if a secant space passes through P the point of & to
which it is conjugate lies in the secant space conjugate to P. Hence
through any point of & there pass \n (n — 1) of its secant spaces, or.
the curve # is of multiplicity \n(n — 1) on the primal R.

The order of R is determined by an elementary application of
the principle of correspondence. Suppose R is of order v. There is
a (1, 1) correspondence between the points of the curve & of order
\n (n + 1) and the [n — 2]'s of the primal R of order v; the primes
which join the points of & to the corresponding [n — 2]'s of R are the
primes rs, and these we have seen to form a developable of class
\(n + 1) (3n — 2). Hence, since no point of # lies in the corre-
sponding [n — 2] of R,

\n (n + 1) + v = \ (n + 1) (3» - 2),

v = n2 — 1.

Hence the secant spaces of & generate a locus M^'Sj1. In three-
dimensional space this locus is the ruled surface i?| generated by the
trisecants of the Jacobian curve.

Any two secant spaces of & meet in an [n — 4], so that, since'
there are oo 2 pairs of secant spaces of &, there is a locus of dimension
n — 2 of points of R",'S^ which are common to two secant spaces of &;
in other words R^Sy has a double locus of dimension n — 2. Similarly
it has a triple locus of dimension n — 3, a quadruple locus of
dimension n — 4, and so on. The section of R^'Sy by an arbitrary
[3] is a ruled surface, the [3] meeting each secant space of & in a line-
the ruled surface is of order n2 — 1 and genus \n (n — 1). This ruled
surface has a double curve of order \{n + 1) (n — 2) (n2 + n — 3) on
which there are -J- (w2 — 5) (n + 1) (ns — n2 — 9n + 12) triple points.1

Hence the order of the double locus of RZ~S\ is \{n-\-\){n—2) (n2+n—3)
and the order of the triple locus is ^ (n2 —5)(n + 1) (n3 — ?i2 — 9n + 12).

1 A ruled surface of order N and genus P in [3] has a double curve of order
i(N-l)(N-2)-P, on which there are (iV-4){i(iVr-2)(iV-3)-P} triple points.
See Edge, The Theory of Ruled Surfaces (Cambridge, 1931), 31, and the references there
given.
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§7. Call the secant space conjugate to P, Vn-2; it meets # in
the \n (n — 1) points Xlt X2, . . . . -£$n(B_i). In [n] the polar space of
an [n — 2] in regard to a quadric is a line, unless the quadric be a
cone whose vertex lies in the [n — 2], in which case the polar space
is a plane; suppose then that •n1 is the polar plane of Vn_2 i n regard
to the cone {Xx). Since P is conjugate to Un_2 the polar prime of
every point of Un-2 in regard to (XJ passes through P, so that ^
passes through P. Now the polar prime of any point X other than
Xlt say of X2, in regard to (.X\) contains both 7ra and the secant
space conjugate to X2; hence 77X meets the secant space conjugate
to X2 in a line. Hence the secant spaces which are conjugate to the
\ (n + 1) {n — 2) points X2, X3, . . . . -STjH(n-i) aU meet the plane TTX in
lines through P. Wherefore we have the following. Through any
point P of & there %>ass \n (n — 1) secant spaces. If one of these secant
sjtaces is omitted the remaining \ (n + 1) (n — 2) are all met by the same
plane in lines through P. This plane is the polar plane of the secant
space conjugate to P in regard to that cone whose vertex is the point
of # to which the omitted secant space through P is conjugate.

We have thus a configuration of \n(n— 1) secant spaces and
\n(n — 1) planes passing through P . If we take a section of this by
an arbitrary prime not passing through P we obtain in the prime a
configuration of \n(n— 1) [n — 3]'s and \n{n—\) lines; each line
meets all but one of the [n — 3]'s. We have in fact the configuration
known as the " double-Jw (n — 1) " of lines and \n — 3]'s in [n — 1],

The plane TTX meets i? in the points P and Xx and only in these
points. For suppose that ^ contains a third point Y of &. Since
Y lies in TTX the polar prime of Y in regard to {Xx) contains Un_2; it
also contains the secant space conjugate to Y. Hence C7n_2. the secant
space conjugate to P, meets the secant space conjugate to Y in an
[n — 3]. But it is not in general true that there is a pair of secant
spaces of i? with an [n — 3] in common.

We have therefore the following construction for obtaining the
point of & which is conjugate to a given secant space U. Take any
intersection of U and #; through this point, P say, there pass
\{n + l)(n — 2) other secant spaces, and these are all met in lines by
a plane 77 through P. it has one intersection, other than P, with &,
and this other intersection is the point of & to which U is conjugate.
Since U meets & in \n{n — 1) points there are \n(n — 1) different ways
of passing from V to the point of & to which it is conjugate.
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§ 8. When the quadrics of N are represented by the points of a
plane a the cones of N are represented by the points of a curve Cn+1

of order n + 1, without multiple points, and of genus \n(n— 1).
The quadrics of any pencil belonging to N are represented by the
points of a line in a, the n + 1 intersections of the line with C'"+1

representing the n -+- 1 cones which belong to the pencil. In
particular, the quadrics of N which pass through a point P of # are
represented in a by the points of the tangent of C " T 1 at the point p
which represents (P)', i.e. at the point which corresponds to P in the
(1, 1) correspondence between # and Cn+1. The tangent of Cn+1 at
p meets it again in n — 1 further points ax, a2, .. . ., a,(_i; these points
correspond to the points Aj, A2, .. . .,An_1oi & which are vertices
of cones passing through P. I t will be remembered that the points
P, Alt A2, . . . . , An_1 all lie in the prime vs, the common tangent
prime at P of all the quadrics of the pencil.

The curve Cn+1 has 3 (n2 — 1) points of inflection, the tangent of
Cu+1 at any one of these points only having n — 2 further inter-
sections with the curve. Correspondingly we have 3 {n2 — 1) points /
on &; the pencil of quadrics of N which pass through a point I only
includes n — 2 cones whose vertices are not at / . This may be
regarded as a limiting case of the above, when one of the n — 1 points
A coincides with P. The quadrics of the pencil have stationary contact
at / , and the common tangent prime m of the quadrics at / contains
the tangent of # at / .

The number of tangents of & which lie in the primes VJ associated
with their respective points of contact can be obtained by the
principle of correspondence, if we remember that the order of the
ruled surface generated by the tangents of & is1

2 . \n (n + 1) + 2 . \n [n - 1) - 2 = 2 (n2 - 1).

For the primes v>, which form a developable of class \{n + l)(3n — 2),
are in (1, 1) correspondence with the tangents of &, which generate a
ruled surface of order 2(n2 — 1), and the locus of the points of inter-
section of corresponding primes and tangents is the curve &, of order
\n(n + 1). Hence, if i is the number of primes v> which contain the
corresponding tangents of #,

i (n + 1) (3n - 2) + 2 (n2 - 1) - i = \n (n + 1),
• = 3 (n2 - 1).

1 The order of the surface generated by the tangents of a curve of order v and genus
7r, in space of any number of dimensions, is 2V + 2TT — 2.
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But this is exactly the number of the points / . Hence the 3n2 —3
points of & at which quadrics of N have stationary contact, and these
points only, are such that the tangent of & lies in the associated prime zx.

§ 9. It follows from Pliicker's equations that the number of
bitangents of Cn+1 is \ (n — 1) (n - 2) (n + 1) (n + 4). Suppose tx and
t2 are the two points of contact of a bitangent of C"+1; then there
will be two points Tr and T2 of &• corresponding to them. The
points of the line tx t2 represent the quadrics of N belonging to a
pencil, and this pencil may be denned as consisting of the quadrics
of N which pass through Tx or else the quadrics of N which pass
through T2. All the quadrics of N which pass through either of
Tx or T2 pass also through the other. Wherefore two points of &
which correspond to the two points of contact of Cn+1 with a bitangent
are such that all the quadrics of N which pass through either of them
pass also through the other.

These pairs of points on &, corresponding to the pairs of points of
contact of the bitangents of Cn+1, can easily be identified. If # is
projected from an arbitrary [n — 3] on to a plane it becomes a plane
curve of order \n (n + 1) and genus \n\n — 1); the number of double
points of this plane curve is

This then is the number of chords of & which meet an arbitrary
[n — 3]; or the chords of & form a three-dimensional locus of order
i (n — 1) (ft — 2) (n + 1) (n -f- 4). The number of points in which this
locus meets the base locus F®_3 is therefore (n—1) (n—2) (n+1) (n+4).
Suppose now that Tj T2 is a chord of # which meets F®_3. Then this
chord lies on both the cones (Tx) and (T2) and therefore on all the
quadrics of the pencil determined by these two cones. Any quadric
which does not belong to this pencil and which yet belongs to N meets
the line Tx T2 in two points which must be base points of N, and
which therefore lie on F®_3. Hence any chord of & which meets Ffj_3

is a chord of F | _ 3 ; the number of these chords of & which are also
chords of F^_3 is |(w — 1) (n — 2) (n+1) (n+4). Since TXT2 is a
chord of F | _ 3 any quadric of N which contains either Tx or T2 must
contain the whole of the line Tx T2 and therefore the other point as
well. The chord joining the pair of points of & which correspond to the
two points of contact of any bitangent of Cn+1 is also a chord of Ffj_3, and
no other chords of & can meet F®_3.
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