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ABSTRACT. In this paper we evaluate the extent of freshwater reservoir effects (37 samples across 12 locations) and
present new data from various archaeological sites in the Eurasian Steppe. Together with a summary of previous
research on modern and archaeological samples, this provides the most up-to-date map of the freshwater reservoir
offsets in the region. The data confirm previous observations highlighting that FREs are widespread but highly
variable in the Eurasian Steppe in both modern and archaeological samples. Radiocarbon dates from organisms
consuming aquatic sources, including humans, dogs, bears, aquatic birds and terrestrial herbivores (such as elk
feeding on water plants), fish and aquatic mammals, as well as food crusts, could be misleading, but need to be
assessed on a case-by-case basis.
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INTRODUCTION

Freshwater reservoir effects (FREs) are increasingly acknowledged sources of offsets in
radiocarbon (14C) dates on human and some faunal remains. The nature of the effect is
well described in the literature (e.g., Keaveney and Reimer 2012; Wood et al. 2013;
Fernandes et al. 2016). Briefly, the FRE refers to the apparent, “older” age of samples
when part of the carbon in the diet of an individual comes from freshwater resources (such
as fish, waterfowl, etc.) with a reservoir offset compared to the 14C age of a
contemporaneous purely terrestrial sample obtaining its carbon from the atmosphere. FREs
vary geographically and over time and can vary considerable within what are ostensibly
single reservoirs, between and within species, and even within single organisms
(e.g., Kulkova et al. 2015; Schulting et al. 2022), and herein lies the major challenge for
chronological determinations and hence for the archaeological interpretations that rely on
temporal sequence.
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Over the past several decades, a number of studies have highlighted the presence of FREs in
various regions of Siberia and the Eurasian Steppe, featuring both modern fish and
archaeological samples (shell, human, fish, dog and others; summarized in Svyatko et al.
2017a; also Figure 3). Attempts have also been made to analyze the relationship between
diets and radiocarbon ages, and to develop regression and Bayesian models to calculate 14C
offsets using δ13C and δ15N values (Bronk Ramsey et al. 2014; Schulting et al. 2014, 2015,
2022). The analysis of modern aquatic fauna (Svyatko et al. 2017a, 2017b), as well as
alkalinity of water in local reservoirs (Keaveney and Reimer 2012), are informative proxies
to assess the extent of modern FREs; however, the values cannot necessarily be
extrapolated to prehistoric contexts as the extent of the offsets can change over time (e.g.,
Ascough et al. 2010), and these proxies do not account for particular aquatic resources in
past human or faunal diets.

Here, we evaluate the extent of the FRE associated with materials from various archaeological
sites from Siberia and the Eurasian Steppe, introduce new data, and present an up-to-date
summary of the existing FRE data in this region and beyond.

MATERIALS AND METHODS

In total, this study includes 12 locations across the Eurasian Steppe (Figure 3). The analyzed
materials represent groups of synchronous samples of purely terrestrial versus aquatic/mixed
origin. In cases where the contexts were disturbed (e.g., plundered), only specimens with
reliable associations were sampled. The samples (37 in total) include 14 human bone,
1 wood, 15 terrestrial faunal bone, 2 plant macrofossil and 5 fish bone/scale samples.

The sampled archaeological sites date to various periods of the Bronze and Early Iron
Ages. The sites are attributed to the Sintashta (21st–18th c. BC), Begazy-Dandybai
(2nd mil. BC–8th c. BC), Andronovo (20th–9th c. BC), Samus (15th–13th c. BC),
Bulan-Koba (2nd c. BC–5th c. AD), and Tasmola (7th–3rd c. BC) Cultures. The
description of the sites and their cultural affiliations are presented in detail in SI 1.

All samples were analyzed in the 14CHRONO Centre for Climate, the Environment and
Chronology (Queen’s University Belfast).

Sample Pretreatment

For bone samples, collagen extraction was based on the ultrafiltration method (Brown et al.
1988; Bronk Ramsey et al. 2004), which included the following steps: a) bone demineralization
in 2% HCl, followed by MilliQ® ultrapure water wash; b) gelatinization in pH=2 HCl at 58°C
for 16 hours; c) filtration, using ceramic filter holders, glass filter flasks and 1.2 μm glass
microfiber filters; d) ultrafiltration using Vivaspin® 15S ultrafilters with MWCO 30 kDa;
3000–3500 rpm for 30 min; and e) freeze-drying. The dried collagen was stored in a desiccator.

Acid-only pretreatment was used for fish scale samples. The samples were placed in clean
100 mL beakers and immersed in hydrochloric acid (4%, 30–50 mL), followed by deionised
water wash until neutral.

For the wood sample, a standard ABA procedure (Mook and Waterbolk 1985) was used.
This involves a 4% HCl wash at 80°C, a 2% NaOH wash and another 4% HCl wash at
80°C (1 h for each step), followed by a final rinse in deionized water. For plant macrofossil
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samples, acid-only pretreatment was used, which included 4%HCl wash at 80°C, and a rinse in
deionized water.

Stable Isotope Analysis

Bone collagen stable carbon and nitrogen isotopes were measured in duplicate on a Thermo
Delta V Isotope Ratio Mass Spectrometer coupled to a Thermo Flash 1112 Elemental
Analyzer peripheral. The measurement uncertainty (± 1SD) of δ13C and δ15N based on
6–10 replicates of seven archaeological bone collagen samples was 0.22‰ and 0.15‰
respectively. The reference standards used were IA-R041 L-Alanine, IAEA-N-2
Ammonium Sulphate, IA-R001 Wheat flour, IAEA-CH-6 Sucrose, and Nicotinamide.
Results are reported using the delta convention relative to international standards: VPDB
for δ13C and AIR for δ15N (Hoefs 2009). The results were calibrated using a regression
based on the measured and known values of the standards (cf. Coplen et al. 2006).

AMS 14C Dating

Prepared samples were sealed under vacuum in quartz tubes with an excess of CuO and
combusted at 850°C. The CO2 was converted to graphite on an iron catalyst using zinc or
by the hydrogen reduction method (Slota et al. 1987; Vogel et al 1984). The pressed
graphite “target” was then measured on a 0.5 MV National Electrostatics Compact AMS.
The sample 14C/12C ratio was background corrected and normalised to the HOXII
standard (SRM 4990C; National Institute of Standards and Technology). The 14C/12C ratio
corrected for isotopic fractionation using the AMS-measured δ13C, is equivalent to fraction
modern (F14C; Reimer et al. 2004). The 14C age and one-sigma error term were calculated
from F14C using the Libby half-life (5568 years) following the conventions of Stuiver and
Polach (1977). The statistical proximity of the paired dates was assessed using the Ward
and Wilson (1978) chi-squared test in CALIB 7.0.

Calculating the Freshwater Reservoir Offset (FRO)

Freshwater reservoir offsets were calculated as the difference in the 14C ages between the
terrestrial (faunal/wood) samples and aquatic/mixed (human/fish). FRO uncertainty was
calculated using σFRO=

�����������������
σ2
a � σ2

b

p
, where σa and σb are 14C age uncertainties for aquatic/mixed

and terrestrial samples. Dates that passed the chi-squared test were interpreted as showing
no FRO.

RESULTS AND DISCUSSION

Results

The collagen content of the bone samples varied between 1.3–19.7% (Table 1), meeting the
recommended minimum of 1% (van Klinken 1999). Atomic C:N ratios were all within the
accepted range of 2.9–3.6 (mean C:Natomic= 3.2 ± 0.1), indicating well-preserved collagen
(DeNiro 1985). The isotopic results and observed freshwater reservoir offsets are presented
in Table 1.

Stable Isotope Values

Stable isotope results (Figure 1) indicate predominately C3-based ecosystems for the sampled
sites of the Eurasian Steppe, as expected. Enrichment in both C and N isotopes can only be
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Table 1 AMS 14C dates, stable C and N isotope values, atomic C:N ratios and calculated FRO of the samples.

Site Lab ID Sample type 14C BP
FRO

(14C yr)
δ13C (‰)

VPDB

δ15N (‰)
AIR

C:
Nat

%
collagen

Southern Trans-Urals and Western Siberia
Kamennyi Ambar
Inner fortification
(excavation 8),
ditch, 140–145 cm

UBA-26185 Fish scales
(KA G1-F)

3754 ± 43 276 ± 56 –25.4 5.9 — n/a

UBA-26186 Plant macros
(KA G1-P)

3478 ± 36 — — — —

Rubbish layer, 200–220
cm

UBA-26187 Fish scales
(KA W6.1-4 F)

4060 ± 40 712 ± 54 –25.3 6.8 — n/a

UBA-26188 Plant macros
(KA W6.1-4 F)

3348 ± 36 — — — —

Utinka
Burial 1 UBA-32611 Human 3896 ± 41 143 ± 55 –18.8 11.7 3.1 16.1

UBA-32612 Sheep 3753 ± 37 –21.1 2.5 3.2 11.0
Eastern Siberia
Kharga i settlement

Midden UBA-28384 Fish 6198 ± 40 250 ± 57 –12.8 9.5 3.2 2.6
UBA-28385 Roe-deer 5948 ± 41 –20.6 6.1 3.3 4.0

Southern Siberia
Verkh-uimon

Kurgan 35 UBA-31087 Human 1601 ± 34 13 ± 48* –19.3 9.7 3.2 19.7
UBA-31088 Horse 1588 ± 34 –21.2 4.1 3.2 15.6

Kuraika
Kurgan 21 UBA-32616 Human 1827 ± 44 –210 ± 56 –18.1 12.7 3.2 17.3

UBA-32617 Sheep 2037 ± 34 –18.1 8.1 3.1 15.9
Kurgan 25 UBA-33252 Human 2335 ± 38 423 ± 51 –17.9 12.8 3.2 16.5

UBA-33253 Sheep 1912 ± 34 –17.7 8.2 3.3 9.7
Kazakhstan
Shat

Structure 1 UBA-27481 Human 3078 ± 48 142 ± 69 –17.5 13.8 3.3 4.0
UBA-27480 Horse 2936 ± 49 –21.1 6.4 3.4 2.8
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Table 1 (Continued )

Site Lab ID Sample type 14C BP
FRO

(14C yr)
δ13C (‰)

VPDB

δ15N (‰)
AIR

C:
Nat

%
collagen

Tegiszhol
Mound 27 UBA-27484 Human 2463 ± 47 1071 ± 64 –17.7 14.4 3.3 1.5

UBA-27483 Horse 1392 ± 44 — — — 1.3
Kenzhekol I
Grave 49 UBA-32609 Fish 3727 ± 38 338 ± 541 –21.9 11.5 3.3 5.1

UBA-32608 Human 3389 ± 38 –18.5 12.6 3.2 10.9
Bestamak
Pit 111 UBA-28980 Human 3451 ± 36 17 ± 51* –19.1 12.1 3.2 10.0

UBA-28981 Sheep 3434 ± 36 –20.0 7.3 3.2 13.5
Pit 123 UBA-28982 Human 3459 ± 37 –35 ± 52* –18.9 12.9 3.2 8.5

UBA-28983 Sheep 3494 ± 37 –19.4 7.8 3.2 13.8
Pit 130 UBA-28984 Human 3472 ± 37 68 ± 52* –18.5 13.7 3.2 7.5

UBA-28985 Herbivore 3404 ± 36 –19.1 7.2 3.2 3.4
Pit 140 UBA-28986 Human 3476 ± 39 38 ± 53* –19.0 10.4 3.2 7.4

UBA-28987 Horse 3438 ± 36 –19.9 7.8 3.2 4.2
Pit 170 UBA-28988 Human 3408 ± 38 –66 ± 55* –18.6 11.3 3.2 5.9

UBA-28989 Horse 3474 ± 39 –18.8 7.7 3.1 4.2
Halvai 3
Pit 3 UBA-28992 Human 3536 ± 37 1942 ± 50 –19.4 10.2 3.1 5.3

UBA-28993 Horse 1594 ± 34 –17.2 9.5 3.1 8.9
UBA-28994 Wood 3458 ± 32 78 ± 49* — — — —

Halvai 5
Pit 4 UBA-28998 Human 3461 ± 32 91 ± 45 –19.5 11.4 3.3 3.8

UBA-28999 Horse 3370 ± 31 –20.0 4.2 3.2 8.8
Kesken-Kuyuk kala
Element 286 (midden),
–15 cm

UBA-29369 Fish 1386 ± 29 263 ± 50 –22.4 6.9 3.2 6.3
UBA-29370 Herbivore 1123 ± 41 –16.6 12.1 3.2 14.9

Notes: The cultural affiliation of the sites and specific layers or burials the samples come from is presented in SI 1. The location map of the site is presented in Figure 3.
1This FRO was calculated between fish and human specimens, the latter possibly being not purely terrestrial sample.
*The dates are statistically indistinguishable at 95% level indicating no demonstrable FRO.
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observed in herbivores from the “marsh town” of Kesken-Kuyuk kala located in the delta
(the ancient channel) of the Syr-Darya River. A wide range of nitrogen isotopic values
(especially in herbivores) is likely to be the result of climatic variation, specifically aridity
(e.g., Hollund et al. 2010), as a number of sites are located in arid areas of Kazakhstan.
The positive linear correlation between δ13C and δ15N for both herbivores (R2= 0.730) and
humans (R2= 0.633) is likely related to a comparable gradient (Hollund et al. 2010;
Schulting and Richards 2016).

Archaeological fish values show great variability in δ15N and δ13C values, as is also the case for
modern freshwater fish (Dufour et al. 1999; Svyatko et al. 2017a). While the variability in δ15N
values is likely related primarily to the trophic level of the fish, δ13C values rather reflect the
isotopic ecology of the particular reservoirs (e.g., Dufour et al. 1999; France 1995; Hecky and
Hesslein 1995; Spies et al. 1989; Gu et al. 1996). It has been shown previously that freshwater
reservoirs in the Eurasian Steppe may produce a wide range of δ13C signatures
(e.g., Katzenberg and Weber 1999; Svyatko et al. 2017a) depending on specific physical
and biological factors, yet most reflect C3 ecologies. Our results show elevated δ13C for fish
from the settlements of Kharga I (δ13C= –12.8‰) in Eastern Siberia, which corresponds
with elevated δ13C data for modern fish from those areas (Svyatko et al. 2017a). The
isotopic values and FROs of archaeological and modern fish in Siberia and the Eurasian
Steppe are further discussed in detail elsewhere (Marchenko et al. 2021).

The mean δ13C and δ15N values for humans are –18.6 ± 1.3‰ and 12.1 ± 2.8‰, respectively;
and for herbivores they are –19.3 ± 3.0‰ and 7.1 ± 4.8‰, respectively. We have not
undertaken dietary modelling here because there is insufficient isotopic food source data for
any of the sites to make this a realistic exercise. In the absence of representative sample sets
of triple fish/human/terrestrial specimens, the human-herbivore pairs are not sufficient to
provide a regional FRO value but only a minimum. It is impossible to be definite about
the amount of fish consumption by humans based on stable isotope values alone, and,
therefore, the FRO resulting from terrestrial/human pairs must be considered as a
minimum value.

Figure 1 δ13C and δ15N values of the analyzed human and faunal samples (n=33).

382 S V Svyatko et al.

https://doi.org/10.1017/RDC.2022.21 Published online by Cambridge University Press

https://doi.org/10.1017/RDC.2022.21


Freshwater Reservoir Effects

The results overall indicate a frequent occurrence of FROs from archaeological sites across the
Eurasian Steppe, both for faunal and human samples. However, they are extremely variable,
with the largest offset values reaching 1071 ± 64 14C years (human sample, site of Tegiszhol,
Kazakhstan). An even larger FRO of 1942 ± 50 14C years, detected in pit 3 at Halvai 3, is likely
the result of disturbance of the burial at a later period and intrusion of the animal bone. The
14C date for the wood sample from the same burial is similar to the date from the human sample
which indicates an absence of an FRO within the 2σFRO range (78 ± 49), however the dates of
paired samples fromHalvai 5 are statistically different indicating a potential, albeit small, FRO
(FRO=91 ± 45).

Negative FRO values that are within the 2σFRO range, such as those from Bestamak, also
indicate the absence of a FRO. The negative FRO values that are larger than 2σFRO

indicate that terrestrial samples are older than those containing an aquatic component,
which is not theoretically possible if the pairs are contemporaneous. These sample pairs
need detailed consideration. This concerns a pair from the site of Kuraika (kurgan 21) in
the Altai Mountains, where sheep bone appears to be 210 ± 56 14C years older than
associated human sample. The graves had apparently not been disturbed (see SI 1). At the
moment it is not clear why the 14C date for the terrestrial sample is older than that of
human here, but unrecognized disturbance, or the inclusion of residual material from an
earlier grave or settlement, would seem the most likely explanations.

The FROs for archaeological fish vary between 250 ± 57 and 712 ± 54 14C years, with the
highest value detected for the site of Kamennyi Ambar, where a measurement on another
sample only showed a FRO of 276 ± 56, and underlines the differences that can occur even
within the same site. There is often inconsistency in FROs between modern and
archaeological fish samples within single areas. For example, within the Kharga I area, the
FRO in archaeological fish is 250 14C years while the offset is only 15 14C years in modern
fish from the associated lake (Figure 3), although we cannot rule out the possibility that
the archaeological fish originated in a different reservoir. It is also possible that the Kharga
basin itself exhibits variable reservoir effects (cf. Fernandes et al. 2015, tab. 4), or that the
FRO has changed over time (cf. Ascough et al. 2010).

Logically, FRO values must be lower in humans than in the fish being consumed, as the extent
of the human FROs depends on the proportion of fish in the diet. The maximal offset for a
human sample determined within this study is 1071 ± 64 14C years (Tegiszhol,
Kazakhstan), excluding the pair from Halvai 3 pit 3 discussed above. The results also
indicate a moderate positive linear correlation between the size of FROs and both δ13C
(R2= 0.381) and δ15N (R2= 0.324; Figure 2) for the human samples from this study,
although the regressions are heavily weighted by the results from the undisturbed burial
from Tegiszhol, Kazakhstan.

Yet, the major implication here is that the human isotopic values cannot reliably
indicate the presence or absence of FROs across such a broad region. Neither does the
presence of a FRO in associated archaeological or modern fish necessarily indicate the
presence of the offsets in humans, since fish may not have been consumed to any great
extent (e.g., 13 14C years in human from Verkh-Uimon versus 578 14C years in local
modern fish from the Katun River).
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SUMMARY

In recent decades, a number of freshwater radiocarbon offsets have been reported for various
modern samples and archaeological sites of Siberia and the Eurasian Steppe region. Plotting
our results together with existing FRO data for Siberia and the Eurasian Steppe (Figure 3),
several observations can be made:

• FROs are common but highly variable across the Eurasian Steppe in both modern and
archaeological samples including humans. Radiocarbon dates from individuals
consuming aquatic sources, such as humans, dogs, bears, beavers, certain birds and
terrestrial herbivores (such as elk Alces alces feeding on water plants; e.g., Philippsen
2019), fish and aquatic mammals, as well as food crusts (e.g., Hart et al. 2018), could
be misleading;

• FROs between modern and archaeological samples are often inconsistent within single
areas and even within sites, especially in fish;

• the presence of FROs in local archaeological or modern fish does not necessarily imply the
presence of an offset in associated humans, i.e., fish or other aquatic resources do not
always feature significantly in the diet;

• a weak positive relationship has been found between FROs and δ13C or δ15N values of
human samples across the region.

From the outlined scenario, it is clear that, when using freshwater/mixed resources for
chronological reconstructions, the presence and the variability of FREs need to be explored
in depth in each individual area and for each period as the hydrology or carbon sources
could change (Schulting et al. 2015). The latter could be related to a number of factors,
such as melting of permafrosts releasing old 14C-depleted carbon into the reservoir
(Schulting et al. 2015), geothermal activity (e.g., Ascough et al. 2010), or even changes in
the hydrological system of an area (e.g., Marchenko et al. 2021). Bearing this in mind is
particularly important for archaeologists because, as mentioned earlier, human remains are
very often sampled for 14C dating, and without clear understanding of local FREs
chronological reconstructions based on such dates may be unreliable. Without systematic
research into the local food chain and isotopic baseline, it is very difficult to predict the
extent (or even the presence) of a potential offset in human samples solely from δ13C and
δ15N values. This would be especially the case when associated fish isotopic values are close
to those for terrestrial fauna, in which case the consumption of fish would be isotopically

Figure 2 Human δ13C and δ15N plotted against their FRO values. Note that the pair from Halvai 3, and the pair
from Kuraika (kurgan 21) with significant negative FRO values were removed, as this would be theoretically
impossible.
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Figure 3 Map of maximal FROs in 14C years for modern (in blue) and maximal observed FROs in archaeological
(in red for humans and black for other) samples in Siberia and the Eurasian Steppe. Numbers 1–11 are the sites
sampled for current study. Locations presented are approximate. For exact locations see the source studies. 1.
Kamennyi Ambar, fish (present study); 2. Utinka, human (present study); 3. Kharga I settlement, fish (present
study); 4. Verkh-Uimon, human (present study); 5. Kuraika, human (present study); 6. Shat, human (present
study); 7. Tegiszhol, human (present study); 8. Kenzhekol 1, fish (present study); 9. Bestamak, human (present
study); 10. Halvai, human (present study); 11. Kesken-Kuyuk kala, fish (present study); 12. Karasuk Bay,
modern fish (Svyatko et al. 2017b); 13. Abakan 8, human (Svyatko et al. 2017b); 14. Kharga Lake, modern
fish (Svyatko et al. 2017a); 15. Kyzylkoi River, modern fish (Svyatko et al. 2017a); 16. Shat River, modern fish
(Svyatko et al. 2017a); 17. Nura River, modern fish (Svyatko et al. 2017a); 18. Syr-Darya River, modern fish
(Svyatko et al. 2017a); 19. Perviy Mezhelik 1, human (Svyatko et al. 2017c); 20. Yenisei River, modern
fish (Svyatko et al. 2017b); 21. Edarma River, modern fish (Svyatko et al. 2017a); 22. Chuya River, modern
fish (Svyatko et al. 2017a); 23. Katun River, modern fish (Svyatko et al. 2017a); 24. Lena River, modern fish
(Schulting et al. 2015); 25. Deed-Khulsun Lake, modern fish (van der Plicht et al. 2016); 26. Volga River,
modern fish (van der Plicht et al. 2016); 27. Tsimlyansk city, modern algae (van der Plicht et al. 2016); 28.
Serteya II and Serteyka River, food crusts, modern fish, aquatic plant (Kulkova et al. 2015); 29. Podkumok
River, modern fish, aquatic plant matter and water HCO3 (Higham et al. 2010); 30. Tyuleniy Island, Sulak
River mouth, seal, shell (Olsson 1980; Kuzmin et al. 2007); 31. Kuzhetpes Island, shell (Kuzmin et al. 2007);
32. Ust’-Polui, fish, human (Losey et al. 2018); 33. Mangazeya, fish (Kuzmin et al. 2020); 34. Sagan-Zaba II,
seal (Nomokonova et al. 2013); 35. Shamanka II, human (Bronk Ramsey et al. 2014); 36. Lokomotiv, human
(Schulting et al. 2014); 37. Ust’-Ida, human (Schulting et al. 2014); 38. Kurma XI, human (Schulting et al.
2014); 39. Khuzhir-Nuge XIV, human (Schulting et al. 2014); 40. Popovskii Lug 2, human (Schulting et al.
2015); 41. Turuka, human (Schulting et al. 2015); 42. Zakuta, human (Schulting et al. 2015); 43. Makrushino,
human (Schulting et al. 2015); 44. Ust’ Iamnaia, human (Schulting et al. 2015); 45. Starobelsk-II, shell
(Motuzaite-Matuzeviciute et al. 2015); 46. Novoselovka-III, shell (Motuzaite-Matuzeviciute et al. 2015); 47.
Lebyazhinka V, human, fish (Shishlina et al. 2018); 48. Khvalynsk II, human (Shishlina et al. 2014); 49.
Peschany V, human (Shishlina et al. 2014); 50. Shakhaevskaya, fish (Shishlina et al. 2012); 51. Dereivka 1, fish,
human (Lillie et al. 2009); 52. Yasinovatka, fish, human (Lillie et al. 2009); 53. Klin-Yar, human (Higham
et al. 2010); 54. Aygurskiy, human (Hollund et al. 2010); 55. Shauke, human, fish (Svyatko et al. 2015); 56.
Minino, human (Wood et al. 2013); 57. Cheleken Peninsula, shell (Kuzmin et al. 2007); 58. Garabogaz Spit,
shell (Kuzmin et al. 2007); 59. Preobrazhenka 6, fish (Marchenko et al. 2015); 60. Tartas R., fish (Marchenko
et al. 2021); 61. Lozhka L., fish (Marchenko et al. 2021); 62. Ob R., fish (Marchenko et al. 2021); 63. Kama
R., fish (Marchenko et al. 2021). *The values are statistically non-significant at 95% confidence, indicating the
lack of any detectable FRO.
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invisible in humans. The application of other isotopes (δ34S, δ2H), as well as analysis of
individual amino acids might help assessing the role of fish in the diet (e.g., Webb et al.
2015; Drucker et al. 2018; Schulting et al. 2018). Yet, even when the isotopic values suggest
the consumption of freshwater resources, this would not necessarily imply the existence of
FROs in human samples.
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