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Abstract
In this article, we establish an explicit correspondence between kissing reflection groups and critically fixed
anti-rational maps. The correspondence, which is expressed using simple planar graphs, has several dynamical
consequences. As an application of this correspondence, we give complete answers to geometric mating problems
for critically fixed anti-rational maps.
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1. Introduction

Ever since Sullivan’s translation of Ahlfors’ finiteness theorem into a solution of a long-standing open
problem on wandering domains in the 1980s [43], many more connections between the theory of
Kleinian groups and the study of dynamics of rational functions on Ĉ have been discovered. These
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analogies between the two branches of conformal dynamics, which are commonly known as Sullivan’s
dictionary, not only provide a conceptual framework for understanding the connections but motivate
research in each field as well.

In this article, we extend this dictionary by establishing a strikingly explicit correspondence between

◦ Kissing reflection groups: groups generated by reflections along the circles of finite circle packings
P (see Section 3) and

◦ Critically fixed anti-rational maps: proper anti-holomorphic self-maps of Ĉ with all critical points
fixed (see Section 4).

This correspondence can be expressed by a combinatorial model: a simple plane graph Γ. Throughout
this article, a plane graph will mean a planar graph together with an embedding in Ĉ. We say that
two plane graphs are isomorphic if the underlying graph isomorphism is induced by an orientation-
preserving homeomorphism of Ĉ. A graph Γ is said to be k-connected if Γ contains more than k vertices
and remains connected if any 𝑘 − 1 vertices and their corresponding incident edges are removed. Our
first result shows the following.

Theorem 1.1. The following three sets are in natural bijective correspondence:

◦ {2-connected simple plane graphs Γ with 𝑑 + 1 vertices up to isomorphism of plane graphs},
◦ {Kissing reflection groups G of rank 𝑑 + 1 with connected limit set up to QC conjugacy},
◦ {Critically fixed anti-rational maps R of degree d up to Möbius conjugacy}.

Moreover, if𝐺Γ andRΓ correspond to the same plane graph Γ, then the limit setΛ(𝐺Γ) is homeomorphic
to the Julia set J(RΓ) via a dynamically natural map.

The correspondence between graphs and kissing reflection groups comes from the well-known circle
packing theorem (see Theorem 2.1): given a kissing reflection group G with corresponding circle
packing P, the plane graph Γ associated to G in Theorem 1.1 is the contact graph of the circle packing
P. The 2-connectedness condition for Γ is equivalent to the connectedness condition for the limit set of
G (see Figure 1.1).

On the other hand, given a critically fixed anti-rational map R, we consider the union 𝒯 of all fixed
internal rays in the invariant Fatou components (each of which necessarily contains a fixed critical point
of R), known as the Tischler graph (cf. [46]). Roughly speaking, Tischler graphs are to critically fixed
(anti-)rational maps what Hubbard trees are to postcritically finite (anti-)polynomials: both are forward
invariant graphs containing the postcritical points. We show that the planar dual of 𝒯 is a 2-connected
simple plane graph. The plane graph Γ we associate to R in Theorem 1.1 is the planar dual 𝒯∨ of 𝒯
(see Figure 1.1).

In the special case when Γ is the planar dual of a triangulation of Ĉ, the existence of the critically
fixed anti-rational map RΓ was proved in [24].

We remark that the correspondence between 𝐺Γ and RΓ through the plane graph Γ is dynamically
natural. Indeed, we associate, following [24, §4], a map NΓ to the group 𝐺Γ with the properties that NΓ

and 𝐺Γ have the same grand orbits (cf. [33, 2]) and the homeomorphism between Λ(𝐺Γ) and J(RΓ)
conjugates NΓ to RΓ. See Subsection 4.3 for more details.

The asymmetry between the QC conjugacies on the group side and Möbius conjugacies on the anti-
rational map side is artificial. Since the dynamical correspondence is between the limit set and the
Julia set, Theorem 1.1 yields a bijection between quasiconformal conjugacy classes of kissing reflection
groups (of rank 𝑑 + 1) with connected limit set and hyperbolic components having critically fixed anti-
rational maps (of degree d) as centres.

The geometric mating problems

In complex dynamics, polynomial mating is an operation first introduced by Douady in [5] that takes two
suitable polynomials 𝑃1 and 𝑃2 and constructs a richer dynamical system by carefully pasting together
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Figure 1.1. An example of the correspondence.
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the boundaries of their filled Julia sets to obtain a copy of the Riemann sphere, together with a rational
map R from this sphere to itself (see Definition 4.16 for the precise formulation). It is natural and
important to understand which pairs of polynomials can be mated and which rational maps are matings
of two polynomials. The analogous question in the Kleinian group setting can be formulated in terms
of Cannon–Thurston maps for degenerations in the quasi-Fuchsian space (see [14] and Subsection 3.3
for related discussions). The correspondence in Theorem 1.1 allows us to explicitly characterise kissing
reflection groups and critically fixed anti-rational maps that arise as matings.

We say that a simple plane graph Γ with n vertices is outerplanar if it has a face with all n vertices
on its boundary. It is said to be Hamiltonian if there exists a Hamiltonian cycle; that is, a closed path
visiting every vertex exactly once.

Theorem 1.2. Let Γ be a 2-connected simple plane graph. Let 𝐺Γ and RΓ be a kissing reflection group
and a critically fixed anti-rational map associated with Γ. Then the following hold true:

◦ Γ is outerplanar ⇔ RΓ is a critically fixed anti-polynomial ⇔ 𝐺Γ is a function group.
◦ Γ is Hamiltonian ⇔ RΓ is a mating of two polynomials ⇔ 𝐺Γ is a mating of two function groups
⇔ 𝐺Γ is in the closure of the quasiconformal deformation space of the regular ideal polygon reflection
group.

It is known that a rational map may arise as the geometric mating of more than one pair of polynomials
(in other words, the decomposition/unmating of a rational map into a pair of polynomials is not
necessarily unique). This phenomenon was first observed in [48] and is referred to as shared matings
(see [39]). In our setting, we actually prove that each Hamiltonian cycle of Γ gives an unmating of
RΓ into two anti-polynomials. Thus, we get many examples of shared matings coming from different
Hamiltonian cycles in the associated graphs.

We now address the converse question of mateability in terms of laminations. Let us first note that
the question of mateability for kissing reflection groups can be answered using Thurston’s double limit
theorem and the hyperbolisation theorem. In the reflection group setting, possible degenerations in the
quasi-Fuchsian space (of the regular ideal polygon reflection group) are listed by a pair of geodesic
laminations on the two conformal boundaries which are invariant under some orientation-reversing
involution 𝜎 (see Subsection 3.3). All of these 𝜎-invariant laminations turn out to be multicurves on the
associated conformal boundaries. A pair of simple closed curves is said to be parallel if they are isotopic
under the natural orientation-reversing identification of the two conformal boundary components. A pair
of laminations is said to be nonparallel if no two components are parallel. If we lift a multicurve to the
universal cover, we get two invariant laminations on the circle. Then they are are nonparallel if and only
if the two laminations share no common leaf under the natural identification of the two copies of the
circle. Thurston’s hyperbolisation theorem asserts that in our setting, the degeneration along a pair of
laminations exists if and only if this pair is nonparallel.

For a marked anti-polynomial, we can also associate a lamination via the Bötthcher coordinate at
infinity. As before, we say a pair of (anti-polynomial) laminations is nonparallel if they share no common
leaf under the natural identification of the two copies of the circle. When we glue two filled Julia sets
using the corresponding laminations, the resulting topological space may not be a 2-sphere. We call
this a Moore obstruction. We prove the following more general mateability theorem for postcritically
finite anti-polynomials, which in particular answers the question of mateability of two critically fixed
anti-polynomials.

Theorem 1.3. Let 𝑃1 and 𝑃2 be two marked anti-polynomials of equal degree 𝑑 ≥ 2, where 𝑃1 is
critically fixed and 𝑃2 is postcritically finite, hyperbolic. Then there is an anti-rational map R that is
the geometric mating of 𝑃1 and 𝑃2 if and only if there is no Moore obstruction.

Consequently, if both 𝑃1 and 𝑃2 are critically fixed, then they are geometrically mateable if and only
if the corresponding laminations are nonparallel.
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Figure 1.2. Critically fixed anti-rational maps associated to Platonic solids. The Fatou components are
coloured according to their grand orbit. The Tischler graph 𝒯, which is the planar dual of Γ, is visible
in the figures by connecting the centres of critical fixed Fatou components.

Acylindrical manifolds and gasket sets

A circle packing is a connected collection of (oriented) circles in Ĉ with disjoint interiors. We say that
a closed set Λ is a round gasket if

◦ Λ is the closure of some infinite circle packing; and
◦ the complement of Λ is a union of round disks which is dense in Ĉ.

We will call a homeomorphic copy of a round gasket a gasket.
Many examples of kissing reflection groups and critically fixed anti-rational maps have gasket limit

sets and Julia sets (see Figure 1.2). The correspondence allows us to classify all of these examples (cf.
[17, Theorem 28] and [16]).

Theorem 1.4. Let Γ be a 2-connected simple plane graph. Then
𝐺Γ has gasket limit set ⇐⇒ RΓ has gasket Julia set ⇐⇒ Γ is 3-connected.

The 3-connectedness for the graph Γ also has a characterisation purely in terms of the inherent
structure of the hyperbolic 3-manifold associated with 𝐺Γ. Given a kissing reflection group 𝐺Γ, the
index 2 subgroup 𝐺Γ consisting of orientation-preserving elements is a Kleinian group. We say that 𝐺Γ

is acylindrical if the hyperbolic 3-manifold for 𝐺Γ is acylindrical (see Subsection 3.2 for the precise
definitions). We show the following.

Theorem 1.5. Let Γ be a 2-connected simple plane graph. Then
𝐺Γ is acylindrical ⇐⇒ Γ is 3-connected.
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Parameter space implications of the dictionary

We now briefly mention some natural questions regarding parameter spaces of anti-rational maps raised
by the aforementioned dictionary between kissing reflection groups and critically fixed anti-rational
maps.

Acylindrical manifolds play an important role in 3-dimensional geometry and topology. Relevant to
our discussion, Thurston proved that the deformation space of an acylindrical 3-manifold is bounded
[45] (this is famously known as Thurston’s compactness theorem). The analogue of deformation spaces
in holomorphic dynamics is hyperbolic components. The analogy established in Theorems 1.4 and
1.5 leads one to ask whether there is a counterpart of Thurston’s compactness theorem for hyperbolic
components of critically fixed anti-rational maps with gasket Julia sets (see [29, Question 5.3] for the
corresponding question in the convex cocompact setting). In a forthcoming paper, a suitably interpreted
boundedness result will be proved for the hyperbolic components under consideration [23].

In [13], Hatcher and Thurston studied the topology of the moduli space of marked circle packings
with n circles in C. In particular, they showed that the map that sends a marked circle packing to the
centres of the circles yields a homotopy equivalence between the moduli space of marked circle packings
and the configuration space of n marked points in C. Motivated by this statement, one may ask whether
the union of the closures of the hyperbolic components of degree d critically fixed anti-rational maps
have a nontrivial topology. This question will be answered affirmatively in a future work, drawing exact
parallels between contact structures of quasiconformal deformation spaces of kissing reflection groups
and the corresponding hyperbolic component closures [23].

We now summarise these correspondences in the following table.1

Simple plane graph Kleinian groups Complex dynamics

Connected Kissing reflection group –
2-connected Connected limit set Critically fixed anti-rational map
3-connected/polyhedral Gasket limit set/acylindrical/bounded QC

deformation space
Gasket Julia set/bounded pared deformation space

Outerplanar Function kissing reflection group Critically fixed anti-polynomial
Hamiltonian Closure of quasi-Fuchsian space Mating of two anti-polynomials
A marked Hamiltonian cycle A pair of nonparallel multicurves A pair of nonparallel anti-polynomial laminations
A graph Γ1 < Γ2 The QC deformation space

QC(Γ2) ⊆ 𝜕QC(Γ1)
The hyperbolic component HΓ1 bifurcates to HΓ2

Notes and references

Aspects of Sullivan’s dictionary were already anticipated by Fatou [8, p. 22]. Part of the correspon-
dence in Theorem 1.1 was recently established in [24] where the Tischler graphs were assumed to be
triangulations. A classification of critically fixed anti-rational maps has also been obtained in [9]. There
is also a connection between Kleinian reflection groups, anti-rational maps and Schwarz reflections of
quadrature domains explained in [21, 24, 19, 20]. In the holomorphic setting, critically fixed rational
maps have been studied in [4, 11].

Many critically fixed anti-rational maps have large symmetry groups. The examples corresponding
to the five platonic solids are listed in Figure 1.2. The counterparts in the holomorphic setting were
constructed in [7] (see also [3, 12]).

The connections between number-theoretic problems for circle packings and equidistribution results
for Kleinian groups can be found in [18, 34, 17].

1Here we have also included the parameter space implications, which will be studied in a subsequent paper.
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Some questions

The dictionary between kissing reflection groups and critically fixed anti-rational maps raises some
natural questions. Let us fix a 2-connected simple plane graph Γ.

◦ Although the limit and Julia sets Λ(𝐺Γ) and J(RΓ) are homeomorphic, the dynamically natural
homeomorphism is not a quasisymmetry because it sends parabolic fixed points to repelling ones. In
fact, we believe that there is no quasiconformal homeomorphism of the sphere carrying one to the
other. In the case when Γ is 3-connected, this follows from the observation that the boundaries of
two components of the domain of discontinuity of 𝐺Γ touch at a cusp (with zero angle), while the
boundaries of two Fatou components of RΓ touch at a repelling (pre-) fixed point (with a positive
angle). However, in general, we do not know how to rule out the existence of ‘exotic’ quasiconformal
homeomorphisms between Λ(𝐺Γ) and J(RΓ). Moreover, since the quasisymmetry group of a fractal
is a quasiconformal invariant, it will be interesting to know the quasisymmetry groups of Λ(𝐺Γ) and
J(RΓ). Note that according to [24], the quasisymmetry groups of these two fractals are isomorphic
when the dual of Γ is an unreduced triangulation.

◦ Our proof of the existence of a homeomorphism between Λ(𝐺Γ) and J(RΓ) only makes use of the
conformal dynamics of the group and the anti-rational map on Ĉ. One would like to know whether
there is a direct 3-dimensional interpretation of this result.

Structure of the article

We collect various known circle packing theorems in Section 2. Based on this, we prove the connection
between kissing reflection groups and simple plane graphs in Section 3. In particular, the group part of
Theorem 1.1, Theorem 1.2, Theorem 1.4 and Theorem 1.5 is proved in Proposition 3.4, Propositions
3.18, 3.20, 3.21, Proposition 3.10 and Proposition 3.6, respectively.

Critically fixed anti-rational maps are studied in Section 4. The anti-rational map part of Theorem 1.1
is proved in Proposition 4.10. Once this is established, the anti-rational map part of Theorem 1.2 and
Theorem 1.4 follow from their group counterparts as explained in Corollary 4.17. Theorem 1.3 is proved
in Proposition 4.23 and Corollary 4.24.

2. Circle Packings

In this article, a circle packing P is a connected finite collection of (oriented) circles in Ĉ with disjoint
interiors. Unless stated otherwise, the circle packings in this article are assumed to contain at least three
circles. The combinatorics of configuration of a circle packing can be described by its contact graph
Γ: we associate a vertex to each circle and two vertices are connected by an edge if and only if the two
associated circles intersect. The embedding of the circles in Ĉ determines the isomorphism class of its
contact graph as a plane graph. It can also be checked easily that the contact graph of a circle packing
is simple. This turns out to be the only constraint for the graph (See [44, Chapter 13]).

Theorem 2.1. (Circle Packing Theorem). Every connected simple plane graph is isomorphic to the
contact graph of some circle packing.

The definition of contact graphs can be easily generalised to an infinite collection of circles with
disjoint interiors. In this article, an infinite circle packing P is an infinite collection of (oriented) circles
in Ĉ with disjoint interiors, whose contact graph is connected.

k-connected graphs

A graph Γ is said to be k-connected if Γ contains more than k vertices and remains connected if any
𝑘 − 1 vertices and their corresponding incident edges are removed. A graph is Γ is said to be polyhedral
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if Γ is the 1-skeleton of a convex polyhedron. According to Steinitz’s theorem, a graph is polyhedral if
and only if it is 3-connected and planar.

Given a polyhedral graph, we have a stronger version of the circle packing theorem [40] (cf. midsphere
for canonical polyhedron).

Theorem 2.2. (Circle Packing Theorem for polyhedral graphs). Suppose Γ is a polyhedral graph;
then there is a pair of circle packings whose contact graphs are isomorphic to Γ and its planar dual.
Moreover, the two circle packings intersect orthogonally at their points of tangency.

This pair of circle packings is unique up to Möbius transformations.

Marked contact graphs

In many situations, it is better to work with a marking on the graph as well as the circle packing. A
marking of a graph Γ is a choice of the graph isomorphism

𝜙 : 𝒢 −→ Γ,

where 𝒢 is the underlying abstract graph of Γ. We will refer to the pair (Γ, 𝜙) as a marked
graph.

Given two marked plane graphs (Γ1, 𝜙1) and (Γ2, 𝜙2) with the same underlying abstract graph𝒢, we
say that they are equivalent if 𝜙2 ◦ 𝜙

−1
1 : Γ1 −→ Γ2 is an isomorphism of plane graphs.

Similarly, a circle packing P is said to be marked if the associated contact graph is marked.

3. Kissing Reflection Groups

Let Γ be a marked connected simple plane graph. By the circle packing theorem, Γ is (isomorphic to)
the contact graph of some marked circle packing

P = {𝐶1, . . . , 𝐶𝑛}.

We define the kissing reflection group associated to this circle packing P as

𝐺P := 〈𝑔1, . . . , 𝑔𝑛〉,

where 𝑔𝑖 is the reflection along the circle 𝐶𝑖 .
We denote the group of all Möbius automorphisms of Ĉ by Aut+(Ĉ) and the group of all Möbius and

anti-Möbius automorphisms of Ĉ by Aut±(Ĉ). Note that since a kissing reflection group is a discrete
subgroup of Aut±(Ĉ), definitions of limit set and domain of discontinuity can be easily extended
to kissing reflection groups. We shall use 𝐺P to denote the index 2 subgroup of 𝐺P consisting of
orientation-preserving elements. Note that 𝐺P lies on the boundary of Schottky groups.

We remark that if P′ is another circle packing realising Γ, since the graph Γ is marked, there is a
canonical identification of the circle packing P′ with P. This gives a canonical isomorphism between
the kissing reflection groups 𝐺P′ and 𝐺P, which is induced by a quasiconformal map. We refer to Γ as
the contact graph associated to 𝐺P.

3.1. Limit set and domain of discontinuity of kissing reflection groups

Let P = {𝐶1, . . . , 𝐶𝑛} be a marked circle packing and 𝐷𝑖 be the associated open disks for 𝐶𝑖 . Let P be
the set consisting of points of tangency for the circle packing P. Let

Π = Ĉ \

(
𝑛⋃
𝑖=1

𝐷𝑖 ∪ 𝑃

)
.
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Then Π is a fundamental domain of the action of 𝐺P on the domain of discontinuity Ω(𝐺P). Denote
Π =

⋃𝑘
𝑖=1 Π𝑖 where Π𝑖 is a component of Π. Note that when the limit set of 𝐺P is connected, each

component of the domain of discontinuity is simply connected (that is, a conformal disk) and each
component Π𝑖 is a closed ideal polygon in the corresponding component of the domain of discontinuity
bounded by arcs of finitely many circles in the circle packing.

Since 𝐺P is a free product of finitely many copies of Z/2Z, each element 𝑔 ∈ 𝐺P admits a shortest
expression 𝑔 = 𝑔𝑖1 . . . 𝑔𝑖𝑙 (𝑖𝑟 ≠ 𝑖𝑟+1, for 𝑟 ∈ {1, · · · , 𝑙 − 1}) with respect to the standard generating set
𝑆 = {𝑔1, . . . , 𝑔𝑛}. The integer l is called the length of the group element g, thought of as a word in terms
of the generators.

The following lemma follows directly by induction.

Lemma 3.1. Let 𝑔 = 𝑔𝑖1 . . . 𝑔𝑖𝑙 be an element of length l, then 𝑔 · Π ⊆ 𝐷𝑖1 .

We set Π1 :=
⋃𝑛
𝑖=1 𝑔𝑖 · Π and Π 𝑗+1 =

⋃𝑛
𝑖=1 𝑔𝑖 · (Π

𝑗 \ 𝐷𝑖). For consistency, we also set Π0 := Π. We
call Π𝑙 the tiling of level l. The following lemma justifies this terminology.
Lemma 3.2.

Π𝑙 =
⋃
|𝑔 |=𝑙

𝑔 · Π.

Proof. We will prove this by induction. The base case is satisfied by the definition of Π1. Assume
that Π 𝑗 =

⋃
|𝑔 |= 𝑗 𝑔 · Π. Let 𝑔 = 𝑔𝑖1𝑔𝑖2 . . . 𝑔𝑖 𝑗+1 be of length 𝑗 + 1. Note that 𝑖1 ≠ 𝑖2. By Lemma 3.1,

𝑔𝑖2𝑔𝑖3 . . . 𝑔𝑖 𝑗+1 · Π does not intersect 𝐷𝑖1 ; thus, 𝑔 · Π ⊆ 𝑔𝑖1 · (Π
𝑗 \ 𝐷𝑖1). So

⋃
|𝑔 |= 𝑗+1 𝑔 · Π ⊆ Π 𝑗+1. The

reverse inclusion can be proved similarly. �

Since the domain of discontinuity is the union of tiles of all levels, Lemma 3.2 implies that

Ω(𝐺P) =
⋃
𝑔∈𝐺P

𝑔 · Π =
∞⋃
𝑖=0

Π𝑖 .

Similarly, we set D𝑖 = Ĉ \
⋃𝑖
𝑗=0 Π

𝑗 . We remark that D𝑖 is neither open nor closed: it is a finite union
of open disks together with the orbit of P under the group elements of length up to i on the boundaries
of these disks.

Let D𝑖 be its closure. Note that each D𝑖 is a union of closed disks for some (possibly disconnected)
finite circle packing. Indeed,

D0 = Ĉ \ Π0 =
𝑛⋃
𝑖=1

𝐷𝑖

is the union of the closed disks corresponding to the original circle packing P. By induction, we have
that at level 𝑖 + 1,

D𝑖+1 =
𝑛⋃
𝑗=1

𝑔 𝑗 · D𝑖 \ 𝐷 𝑗 (3.1)

is the union of the images of the level i disks outside of 𝐷 𝑗 under 𝑔 𝑗 .
We also note that the sequence D𝑖

is nested and thus the limit set

Λ(𝐺P) =
∞⋂
𝑖=0

D𝑖 =
∞⋂
𝑖=0

D𝑖 .

Therefore, we have the following expansive property of the group action on Λ(𝐺P).
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Figure 3.1. A disconnected limit set for a kissing reflection group G with non-2-connected contact
graph. G is generated by reflections along the five visible large circles in the figure.

Lemma 3.3. Let 𝑟𝑛 be the maximum spherical diameter of the disks in D𝑛. Then 𝑟𝑛 → 0.

Proof. Otherwise, we can construct a sequence of nested disks of radius bounded from below implying
that the limit set contains a disk, which is a contradiction. �

We now prove the group part of Theorem 1.1.

Proposition 3.4. The kissing reflection group𝐺P has connected limit set if and only if the contact graph
Γ of P is 2-connected.

Proof. If Γ is not 2-connected, then there exists a circle (say 𝐶1) such that the circle packing becomes
disconnected once we remove it. Then we see D1 ⊆ Ĉ is disconnected by Equation 3.1. This forces the
limit set to be disconnected as well (see Figure 3.1).

On the other hand, if Γ is 2-connected, then D1 is connected by Equation 3.1. Now by induction and
Equation 3.1 again, D𝑖 is connected for all i. Thus, Λ(𝐺P) =

⋂∞
𝑖=0 D𝑖 is also connected. �

Proposition 3.4 and the definition of kissing reflection groups show that the association of a
2-connected simple plane graph with a kissing reflection group with connected limit set is well de-
fined and surjective. To verify that this is indeed injective, we remark that if P and P′ are two circle
packings associated to two contact graphs that are nonisomorphic as plane graphs, then the closures of
the fundamental domains Π and Π′ are not homeomorphic. Note that the touching patterns of different
components of Π or Π′ completely determine the structures of the pairing cylinders of the associated
3-manifolds at the cusps (See [25, §2.6]). This means that the conformal boundaries of H3/𝐺P and
H3/𝐺P′ with the pairing cylinder structures are not the same. Thus, the two kissing reflection groups
𝐺P and 𝐺P′ are not quasiconformally isomorphic.
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3.2. Acylindrical kissing reflection groups

Recall that 𝐺P is the index 2 subgroup of 𝐺P consisting of orientation-preserving elements. We
set

M(𝐺P) := H3 ∪Ω(𝐺P)/𝐺P

to be the associated 3-manifold with boundary. Note that the boundary

𝜕M(𝐺P) = Ω(𝐺P)/𝐺P

is a finite union of punctured spheres. Each punctured sphere corresponds to the double of a component
of Π.

Let F be a face of Γ. Then it corresponds to a component Π𝐹 of Π, which also corresponds to a
component 𝑅𝐹 of 𝜕M(𝐺P). More precisely, there is a unique component Ω𝐹 of Ω(𝐺P) containing
Π𝐹 and

𝑅𝐹 � Ω𝐹/stab(Ω𝐹 ),

where stab(Ω𝐹 ) is the stabiliser of Ω𝐹 in 𝐺P.
A compact 3-manifold 𝑀3 with boundary is called acylindrical if 𝑀3 contains no essential cylinders

and is boundary incompressible. Here an essential cylinder C in 𝑀3 is a closed cylinder C such that
𝐶 ∩ 𝜕𝑀3 = 𝜕𝐶, the boundary components of C are not homotopic to points in 𝜕𝑀3 and C is not
homotopic into 𝜕𝑀3. 𝑀3 is said to be boundary incompressible if the inclusion 𝜋1 (𝑅) ↩−→ 𝜋1 (𝑀

3) is
injective for every component R of 𝜕𝑀3. (We refer the reader to [26, §3.7, §4.7] for detailed discussions.)

Our manifold M(𝐺P) is not a compact manifold as there are parabolic elements (cusps) in 𝐺P.
Thurston [45] introduced the notion of pared manifolds to work with Kleinian groups with parabolic
elements. In our setting, we can also use an equivalent definition without introducing pared manifolds.
To start the definition, we note that for a geometrically finite group, associated with the conjugacy class
of a rank 1 cusp, there is a pair of punctures 𝑝1, 𝑝2 on 𝜕𝑀3. If 𝑐1, 𝑐2 are small circles in 𝜕𝑀 retractable
to 𝑝1, 𝑝2, then there is a pairing cylinder C in 𝑀3, which is a cylinder bounded by 𝑐1 and 𝑐2 (see [25,
§2.6], [26, p. 125]).

Definition 3.5. A kissing reflection group 𝐺P is said to be acylindrical if M(𝐺P) is boundary incom-
pressible and every essential cylinder is homotopic to a pairing cylinder.

Note that M(𝐺P) is boundary incompressible if and only if each component of Ω(𝐺P) is simply
connected if and only if the limit set Λ(𝐺P) is connected. We also note that the acylindrical condition
is a quasiconformal invariant and hence does not depend on the choice of the circle packing P realising
a simple connected plane graph Γ. In the remainder of this section, we shall prove the following
characterisation of acylindrical kissing Kleinian reflection groups.

Proposition 3.6. The kissing reflection group 𝐺P is acylindrical if and only if the contact graph Γ of P
is 3-connected.

This proposition will be proved after the following lemmas. Let Γ be a 2-connected simple plane
graph andP = {𝐶1, . . . , 𝐶𝑛} be a realisation of Γ. Let𝐺P be the kissing reflection group, with generators
𝑔1, . . . , 𝑔𝑛 given by reflections along 𝐶1, . . . , 𝐶𝑛. Note that a face F of Γ corresponds to a component
𝑅𝐹 of 𝜕M(𝐺P).

Any two nonadjacent vertices 𝑣, 𝑤 of the face F give rise to an essential simple closed curve �̃�𝐹𝑣𝑤
on 𝑅𝐹 (a simple closed curve on a surface is essential if it is not homotopic to a point or a puncture).
More precisely, let 𝑔𝑣 , 𝑔𝑤 be the reflections associated to the two vertices; then 𝑔𝑣𝑔𝑤 ∈ stab(Ω𝐹 ) is a
loxodromic element under the uniformisation of 𝑅𝐹 which gives the simple closed curve �̃�𝐹𝑣𝑤 on 𝑅𝐹 .
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𝑣

𝑣1,4 = 𝑣2,1𝑣2,2 𝑣1,3

𝑣2,3 𝑣1,2

𝑣2,4 = 𝑣3,1

𝑣3,2

𝑣1,1 = 𝑣3,3

𝐹2 𝐹1

𝐹3

Figure 3.2. A schematic of the potentially non-simple cycle around v.

Note that 𝑔𝑣𝑔𝑤 itself may not be loxodromic as the vertices 𝑣, 𝑤 may be adjacent in some other faces. If
this is the case, then we have an accidental parabolic element (see [26, p. 198, Section 3, Problem 17]).

We first prove the following graph-theoretic lemma.

Lemma 3.7. Let Γ be a 2-connected simple plane graph. If Γ is not 3-connected, then there exist two
vertices 𝑣, 𝑤 so that 𝑣, 𝑤 lie on the intersection of the boundaries of two faces 𝐹1 and 𝐹2. Moreover,
they are nonadjacent for at least one of the two faces.

Proof. As Γ is not 3-connected, there exist two vertices 𝑣, 𝑤 so that Γ \ {𝑣, 𝑤} is disconnected. Let
𝐹1, . . . , 𝐹𝑘 be the list of faces that contain v as a vertex. Since Γ is plane, we may assume that the faces
𝐹𝑖 are ordered around v counterclockwise. Since Γ is plane and 2-connected, each face 𝐹𝑖 is a Jordan
domain. Let 𝑣𝑖,0 = 𝑣, 𝑣𝑖,1, . . . , 𝑣𝑖, 𝑗𝑖 be the vertices of 𝐹𝑖 ordered counterclockwise. Since the faces 𝐹𝑖
are ordered counterclockwise, we have that 𝑣𝑖, 𝑗𝑖 = 𝑣𝑖+1,1. We remark that there might be additional
identifications. Then

𝑣1,1 → 𝑣1,2 → . . . → 𝑣1, 𝑗1 (= 𝑣2,1) → 𝑣2,2 → . . . → 𝑣𝑘, 𝑗𝑘 = 𝑣1,1

form a (potentially non-simple) cycle C (see Figure 3.2). Since Γ is 2-connected, Γ \ {𝑤} is connected.
Thus, in particular, any vertex p is connected to𝐶 \{𝑤} in Γ\{𝑤}. Thus, if𝑤 ∉ 𝐶 or w only appears once
in C, then𝐶 \ {𝑤} is connected. This would imply that Γ \ {𝑣, 𝑤} is connected, which is a contradiction.
Therefore, w must appear at least twice in the cycle C. Since each face is a Jordan domain, w must
appear on the boundaries of at least two faces 𝐹𝑖1 and 𝐹𝑖2 .

Since Γ is simple, w is adjacent to v in at most two faces, in which case 𝑤 = 𝑣𝑖, 𝑗𝑖 = 𝑣𝑖+1,1; that is, it
contributes to only one point in C. Therefore, there exists a face on which w is not adjacent to v. This
proves the lemma. �

We can now prove one direction of Proposition 3.6.

Lemma 3.8. If 𝐺P is acylindrical, then Γ is 3-connected.

Proof. Note that Γ must be 2-connected as Λ(𝐺P) is connected (by the boundary incompressibility
condition). We will prove the contrapositive and assume that Γ is not 3-connected. Let 𝑣, 𝑤 be the two
vertices given by Lemma 3.7. There are two cases.
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Figure 3.3. The limit set of a kissing reflection group G with a 3-connected contact graph.

If 𝑣, 𝑤 are nonadjacent vertices in two faces 𝐹1, 𝐹2, then 𝑔𝑣𝑔𝑤 gives a pair of essential simple closed
curves on 𝑅𝐹1 and 𝑅𝐹2 in 𝜕M(𝐺P). This pair bounds an essential cylinder (see the Cylinder Theorem
in [26, §3.7]), which is not homotopic to a pairing cylinder of two punctures (see 𝑔𝐶𝑔𝐶′′ in Figure 3.4).

If 𝑣, 𝑤 are nonadjacent vertices in 𝐹1 but adjacent vertices in 𝐹2, then 𝑔𝑣𝑔𝑤 corresponds to an
essential simple closed curve in 𝑅𝐹1 and a simple closed curve homotopic to a puncture in 𝑅𝐹2 . Then
𝑔𝑣𝑔𝑤 is an accidental parabolic and the two curves bound an essential cylinder which is not homotopic
to a pairing cylinder (see 𝑔𝐶𝑔𝐶′ in Figure 3.4).

Therefore, in either case, 𝐺P is cylindrical. �

Gasket limit set

Recall that a closed set Λ is a round gasket if

◦ Λ is the closure of some infinite circle packing; and
◦ the complement of Λ is a union of round disks which is dense in Ĉ.

We call a homeomorphic copy of a round gasket a gasket. See Section 2 for our definition of infinite
circle packings.

If Γ is 3-connected, then Γ is a polyhedral graph. Let Γ∨ be the planar dual of Γ. Then Theorem 2.2
gives a (unique) pair of circle packings P and P∨ whose contact graphs are isomorphic to Γ and Γ∨

(respectively) as plane graphs such that P and P∨ intersect orthogonally at their points of tangency (see
Figure 3.3). Let 𝐺P be the kissing reflection group associated with P. Since the circle packing P∨ is
dual to P, we have that ⋃

𝑔∈𝐺P

⋃
𝐶∈P∨

𝑔 · 𝐶
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Figure 3.4. The limit set of a kissing reflection group G with Hamiltonian but non-3-connected contact
graph. The unique Hamiltonian cycle of the associated contact graph Γ divides the fundamental domain
Π(𝐺) into two parts Π±, which are shaded in grey and blue. With appropriate markings, G is the mating
of two copies of the group H shown in Figure 3.6.

is an infinite circle packing and the limit set is the closure

Λ(𝐺P) =
⋃
𝑔∈𝐺P

⋃
𝐶∈P∨

𝑔 · 𝐶.

Since Λ(𝐺P) is nowhere dense and the complement is a union of round disks, we conclude that Λ(𝐺P)
is a round gasket.

Note that each component of Ω(𝐺P) is of the form 𝑔 · 𝐷 where 𝑔 ∈ 𝐺P and D is a disk in the dual
circle packing P∨. By induction, we have the following.

Lemma 3.9. If Γ is 3-connected, then the closure of any two different components of Ω(𝐺P) only
intersect at cusps.

We have the following characterisation of gasket limit set for kissing reflection groups.

Proposition 3.10. Let Γ be a simple plane graph; then Λ(𝐺P) is a gasket if and only if Γ is 3-connected.

Proof. Indeed, from the above discussion, if Γ is 3 connected, then Λ(𝐺P) is a gasket.
Conversely, if Γ is not 2-connected, then Λ(𝐺P) is disconnected by Proposition 3.4, so it is not

a gasket. On the other hand, if Γ is 2-connected but not 3-connected, by Lemma 3.7 we have two
vertices 𝑣, 𝑤 so that 𝑣, 𝑤 lie on the intersection of the boundaries of two faces 𝐹1 and 𝐹2. If 𝑣, 𝑤 are
nonadjacent vertices in both 𝐹1 and 𝐹2, then the corresponding components Ω𝐹1 and Ω𝐹2 touch at two
points corresponding to the two fixed points of the loxodromic element 𝑔𝑣𝑔𝑤 (see 𝑔𝐶𝑔𝐶′′ in Figure 3.4).
Thus, Λ(𝐺P) is not a gasket. If 𝑣, 𝑤 are nonadjacent vertices in 𝐹1 but adjacent vertices in 𝐹2, then
𝑔𝑣𝑔𝑤 gives an accidental parabolic element. The corresponding component Ω𝐹1 is not a Jordan domain
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as the unique fixed point of the parabolic element 𝑔𝑣𝑔𝑤 corresponds to two points on the ideal boundary
of Ω𝐹1 (see 𝑔𝐶𝑔𝐶′ in Figure 3.4). Therefore, Λ(𝐺P) is not a gasket. �

In the course of the proof, we have actually derived the following characterisation which is worth
mentioning.

Proposition 3.11. Let P be a circle packing whose contact graph Γ is not 3-connected and 𝐺P be the
associated kissing reflection group; then either

◦ there exists a component of Ω(𝐺P) which is not a Jordan domain; or
◦ there exist two components of Ω(𝐺P) whose closures touch at least at two points.

We are now able to prove the other direction of Proposition 3.6.

Lemma 3.12. If Γ is 3-connected, then 𝐺P is acylindrical.

Proof. Since Γ is 3-connected, it follows that the closures of any two different components of Ω(𝐺P)
intersect only at cusps. This means that there are no essential cylinder other than the pairing cylinders
of the rank one cusps. So 𝐺P is acylindrical. �

Proof of Proposition 3.6. This follows from Lemma 3.8 and 3.12. �

We remark that the unique configuration of pairs of circle packings given in Theorem 2.2 gives a
kissing reflection group with totally geodesic boundary. This unique point in the deformation space of
acylindrical manifolds is guaranteed by a theorem of McMullen [28].

3.3. Deformation spaces of kissing reflection groups

Throughout this section, we will use bold symbols, such as G,GΓ, to represent the base point for the
corresponding deformation spaces. We use regular symbols G to represent the image of a representation
in the deformation spaces. If the group is a kissing reflection group, we also use 𝐺P if we want to
emphasise the corresponding circle packing P.

Definition of AH(G)

Let G be a finitely generated discrete subgroup of Aut±(Ĉ). A representation (that is, a group homo-
morphism) 𝜉 : G −→ Aut±(Ĉ) is said to be weakly type-preserving

1. if 𝜉 (𝑔) ∈ Aut+(Ĉ) if and only if 𝑔 ∈ Aut+(Ĉ) and
2. if 𝑔 ∈ Aut+(Ĉ), then 𝜉 (𝑔) is parabolic whenever g is parabolic.

Note that a weakly type-preserving representation may send a loxodromic element to a parabolic one.

Definition 3.13. Let G be a finitely generated discrete subgroup of Aut±(Ĉ).

AH(G) := {𝜉 : G −→ 𝐺 is a weakly type-preserving isomorphism to

a discrete subgroup 𝐺 of Aut±(Ĉ)}/∼,

where 𝜉1 ∼ 𝜉2 if there exists a Möbius transformation M such that

𝜉2(𝑔) = 𝑀 ◦ 𝜉1(𝑔) ◦ 𝑀
−1, for all 𝑔 ∈ G.

AH(G) inherits the quotient topology of algebraic convergence. Indeed, we say that a sequence of
weakly type-preserving representations {𝜉𝑛} converges to 𝜉 algebraically if {𝜉𝑛 (𝑔𝑖)} converges to 𝜉 (𝑔𝑖)
as elements of Aut±(Ĉ) for (any) finite generating set {𝑔𝑖}.
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Quasiconformal deformation space of G

Recall that a Kleinian group is said to be geometrically finite if it has a finite-sided fundamental
polyhedron. We say a finitely generated discrete subgroup of Aut±(Ĉ) is geometrically finite if the index
2 subgroup is geometrically finite.

Let G be a finitely generated, geometrically finite, discrete subgroup of Aut±(Ĉ). A group G is called
a quasiconformal deformation of G if there is a quasiconformal map 𝐹 : Ĉ −→ Ĉ that induces an
isomorphism 𝜉 : G −→ 𝐺 such that 𝐹 ◦ 𝑔(𝑧) = 𝜉 (𝑔) ◦ 𝐹 (𝑧) for all 𝑔 ∈ G and 𝑧 ∈ Ĉ. Such a group G is
necessarily geometrically finite and discrete. The map F is uniquely determined (up to normalisation)
by its Beltrami differential on the domain of discontinuity Ω(G) (See [26, §5.1.2, Theorem 3.13.5]).

We define the quasiconformal deformation space of G as

QC(G) = {𝜉 ∈ AH(G) : 𝜉 is induced by a quasiconformal deformation of G}.

By definition, QC(G) ⊆ AH(G).

Kissing reflection groups

The above discussion is quite general and applies to any Kleinian (reflection) group. In the following,
we will specialise to the case of a kissing reflection group.

Recall that different realisations of a fixed marked, connected simple plane graph Γ as circle pack-
ings P give canonically isomorphic kissing reflection groups 𝐺P. Thus, the algebraic/quasiconformal
deformation spaces of all such 𝐺P can be canonically identified. However, in order to study these de-
formation spaces, it will be convenient to fix a (marked) circle packing realisation P of the (marked)
graph Γ and use the associated kissing reflection group

GΓ := 𝐺P

as the base point. With this choice, we can and will use the notation AH(Γ) and QC(Γ) to denote
AH(GΓ) and QC(GΓ), respectively.

Now let Γ0 be a simple plane graph. The goal of this section is to describe the algebraic deformation
space AH(Γ0) and the closure QC(Γ0) (of the quasiconformal deformation space) in AH(Γ0).

In line with the convention introduced above, we choose a circle packing {C1, . . . ,C𝑛} realising
Γ0 and denote the reflection along C𝑖 as 𝜌𝑖 . Let GΓ0 be the kissing reflection group generated by the
reflections 𝜌𝑖 . We remark that since we will be working with deformation spaces for several contact
graphs, we use GΓ0 to emphasise that the contact graph is Γ0.

Let G be a discrete subgroup of Aut±(Ĉ) and let 𝜉 : GΓ0 −→ 𝐺 be a weakly type-preserving
isomorphism. Since the union of the circles C1, . . . ,C𝑛 is connected, for each 𝜌𝑖 there exists 𝜌 𝑗 so
that 𝜌𝑖 ◦ 𝜌 𝑗 is parabolic. This implies that no 𝜉 (𝜌𝑖) is the antipodal map. Hence, 𝜉 (𝜌𝑖) is also a
circular reflection. Assume that 𝜉 (𝜌𝑖) is the reflection along some circle 𝐶𝑖 . If 𝜌𝑖 ◦ 𝜌 𝑗 is parabolic, then
𝜉 (𝜌𝑖) ◦𝜉 (𝜌 𝑗 ) is also parabolic. Thus,𝐶𝑖 is tangent to𝐶 𝑗 as well. This motivates the following definition.

Definition 3.14. Let Γ be a simple plane graph with the same number of vertices as Γ0. We say that Γ
abstractly dominates Γ0, denoted by Γ ≥𝑎 Γ0, if there exists an embedding 𝜓 : Γ0 −→ Γ as abstract
graphs (that is, if there exists a graph isomorphism between Γ0 and a subgraph of Γ).

We say that Γ dominates Γ0, denoted by Γ ≥ Γ0, if there exists an embedding 𝜓 : Γ0 −→ Γ as plane
graphs (that is, if there exists a graph isomorphism between Γ0 and a subgraph of Γ that extends to an
orientation-preserving homeomorphism of Ĉ).

We also define

Emb𝑎 (Γ0) := {(Γ, 𝜓) : Γ ≥𝑎 Γ0 and 𝜓 : Γ0 −→ Γ is an embedding as abstract graphs}
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Figure 3.5. The graph on the left abstractly dominates the graph on the right, but no embedding of the
right graph into the left graph respects the plane structure.

and

Emb𝑝 (Γ0) := {(Γ, 𝜓) : Γ ≥ Γ0 and 𝜓 : Γ0 −→ Γ is an embedding as plane graphs}.

In other words, a simple plane graph Γ abstractly dominates Γ0 if Γ (as an abstract graph) can be
constructed from Γ0 by introducing new edges, and it dominates Γ0 if one can do this while respecting
the plane structure.

We emphasise that the graph Γ is always assumed to be planar, but the embedding 𝜓 may not respect
the plane structure in Emb𝑎 (Γ0) (see Figure 3.5). We also remark that an element (Γ, 𝜓) is identified
with (Γ′, 𝜓 ′) in Emb𝑎 (Γ0) or Emb𝑝 (Γ0) if 𝜓 ′ ◦ 𝜓−1 extends to an isomorphism between Γ and Γ′ as
plane graphs.

We have the following lemma.

Lemma 3.15. Let G be a discrete subgroup of Aut±(Ĉ) and let 𝜉 : GΓ0 −→ 𝐺 be a weakly type-
preserving isomorphism. Then the simple plane graph Γ associated with G abstractly dominates Γ0.

Conversely, if Γ is a simple plane graph abstractly dominating Γ0 and G is a kissing reflection group
associated with Γ, then there exists a weakly type-preserving isomorphism 𝜉 : GΓ0 −→ 𝐺.

Proof. Let𝐺 = 𝜉 (GΓ0) be a discrete faithful weakly type-preserving representation, then the reflections
𝜉 (𝜌𝑖) along 𝐶𝑖 generate G. If there were a nontangential intersection between some 𝐶𝑖 and 𝐶 𝑗 , it would
introduce a new relation between 𝜉 (𝜌𝑖) and 𝜉 (𝜌 𝑗 ) by discreteness of G (cf. [47, Chapter 5, Subsection
1.1]), which would contradict the assumption that 𝜉 is an isomorphism. Similarly, if there were circles
𝐶𝑖 , 𝐶 𝑗 , 𝐶𝑘 touching at a point, then discreteness would give a new relation among 𝜉 (𝜌𝑖), 𝜉 (𝜌 𝑗 ) and
𝜉 (𝜌𝑘 ), which would again lead to a contradiction. The above observations combined with the discussion
preceding Definition 3.14 imply that {𝐶1, . . . , 𝐶𝑛} is a circle packing with associated contact graph Γ
abstractly dominating Γ0.

Conversely, assume that G is a kissing reflection group associated with a simple plane graph Γ
abstractly dominating Γ0. Let 𝐶𝑖 be the circle corresponding to C𝑖 under a particular embedding of Γ0
into Γ (as abstract graphs) and 𝑔𝑖 be the reflection along 𝐶𝑖 . Defining 𝜉 : GΓ0 −→ 𝐺 by 𝜉 (𝜌𝑖) = 𝑔𝑖 , it
is easy to check that 𝜉 is a weakly type-preserving isomorphism. �

Note that for kissing reflection groups, the double of the polyhedron bounded by the half-planes
associated to the circles 𝐶𝑖 is a fundamental polyhedron for the action of the index two Kleinian group
on H3. Thus, we have the following corollary which is worth mentioning.

Corollary 3.16. Every group in AH(Γ0) is geometrically finite.
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Let (Γ, 𝜓) ∈ Emb𝑝 (Γ0) (respectively in Emb𝑎 (Γ0)). Let us fix a circle packing 𝐶1,Γ, . . . , 𝐶𝑛,Γ
realising Γ, where 𝐶𝑖,Γ corresponds to C𝑖 under the embedding 𝜓 of Γ0. Let 𝑔𝑖 be the associated
reflection along 𝐶𝑖,Γ and GΓ = 〈𝑔1, . . . , 𝑔𝑛〉. Then Lemma 3.15 shows that

𝜉 (Γ,𝜓) : GΓ0 −→ GΓ

𝜌𝑖 ↦→ 𝑔𝑖

is a weakly type-preserving isomorphism. Thus, QC(Γ) = QC(GΓ) can be embedded in AH(Γ0) =
AH(GΓ0 ). Indeed, if 𝜉 : GΓ −→ 𝐺 represents an element in QC(Γ), then

𝜉 ◦ 𝜉 (Γ,𝜓) : GΓ0 −→ 𝐺

is a weakly type-preserving isomorphism. It can be checked that the map 𝜉 ↦→ 𝜉 ◦ 𝜉 (Γ,𝜓) gives an
embedding of QC(Γ) into AH(Γ0). We shall identify the space QC(Γ) with its image in AH(Γ0) under
this embedding.

Proposition 3.17.

AH(Γ0) =
⋃

(Γ,𝜓) ∈Emb𝑎 (Γ0)

QC(Γ)

and

QC(Γ0) =
⋃

(Γ,𝜓) ∈Emb𝑝 (Γ0)

QC(Γ).

The proof of this proposition will be furnished after a discussion of pinching deformations. Once the
connection with pinching deformation is established, the result can be derived from [35].

The perspective of pinching deformation

For the general discussion of pinching deformations, let us fix an arbitrary 2-connected simple plane
graph Γ, a circle packing P with contact graph isomorphic to Γ and the associated kissing reflection
group G = 𝐺P, which we think of as the base point of the quasiconformal deformation space QC(Γ).
Since Γ is the only graph appearing in this discussion (until the proof Proposition 3.17), we omit the
subscript ‘Γ’ from the base point G.

Let F be a face of Γ and 𝑅𝐹 be the associated component of 𝜕M(G). Let 𝐶 ∈ P be a circle on the
boundary of Π𝐹 . Then the reflection along C descends to an anti-conformal involution on 𝑅𝐹 , which
we shall denote as

𝜎𝐹 : 𝑅𝐹 −→ 𝑅𝐹 .

Note that different choices of the circle descend to the same involution. It is known that for boundary in-
compressible geometrically finite Kleinian groups, the quasiconformal deformation space is the product
of the Teichmüller spaces of the components of the conformal boundary (see [26, Theorem 5.1.3]):

QC(G̃) =
∏

𝐹 face of Γ
Teich(𝑅𝐹 ),

where G̃ is the index two subgroup of G consisting of orientation-preserving elements.
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We denote by Teich𝜎𝐹 (𝑅𝐹 ) ⊆ Teich(𝑅𝐹 ) those elements corresponding to 𝜎𝐹 -invariant quasicon-
formal deformations of 𝑅𝐹 . Then

QC(G) =
∏

𝐹 face of Γ
Teich𝜎𝐹 (𝑅𝐹 ).

Indeed, any element in
∏
𝐹 face of Γ Teich𝜎𝐹 (𝑅𝐹 ) is uniquely determined by the associated Beltrami

differential on Π𝐹 , which can be pulled back by G to produce a G-invariant Beltrami differential on Ĉ.
Such a Beltrami differential can be uniformised by the measurable Riemann mapping theorem.

Recall that Π𝐹 is an ideal polygon. Note that the component of Ω(G) containing Π𝐹 is simply
connected and hence Π𝐹 inherits the hyperbolic metric from the corresponding component of Ω(G).
Then 𝑅𝐹 is simply the double of Π𝐹 . We claim that the only 𝜎𝐹 -invariant geodesics are those simple
closed curves �̃�𝐹𝑣𝑤 on 𝑅𝐹 (see the discussion following Proposition 3.6 for the definition of �̃�𝐹𝑣𝑤 ),
where 𝑣, 𝑤 are two nonadjacent vertices on the boundary of F. Indeed, any 𝜎𝐹 -invariant geodesic would
intersect the boundary of the ideal polygon perpendicularly and the �̃�𝐹𝑣𝑤 are the only geodesics satisfying
this property. We denote the associated geodesic arc in Π𝐹 by 𝛾𝐹𝑣𝑤 .

We define a multicurve on a surface as a disjoint union of simple closed curves, such that no two
components are homotopic. It is said to be weighted if a nonnegative number is assigned to each
component. We shall identify two multicurves if they are homotopic to each other.

Let T be a triangulation of F obtained by adding new edges connecting the vertices of F. Since
each additional edge in this triangulation connects two nonadjacent vertices of F, we can associate a
multicurve �̃�𝐹T on 𝑅𝐹 consisting of all �̃�𝐹𝑣𝑤 , where 𝑣𝑤 is a new edge in T. A marking of the graph Γ also
gives a marking of the multicurve. We use 𝛼𝐹T to denote the multi-arc in the hyperbolic ideal polygon
Π𝐹 . Since T is a triangulation, the multicurve �̃�𝐹T yields a pants decomposition of the punctured sphere
𝑅𝐹 such that the boundary components of every pair of pants are punctures or simple closed curves
in �̃�𝐹T . Thus, the complex structures of these pairs of pants are uniquely determined by the lengths
of the marked multicurve �̃�𝐹T (cf. [15, Theorem 3.5]). Since 𝑅𝐹 is invariant under the anti-conformal
involution 𝜎𝐹 , the surface 𝑅𝐹 is uniquely determined by the complex structures of the above pairs of
pants and hence by the lengths of the marked multicurve �̃�𝐹T . If F has m sides, then any triangulation of
F has 𝑚 − 3 additional edges. Thus, we have the analogue of Fenchel–Nielsen coordinates on

Teich𝜎𝐹 (𝑅𝐹 ) = R
𝑚−3
+

by assigning to each element of Teich𝜎𝐹 (𝑅𝐹 ) the lengths of the marked multicurve �̃�𝐹T (or, equivalently,
the lengths of the marked multi-arc 𝛼𝐹T ). Note that with these lengths, the multi-arcs and the multicurves
become weighted. Note that different triangulations yield different coordinates. We also remark that
unlike classical Fenchel–Nielsen coordinates on Teichmüller spaces, Fenchel–Nielsen coordinates on
Teich𝜎𝐹 (𝑅𝐹 ) do not contain twist parameters precisely due to the 𝜎𝐹−invariance of quasiconformal
deformations (cf. [15, §3.2]).

In order to degenerate in Teich𝜎𝐹 (𝑅𝐹 ), the length of some arc 𝛾𝐹𝑣𝑤 must shrink to 0. The above
discussion implies that the closure of Teich𝜎𝐹 (𝑅𝐹 ) in the Thurston compactification consists only of
weighted 𝜎𝐹 -invariant multicurves �̃�𝐹 . If 𝑆𝑘 ∈ Teich𝜎𝐹 (𝑅𝐹 ) converges to a weighted 𝜎𝐹 -invariant
multicurve �̃�𝐹 , then we say that 𝑆𝑘 is a pinching deformation on �̃�𝐹 . More generally, we say that
𝐺𝑘 ∈ QC(G) is a pinching deformation on �̃� =

⋃
�̃�𝐹 if for each face F, the conformal boundary

associated to F is a pinching deformation on �̃�𝐹 .
Given two curves �̃�𝐹𝑣𝑤 ⊆ 𝑅𝐹 and �̃�𝐹 ′

𝑢𝑡 ⊆ 𝑅𝐹 ′ , we say that they are parallel if they are homotopic in
the 3-manifold M(𝐺P). Since the curve �̃�𝐹𝑣𝑤 corresponds to the element 𝑔𝑣𝑔𝑤 , we get that �̃�𝐹𝑣𝑤 and
�̃�𝐹

′

𝑢𝑡 are parallel if and only if (possibly after switching the order) 𝑣 = 𝑢 and 𝑤 = 𝑡. Note that in this
case, 𝑔𝑣𝑔𝑤 ∈ stab(Ω𝐹 ) ∩ stab(Ω𝐹 ′ ) and 𝑣, 𝑤 are on the common boundaries of F and 𝐹 ′. (See, for
example, Figure 3.4 where 𝑣, 𝑤 correspond to the circles 𝐶,𝐶 ′′, where the curve �̃�𝐹1

𝑣𝑤 is parallel with
�̃�𝐹2
𝑣𝑤 .)
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Let �̃� =
⋃
�̃�𝐹 be a union of 𝜎𝐹 -invariant multicurves. We say that �̃� is a nonparallel multicurve

if no two components are parallel. We note that nonparallel multicurves �̃� for G are in one-to-one
correspondence with the simple plane graphs that dominate Γ. Indeed, any multicurve �̃� =

⋃
�̃�𝐹

corresponds to a plane graph that dominates Γ. The nonparallel condition is equivalent to the condition
that the graph is simple.

We now apply the general discussion carried out above to prove Proposition 3.17.

Proof of Proposition 3.17. The first equality follows from Lemma 3.15.
We first show

⋃
(Γ,𝜓) ∈Emb𝑝 (Γ0) QC(Γ) ⊆ QC(Γ0). Let Γ be a simple plane graph that dominates Γ0

with embedding 𝜓 : Γ0 −→ Γ as plane graphs. It follows from the discussion on pinching deformations
that there exists a nonparallel multicurve �̃� ⊆ 𝜕M(GΓ0 ) associated to Γ. We complete Γ to a triangula-
tion T by adding edges. As before, T gives a𝜎-invariant multicurve 𝛽 ⊆ 𝜕M(GΓ0 ) which contains �̃�. We
set 𝛽 = �̃�� �̃�′. Then the lengths of the multicurve �̃�′ give a parametrisation of QC(Γ) and the lengths of
the multicurve 𝛽 give a parametrisation of QC(Γ0). Now given any element �𝑙 = (𝑙𝛾 : 𝛾 ∈ �̃�′) ∈ QC(Γ),
we show that it can be realised as the algebraic limit of a sequence in QC(Γ0).

Such a construction is standard and follows directly from [35, Theorem 5.1] (see also [27]). For
completeness, we sketch the proof here. Let 𝐺 ∈ QC(Γ0) be so that the length of the multicurve
�̃�′ is �𝑙. We assume that 𝛽 is realised by hyperbolic geodesics in 𝜕M(𝐺). Let 𝐴 ⊆ 𝜕M(𝐺) be an
𝜖-neighbourhood of �̃�. We choose 𝜖 small enough so that A is disjoint from �̃�′ and each component
contains only one component of �̃�. We construct a sequence of quasiconformal deformations supported
on A so that the modulus of each annulus in A tends to infinity while �̃� remains as core curves. Since the
multicurve �̃� is nonparallel, Thurston’s hyperbolisation theorem guarantees a convergent subsequence
(see [35] for more details). This algebraic limit is a kissing reflection group. By construction, the contact
graph of such a limiting kissing reflection group is Γ and the lengths of �̃�′ is �𝑙.

Conversely, if a sequence of quasiconformal deformations 𝜉𝑛 : GΓ0 −→ 𝐺𝑛 of GΓ0 converges to
𝜉∞ : GΓ0 −→ 𝐺 algebraically, then G is a kissing reflection group. Since {𝜉𝑛 (𝑔𝑖)} converges, where
𝑔𝑖 are the standard generators, the contact graph for G dominates Γ0. The embedding 𝜓 : Γ0 −→ Γ
(respecting the plane structure) comes from the identification of the generators. �

3.4. Quasi-Fuchsian space and mating locus

The above discussion applies to the special case of quasi-Fuchsian space. This space is related to the
mating locus for critically fixed anti-rational maps.

Let Γ𝑑 be the marked 𝑑+1-sided polygonal graph; that is, Γ𝑑 contains 𝑑+1 vertices 𝑣1, . . . , 𝑣𝑑+1 with
edges 𝑣𝑖𝑣𝑖+1 where indices are understood modulo 𝑑 + 1. We choose the most symmetric circle packing
P𝑑 realising Γ𝑑 . More precisely, consider the ideal (𝑑 + 1)-gon in D � H2 with vertices at the (𝑑 + 1)-st
roots of unity. The edges of this ideal (𝑑 + 1)-gon are arcs of 𝑑 + 1 circles and we label these circles
as P𝑑 := {C1, . . . ,C𝑑+1}, where we index them counterclockwise such that C1 passes through 1 and
𝑒2𝜋𝑖/(𝑑+1) . Let G𝑑 be the kissing reflection group associated to P𝑑 . Note that G̃𝑑 is a Fuchsian group.
We remark that since any embedding of the polygonal graph Γ𝑑 into a graph Γ abstractly dominating
Γ𝑑 respects the plane structure, we have that AH(Γ𝑑) = QC(Γ𝑑).

Recall that a graph Γ is said to be Hamiltonian if there exists a cycle which passes through each vertex
exactly once. Since a simple plane graph with 𝑑 + 1 vertices is Hamiltonian if and only if it dominates
Γ𝑑 , the following proposition follows immediately from Proposition 3.17.

Proposition 3.18. Let Γ be a simple plane graph with 𝑑 + 1 vertices; then any kissing reflection group
G with contact graph Γ is in the closure QC(Γ𝑑) if and only if Γ is Hamiltonian.

Let Γ be a marked Hamiltonian simple plane graph with a Hamiltonian cycle𝐶 = (𝑣1, . . . , 𝑣𝑑+1). Let
𝐺 := 〈𝑔1, . . . , 𝑔𝑑+1〉 be a kissing reflection group with contact graph Γ. The Hamiltonian cycle divides
the fundamental domain Π ⊆ Ĉ into two parts and we denote them as Π+ and Π−, where we assume
that the Hamiltonian cycle is positively oriented on the boundary of Π+ and negatively oriented on the
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boundary of Π− (see Figure 3.4). We denote

Ω± :=
⋃
𝑔∈𝐺

𝑔 · Π±.

Since each Ω± is G-invariant, we have Λ(𝐺) = 𝜕Ω+ = 𝜕Ω−.
As in Subsection 3.1, set

Π1,± =
𝑑+1⋃
𝑖=1

𝑔𝑖 · Π
±, and Π 𝑗+1,± =

𝑑+1⋃
𝑖=1

𝑔𝑖 ·
(
Π 𝑗 ,± \ 𝐷𝑖

)
.

For consistency, we also set Π0,± = Π±. Then the arguments of the proof of Lemma 3.2 show that

Π𝑙,± =
⋃
|𝑔 |=𝑙

𝑔 · Π±.

Lemma 3.19. The closures Ω+ and Ω− are connected.

Proof. We shall prove by induction that the closures
⋃𝑛
𝑖=0 Π

𝑖,+ and
⋃𝑛
𝑖=0 Π

𝑖,+ \ 𝐷 𝑗 are connected for all
n and j.

Indeed, the base case is true as Π+ and Π+ \ 𝐷 𝑗 are connected for all j. Assume that
⋃𝑛
𝑖=0 Π

𝑖,+ and⋃𝑛
𝑖=0 Π

𝑖,+ \ 𝐷 𝑗 are connected for all j. Note that

𝑛+1⋃
𝑖=0

Π𝑖,+ = Π+ ∪

𝑑+1⋃
𝑗=1

𝑔 𝑗 ·

(
𝑛⋃
𝑖=0

Π𝑖,+ \ 𝐷 𝑗

)
.

By the induction hypothesis, 𝑔 𝑗 · (
⋃𝑛
𝑖=0 Π

𝑖,+ \ 𝐷 𝑗 ) is connected. Since each

𝑔 𝑗 ·

(
𝑛⋃
𝑖=0

Π𝑖,+ \ 𝐷 𝑗

)

intersects Π+ along an arc of 𝐶 𝑗 = 𝜕𝐷 𝑗 , we have that
⋃𝑛+1
𝑖=0 Π𝑖,+ is also connected.

Similarly,

𝑛+1⋃
𝑖=0

Π𝑖,+ \ 𝐷 𝑗 = Π+ ∪
⋃
𝑘≠ 𝑗

𝑔𝑘 ·

(
𝑛⋃
𝑖=0

Π𝑖,+ \ 𝐷𝑘

)

is connected for any j.
Connectedness of Ω− is proved in the same way. �

Matings of function kissing reflection groups

We say that a kissing reflection group G with connected limit set is a function kissing reflection group if
there is a component Ω0 of Ω(𝐺) invariant under G. This terminology was traditionally used in complex
analysis as one can construct Poincaré series, differentials and functions on it.

We say that a simple plane graph Γ with n vertices is outerplanar if it has a face with all n vertices
on its boundary. We also call this face the outer face. Note that a 2-connected outerplanar graph is
Hamiltonian with a unique Hamiltonian cycle. The following proposition characterises function kissing
reflection groups in terms of their contact graphs.
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Figure 3.6. The limit set of a function kissing reflection group H with an outerplanar contact graph.
The grey region represents the part Π𝑏 of the fundamental domain Π(𝐻) corresponding to the non-
outer faces of Γ(𝐻). The kissing reflection group G shown in Figure 3.4 can be constructed by pinching
a simple closed curve for H.

Proposition 3.20. A kissing reflection group G is a function group if and only if its contact graph Γ is
2-connected and outerplanar.

Proof. If Γ is outerplanar, then let Ω𝐹 be the component of Ω(𝐺) associated to the outer face F. It is
easy to see that the standard generating set fixes Ω𝐹 , so Ω𝐹 is invariant under G.

Conversely, assume that Γ is not outerplanar. Since Π is a fundamental domain of the action of G on
Ω(𝐺), any G-invariant component of Ω(𝐺) must correspond to some face of Γ. Let F be a face of Γ.
Since Γ is not outerplanar, there exists a vertex v which is not on the boundary of F. Thus, 𝑔𝑣 · Π𝐹 is
not in Ω𝐹 and hence Ω𝐹 is not invariant under G. �

For a function kissing reflection group G, we setΩ𝑏 := Ω(𝐺)\Ω0, whereΩ0 is G-invariant. Similarly,
we shall use the notation Π𝑏 := Π ∩Ω𝑏 (see Figure 3.6) and Π𝑖

𝑏 := Π𝑖 ∩Ω𝑏 , for 𝑖 ≥ 0 (see Lemma 3.2).
We call the closure Ω𝑏 = Ĉ\Ω0 the filled limit set for the function kissing reflection group G and denote
it by K(𝐺).

Let 𝐺± be two function kissing reflection groups with the same number of vertices in their contact
graphs. We say that a kissing reflection group G is a geometric mating of 𝐺+ and 𝐺− if we have

◦ a decomposition Ω(𝐺) = Ω+(𝐺) �Ω−(𝐺) with Λ(𝐺) = 𝜕Ω+(𝐺) = 𝜕Ω−(𝐺);
◦ weakly type-preserving isomorphisms 𝜙± : 𝐺± −→ 𝐺;
◦ continuous surjections 𝜓± : K(𝐺±) −→ Ω±(𝐺) which are conformal between the interior K̊(𝐺±)

and Ω±(𝐺) such that for any 𝑔 ∈ 𝐺±, 𝜓± ◦ 𝑔 |K(𝐺±) = 𝜙±(𝑔) ◦ 𝜓±.

Note that by the semi-conjugacy relation, the sets Ω±(𝐺) are 𝐺−invariant. We shall now complete
the proof of the group part of Theorem 1.2.

Proposition 3.21. A kissing reflection group G is a geometric mating of two function kissing reflection
groups if and only if the contact graph Γ(𝐺) of G is Hamiltonian.

Proof. If G is a geometric mating of 𝐺±, then we have a decomposition Ω(𝐺) = Ω+(𝐺) � Ω−(𝐺)
with Λ(𝐺) = 𝜕Ω+(𝐺) = 𝜕Ω−(𝐺). This gives a decomposition of Π(𝐺) = Π+ � Π− and thus a
decomposition of the contact graph Γ(𝐺) = Γ+ ∪Γ−. More precisely, the vertex sets of Γ± coincide with
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that of Γ(𝐺) and there is an edge in Γ± connecting two vertices if and only if the point of intersection
of the corresponding two circles lies in 𝜕Π±. Since the action of 𝐺± on K(𝐺±) is semi-conjugate to
G on Ω±(𝐺), it follows that Γ± is isomorphic to Γ(𝐺±) as plane graphs. Thus, the intersection of Γ+

and Γ− (which is the common boundary of the outer faces of Γ+ and Γ−) gives a Hamiltonian cycle
for Γ(𝐺).

Conversely, if Γ(𝐺) is Hamiltonian, then a Hamiltonian cycle yields a decomposition Γ(𝐺) = Γ+∪Γ−,
where Γ+ and Γ− are outerplanar graphs with vertex sets equal to that of Γ(𝐺). We construct function
kissing reflection groups 𝐺± with contact graphs Γ(𝐺±) = Γ±. Note that we have a natural embedding
of Γ(𝐺±) into Γ(𝐺) (as plane graphs), which gives an identification of vertices and non-outer faces.
Thus, we have weakly type-preserving isomorphisms 𝜙± : 𝐺± −→ 𝐺 coming from the identification of
vertices and Proposition 3.17. By quasiconformal deformation, we may assume that for each non-outer
face 𝐹 ∈ Γ(𝐺±), the associated conformal boundary component 𝑅𝐹 (𝐺±) ⊆ 𝜕M(𝐺±) is conformally
equivalent to the corresponding conformal boundary component 𝑅𝐹 (𝐺) ⊆ 𝜕M(𝐺).

The existence of the desired continuous map 𝜓+ can be derived from a more general statement on the
existence of Cannon–Thurston maps (see [32, Theorem 4.2]). For completeness and making the proof
self-contained, we give an explicit construction of 𝜓+ : K(𝐺+) −→ Ω+(𝐺). This construction is done
in levels: we start with a homeomorphism

𝜓+
0 : Π0

𝑏 (𝐺
+) −→ Π0,+.

This can be chosen to be conformal on the interior as the associated conformal boundaries are assumed
to be conformally equivalent. Assuming that

𝜓+
𝑖 :

𝑖⋃
𝑗=0

Π 𝑗
𝑏 (𝐺

+) −→

𝑖⋃
𝑗=0

Π 𝑗 ,+

is constructed, we extend 𝜓+
𝑖 to 𝜓+

𝑖+1 by setting

𝜓+
𝑖+1(𝑧) := 𝜙+(𝑔𝑘 ) ◦ 𝜓

+
𝑖 ◦ 𝑔𝑘 (𝑧)

if 𝑧 ∈ Π𝑖+1
𝑏 (𝐺+) ∩𝐷𝑘 . It is easy to check by induction that 𝜓+

𝑖+1 is a homeomorphism which is conformal
on the interior (see Figure 3.4 and Figure 3.6).

Let 𝑃0 (𝐺+) := Π0
𝑏 (𝐺

+) \ Π0
𝑏 (𝐺

+); then 𝑃0 (𝐺+) consists of cusps where various components of
Π0
𝑏 (𝐺

+) touch. Let 𝑃∞(𝐺+) :=
⋃
𝑔∈𝐺+ 𝑔 · 𝑃0 (𝐺+). Then 𝑃∞(𝐺+) is dense in Λ(𝐺+). We define 𝑃∞,+

similarly (where, 𝑃0,+ := Π0,+ \ Π0,+) and note that 𝑃∞,+ is dense in 𝜕Ω+(𝐺) = Λ(𝐺).
Note that𝜓+

𝑖 = 𝜓+
𝑗 on 𝑃𝑖 (𝐺+) for all 𝑗 ≥ 𝑖. Thus, we have a well-defined limit𝜓+ : 𝑃∞(𝐺+) −→ 𝑃∞,+.

We claim that 𝜓+ is uniformly continuous on 𝑃∞(𝐺+). For an arbitrary 𝜖 > 0, there exists N such that
all disks in D𝑁 (𝐺) have spherical diameter < 𝜖 by Lemma 3.3. Choose 𝛿 so that any two nonadjacent
disks in D𝑁 (𝐺+) are separated in spherical metric by 𝛿. Then if 𝑥, 𝑦 ∈ 𝑃∞(𝐺+) with 𝑑 (𝑥, 𝑦) < 𝛿,
they must lie in two adjacent disks of D𝑁 (𝐺+). Thus, 𝜓+

𝑖 (𝑥) and 𝜓+
𝑖 (𝑦) (whenever defined) lie in two

adjacent disks of D𝑁 (𝐺) for all 𝑖 ≥ 𝑁 . Hence, 𝑑 (𝜓+
𝑖 (𝑥), 𝜓

+
𝑖 (𝑦)) < 2𝜖 for all 𝑖 ≥ 𝑁 . This shows that 𝜓+

is uniformly continuous on 𝑃∞(𝐺+).
Thus, we have a continuous extension 𝜓+ : K(𝐺+) −→ Ω+(𝐺). It is easy to check that 𝜓+ is

surjective, conformal on the interior and equivariant with respect to the actions of 𝐺+ and G.
The same proof gives the construction for 𝜓−. This shows that G is a geometric mating of 𝐺+

and 𝐺−. �

Note that from the proof of Proposition 3.21, we see that each (marked) Hamiltonian cycle H gives
a decomposition of the graph Γ = Γ+ ∪ Γ− and hence an unmating of a kissing reflection group.
From the pinching perspective as in the proof of Proposition 3.17, this (marked) Hamiltonian cycle
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also gives a pair of nonparallel multicurves. This pair of multicurves can be constructed explicitly
from the decomposition of Γ. Indeed, each edge in Γ± − 𝐻 gives a pair of nonadjacent vertices in H.
The corresponding 𝜎-invariant curve comes from these nonadjacent vertices in H. If a marking is not
specified on H, this pair of multicurves is defined only up to simultaneous change of coordinates on the
two conformal boundaries.

3.5. Nielsen maps for kissing reflection groups

Let Γ be a simple plane graph and 𝐺Γ be a kissing reflection group with contact graph Γ. Recall that
D =

⋃𝑛
𝑗=1 𝐷 𝑗 is defined as the union of the closure of the disks for the associated circle packing. We

define the Nielsen map NΓ : D −→ Ĉ by

NΓ (𝑧) = 𝑔 𝑗 (𝑧) if 𝑧 ∈ 𝐷 𝑗 .

Let us now assume that Γ is 2-connected; then the limit setΛ(𝐺Γ) is connected. Thus, each component
of Ω(𝐺Γ) is a topological disk. Let F be a face with 𝑑 + 1 sides of Γ and let Ω𝐹 be the component of
Ω(𝐺) containing Π𝐹 . By a quasiconformal deformation, we can assume that the restriction of 𝐺Γ on
Ω𝐹 is conformally conjugate to the regular ideal 𝑑 + 1-gon reflection group on D � H2.

For the regular ideal 𝑑 + 1-gon reflection group G𝑑 (whose associated contact graph is Γ𝑑), the 𝑑 + 1
disks yield a Markov partition for the action of the Nielsen map N𝑑 ≡ NΓ𝑑 on the limit set Λ(G𝑑) = S1.
The diameters of the preimages of these disks under N𝑑 shrink to 0 uniformly by Lemma 3.3 and hence
the Nielsen map N𝑑 is topologically conjugate to 𝑧 ↦→ 𝑧𝑑 on S1 (cf. [24, §4]).

Therefore, the Nielsen map NΓ is topologically conjugate to 𝑧𝑑 on the ideal boundary of Ω𝐹 . This
allows us to replace the dynamics of NΓ on Ω𝐹 by 𝑧𝑑 for every face of Γ and obtain a globally defined
orientation-reversing branched covering GΓ : Ĉ −→ Ĉ.

More precisely, let 𝜙 : D −→ Ω𝐹 be a conformal conjugacy between N𝑑 and NΓ, which extends to
a topological conjugacy from the ideal boundary S1 = 𝐼 (D) = 𝜕D onto 𝐼 (Ω𝐹 ). Let 𝜓 : D −→ D be an
arbitrary homeomorphic extension of the topological conjugacy between 𝑧𝑑 |S1 and N𝑑 |S1 fixing 1. We
define

GΓ :=
{
NΓ on D \

⋃
𝐹 Ω𝐹 ,

(𝜙 ◦ 𝜓) ◦ 𝑚−𝑑 ◦ (𝜙 ◦ 𝜓)−1 on Ω𝐹 ,
(3.2)

where 𝑚−𝑑 (𝑧) = 𝑧𝑑 .
The map 𝑧𝑑 has 𝑑 +1 invariant rays inD connecting 0 with 𝑒2𝜋𝑖 · 𝑗

𝑑+1 by radial line segments. We shall
refer to these rays as internal rays. For each Ω𝐹 , we let 𝒯𝐹 be the image of the union of these 𝑑 + 1
internal rays (under 𝜙 ◦𝜓), and we call the image of 0 the centre of Ω𝐹 . This graph 𝒯𝐹 is a deformation
retract of Π𝐹 fixing the ideal points. Thus, each ray of Ω𝐹 lands exactly at a cusp where two circles of
the circle packing touch. We define

𝒯(GΓ) :=
⋃
𝐹

𝒯𝐹 (3.3)

and endow it with a simplicial structure such that the centres of the faces are vertices. Then 𝒯(GΓ) is the
planar dual to the plane graph Γ. We will now see that GΓ acts as a ‘reflection’ on each face of 𝒯(GΓ).

Lemma 3.22. Let P be an open face of 𝒯(GΓ); then GΓ is a homeomorphism sending P to the interior
of its complement.

Proof. Since Γ is 2-connected, the complement of 𝑃 is connected, so P is a Jordan domain. Since P
contains no critical point and GΓ (𝜕𝑃) = 𝜕𝑃, it follows that GΓ sends P homeomorphically to the interior
of its complement. �
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We shall see in the next section that this branched covering GΓ is topologically conjugate to a critically
fixed anti-rational map R and this dual graph 𝒯(GΓ) is the Tischler graph associated with R.

4. Critically Fixed Anti-rational Maps

In this section, we shall show how critically fixed anti-rational maps are related to circle packings and
kissing reflection groups. As a corollary of our study, we obtain a classification of critically fixed anti-
rational maps in terms of the combinatorics of planar duals of Tischler graphs. A classification of these
maps in terms of combinatorial properties of Tischler graphs was given independently by Geyer in a
recent work [9]. For the purpose of establishing a dynamical correspondence between critically fixed
anti-rational maps and kissing reflection groups, planar duals of Tischler graphs turn out to be a more
natural combinatorial invariant.

The arguments employed in Subsection 4.1, where we investigate the structure (of planar duals)
of Tischler graphs, parallel those used in the proof of [9, Theorem 4.3]. On the other hand, [9, §6]
uses purely topological means to construct Thurston maps for the realisation part of the classification
theorem; while we use the branched cover GΓ of Subsection 3.5, which is cooked up from Nielsen maps
of kissing reflection groups (see Subsection 4.2).

We define an anti-polynomial P of degree d as

𝑃(𝑧) = 𝑎𝑑𝑧
𝑑 + 𝑎𝑑−1𝑧

𝑑−1 + . . . + 𝑎0

where 𝑎𝑖 ∈ C and 𝑎𝑑 ≠ 0. An anti-rational map R of degree d is the ratio of two anti-polynomials

𝑅(𝑧) =
𝑃(𝑧)

𝑄(𝑧)

where P and Q have no common zeroes and the maximum degree of P and Q is d. An anti-rational map
of degree d is an orientation-reversing branched covering of Ĉ. It is said to be critically fixed if all of
its critical points are fixed. The Julia set and Fatou set of anti-rational maps can be defined as in the
rational setting.

4.1. Tischler graph of critically fixed anti-rational maps

Let R be a critically fixed anti-rational map of degree d. Let 𝑐1, · · · , 𝑐𝑘 be the distinct critical points
of R and the local degree of R at 𝑐𝑖 be 𝑚𝑖 (𝑖 = 1, · · · , 𝑘). Since R has (2𝑑 − 2) critical points counting
multiplicity, we have that

𝑘∑
𝑖=1

(𝑚𝑖 − 1) = 2𝑑 − 2 =⇒
𝑘∑
𝑖=1

𝑚𝑖 = 2𝑑 + 𝑘 − 2.

Suppose that 𝑈𝑖 is the invariant Fatou component containing 𝑐𝑖 (𝑖 = 1, · · · , 𝑘). Then 𝑈𝑖 is a simply
connected domain such that 𝑅 |𝑈𝑖 is conformally conjugate to 𝑧𝑚𝑖 |D [31, Theorem 9.3]. This defines
internal rays in𝑈𝑖 and R maps the internal ray at angle 𝜃 ∈ R/Z to the one at angle−𝑚𝑖𝜃 ∈ R/Z. It follows
that there are (𝑚𝑖 + 1) fixed internal rays in 𝑈𝑖 . A straightforward adaptation of [31, Theorem 18.10]
now implies that all of these fixed internal rays land at repelling fixed points on 𝜕𝑈𝑖 .

We define the Tischler graph 𝒯 of R as the union of the closures of the fixed internal rays of R.

Lemma 4.1. R has exactly (𝑑 + 2𝑘 − 1) distinct fixed points in Ĉ of which (𝑑 + 𝑘 − 1) lie on the Julia
set of R.

Proof. Note that R has no neutral fixed point and exactly k attracting fixed points. The count of
the total number of fixed points of R now follows from the Lefschetz fixed point theorem (see [22,
Lemma 6.1]). �
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Lemma 4.2. The fixed internal rays of R land pairwise.

Proof. As R is a local orientation-reversing diffeomorphism in a neighbourhood of the landing point of
each internal ray, it follows that at most two distinct fixed internal rays may land at a common point.

Note that the total number of fixed internal rays of R is

𝑘∑
𝑖=1

(𝑚𝑖 + 1) = 2(𝑑 + 𝑘 − 1),

while there are only (𝑑 + 𝑘 − 1) landing points available for these rays by Lemma 4.1. Since no more
than two fixed internal rays can land at a common fixed point, the result follows. �

In our setting, it is more natural to put a simplicial structure on 𝒯 so that the vertices correspond to
the critical points of R. We will refer to the repelling fixed points on 𝒯 as the midpoints of the edges.
To distinguish an edge of 𝒯 from an arc connecting a vertex and a midpoint, we will call the latter an
internal ray of 𝒯.

Corollary 4.3. The valence of the critical point 𝑐𝑖 (as a vertex of 𝒯) is (𝑚𝑖 + 1) (𝑖 = 1, · · · , 𝑘). The
repelling fixed points of R are in bijective correspondence with the edges of 𝒯.

The proof of Lemma 4.2 implies the following (see [11, Corollary 6] for the same statement in the
holomorphic setting).

Corollary 4.4. Each fixed point of R lies on (the closure of) a fixed internal ray.

We are now ready to establish the key properties of the Tischler graph of a critically fixed anti-rational
map that will be used in the combinatorial classification of such maps.

Lemma 4.5. The faces of 𝒯 are Jordan domains.

Proof. Let F be a face of the Tischler graph 𝒯. Then a component of the ideal boundary 𝐼 (𝐹) consists
of a sequence of edges 𝑒1, . . . , 𝑒𝑚 of 𝒯, oriented counterclockwise viewed from F. Note that a priori,
𝑒𝑖 may be equal to 𝑒 𝑗 in 𝒯 for different i and j.

Consider the graph T whose vertices are components of Ĉ \ 𝐹 and two vertices 𝑈,𝑉 are connected
by an edge if there is a path in Ĉ \ 𝐹 connecting 𝑈,𝑉 and not passing through other components. Then
T is a finite union of trees. Since each vertex (of 𝒯) has valence at least 3, we have that 𝑒𝑖 ≠ 𝑒𝑖+1.
This also implies that two adjacent components 𝑈,𝑉 either share a common boundary vertex or there
exists an edge of 𝒯 connecting them. Let U be a component of Ĉ \ 𝐹. If 𝑒𝑖 , 𝑒 𝑗 are a pair of adjacent
edges of 𝜕𝑈 but 𝑒𝑖 , 𝑒 𝑗 are not adjacent on the ideal boundary 𝐼 (𝐹), then there exists a component V of
Ĉ \ 𝐹 ‘attached’ to U through the vertex 𝑣 = 𝑒𝑖 ∩ 𝑒 𝑗 (see Figure 4.1). Therefore, the number of pairs of
adjacent edges of 𝜕𝑈 that are not adjacent on the ideal boundary 𝐼 (𝐹) equals to the valence of U in T.
Choose U to be an end point of T and let 𝑆 = 𝜕𝑈.

Since R is orientation-reversing and each edge of 𝒯 is invariant under the map, R reflects the two
sides near each open edge of S. Thus, there is a connected component V of 𝑅−1(𝑈) with 𝜕𝑉 ∩ 𝜕𝑈 ≠ ∅
and 𝑉 ∩ 𝐹 ≠ ∅. It is easy to see from the local dynamics of 𝑧𝑚𝑖 at the origin that near a critical point,
R sends the region bounded by two adjacent edges of 𝒯 to its complement. Therefore, by our choice of
U, we have 𝜕𝑈 ⊆ 𝜕𝑉 . Since 𝜕𝐹 is R-invariant, 𝑉 ∩ 𝜕𝐹 = ∅. Thus, 𝑉 ⊆ 𝐹 and V contains no critical
points of R. As U is a disk, the Riemann–Hurwitz formula now implies that V is a disk and R is a
homeomorphism from 𝜕𝑉 to 𝜕𝑈. Therefore, 𝜕𝑈 = 𝜕𝑉 and 𝑉 = 𝐹; so F is a Jordan domain. �

In particular, we have the following.

Corollary 4.6. The Tischler graph 𝒯 is connected.

In fact, the Tischler graph gives a topological model for the map R.
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Figure 4.1. An a priori possible schematic of a component of the boundary of F.

Corollary 4.7. Let F be a face of𝒯 and 𝐹𝑐 = Ĉ \ 𝐹 be the closure of its complement. Then 𝑅 : 𝐹 −→ 𝐹𝑐

is an orientation-reversing homeomorphism.

Lemma 4.8. Let 𝐹1, 𝐹2 be two faces of 𝒯; then the boundaries share at most one edge.

Proof. Suppose that 𝐹1 and 𝐹2 share two or more edges. For 𝑖 = 1, 2, let 𝛾𝑖 be the hyperbolic geodesic
arc in �̊�𝑖 connecting the two midpoints of the edges and let 𝛾 = 𝛾1 ∪ 𝛾2. Since each vertex has valence
at least 3, we see that 𝛾 is essential in Ĉ \ 𝑉 (𝒯) = Ĉ \ 𝑃(𝑅) (that is, 𝛾 is not homotopic to a point or
a puncture of the surface Ĉ \ 𝑃(𝑅)), where 𝑃(𝑅) stands for the postcritical set of R and 𝑉 (𝒯) denotes
the vertex set of the graph 𝒯. By Corollary 4.7, there exists 𝛾′ homotopic to 𝛾 in Ĉ \ 𝑃(𝑅) such that
𝑅 : 𝛾′ −→ 𝛾 is a homeomorphism. This gives a Thurston obstruction (more precisely, a Levy cycle) for
the anti-rational map R (see the discussion in Subsection 4.2 on Thurston’s theory for rational maps),
which is a contradiction. Hence, the supposition that 𝐹1 and 𝐹2 share two or more edges is false. �

The following result, where we translate the above properties of the Tischler graph to a simple graph-
theoretic property of its planar dual, plays a crucial role in the combinatorial classification of critically
fixed anti-rational maps.

Lemma 4.9. Let Γ be the planar dual of the Tischler graph 𝒯 of a critically fixed anti-rational map R.
Then Γ is simple and 2-connected.

Proof. By Lemma 4.8, no two faces of 𝒯 share two edges on their boundary. Hence, the dual graph
contains no multi-edge. Again, as each face of 𝒯 is a Jordan domain by Lemma 4.5, the dual graph
contains no self-loop. Therefore, Γ is simple.

The fact that each face of 𝒯 is a Jordan domain also implies that the complement of the closure of
each face is connected. So the dual graph Γ remains connected upon deletion of any vertex. In other
words, Γ is 2-connected. �

4.2. Constructing critically fixed anti-rational maps from graphs

Let Γ be a 2-connected simple plane graph and 𝐺Γ be an associated kissing reflection group. In
Subsection 3.5, we constructed a topological branched covering GΓ from the Nielsen map of 𝐺Γ. In
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the remainder of this section, we will use this branched covering GΓ to promote Lemma 4.9 to a
characterisation of Tischler graphs of critically fixed anti-rational maps.

Proposition 4.10. A plane graph T is the Tischler graph of a critically fixed anti-rational map R if and
only if the dual (plane) graph Γ is simple and 2-connected. Moreover, R is topologically conjugate to GΓ.

We will first introduce some terminology. A postcritically finite branched covering (possibly
orientation-reversing) of a topological 2-sphere S2 is called a Thurston map. We denote the postcritical
set of a Thurston map f by 𝑃( 𝑓 ). Two Thurston maps f and g are equivalent if there exist two orientation-
preserving homeomorphisms ℎ0, ℎ1 : (S2, 𝑃( 𝑓 )) → (S2, 𝑃(𝑔)) so that ℎ0 ◦ 𝑓 = 𝑔 ◦ ℎ1, where ℎ0 and
ℎ1 are isotopic relative to 𝑃( 𝑓 ).

A set of pairwise disjoint, nonisotopic, essential, simple closed curves Σ on S2\𝑃( 𝑓 ) is called a curve
system. A curve system Σ is called f -stable if for every curve 𝜎 ∈ Σ, all of the essential components of
𝑓 −1(𝜎) are homotopic rel 𝑃( 𝑓 ) to curves in Σ. We associate to an f -stable curve system Σ the Thurston
linear transformation

𝑓Σ : RΣ −→ RΣ

defined as

𝑓Σ (𝜎) =
∑

𝜎′⊆ 𝑓 −1 (𝜎)

1
deg( 𝑓 : 𝜎′ → 𝜎)

[𝜎′]Σ,

where 𝜎 ∈ Σ and [𝜎′]Σ denotes the element of Σ isotopic to 𝜎′, if it exists. The curve system is called
irrreducible if 𝑓Σ is irreducible as a linear transformation. It is said to be a Thurston obstruction if the
spectral radius 𝜆( 𝑓Σ) ≥ 1.

Similarly, an arc 𝜆 in S2 \ 𝑃( 𝑓 ) is an embedding of (0, 1) in S2 \ 𝑃( 𝑓 ) with endpoints in 𝑃( 𝑓 ). It is
said to be essential if it is not contractible in S2 fixing the two endpoints. A set of pairwise nonisotopic
essential arcs Λ is called an arc system. The Thurston linear transformation 𝑓Λ is defined in a similar
way, and we say that it is irreducible if 𝑓Λ is irreducible as a linear transformation.

The next proposition allows us to directly apply Thurston’s topological characterisation theorem
for rational maps (see [6, Theorem 1]) to the study of orientation-reversing Thurston maps (see [9,
Theorem 3.9] for an intrinsic topological characterisation theorem for anti-rational maps). It is proved
by considering the second iterate of Thurston’s pullback map on the Teichmüller space of S2 \ 𝑃( 𝑓 ).
The reader is referred to [6] for the definition of hyperbolic orbifold, but this is the typical case as any
map with more than four postcritical points has hyperbolic orbifold.

Proposition 4.11. [24, Proposition 6.1] Let f be an orientation-reversing Thurston map so that 𝑓 ◦ 𝑓
has hyperbolic orbifold. Then f is equivalent to an anti-rational map if and only if 𝑓 ◦ 𝑓 is equivalent
to a rational map if and only if 𝑓 ◦ 𝑓 has no Thurston obstruction. Moreover, if f is equivalent to an
anti-rational map, the map is unique up to Möbius conjugacy.

For a curve system Σ (respectively an arc system Λ), we set Σ̃ (respectively Λ̃) as the union of
those components of 𝑓 −1(Σ) (respectively 𝑓 −1(Λ)) which are isotopic relative to 𝑃( 𝑓 ) to elements of
Σ (respectively Λ). We will use Σ ·Λ to denote the minimal intersection number between them. We will
be using the following theorem excerpted and paraphrased from [38, Theorem 3.2].

Theorem 4.12. [38, Theorem 3.2] Let f be an orientation-preserving Thurston map, Σ an irreducible
Thurston obstruction in (S2, 𝑃( 𝑓 )) and Λ an irreducible arc system in (S2, 𝑃( 𝑓 )). Assume that Σ
intersect Λ minimally; then either

◦ Σ · Λ = 0; or
◦ Σ · Λ ≠ 0 and for each 𝜆 ∈ Λ, there is exactly one connected component 𝜆′ of 𝑓 −1(𝜆) such that
𝜆′ ∩ Σ̃ ≠ ∅. Moreover, the arc 𝜆′ is the unique component of 𝑓 −1(𝜆) which is isotopic to an element
of Λ.
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With these preparations, we are now ready to show that GΓ is equivalent to an anti-rational map. The
proof is similar to [24, Proposition 6.2].

Lemma 4.13. Let Γ be a 2-connected simple plane graph. Then GΓ is equivalent to a critically fixed
anti-rational map RΓ.

Proof. It is easy to verify that GΓ ◦ GΓ has hyperbolic orbifold, except when Γ = Γ𝑑 , in which case GΓ

has only two fixed critical points, each of which is fully branched and GΓ is equivalent to 𝑧𝑑 . Thus, by
Proposition 4.11, we will prove the lemma by showing that there is no Thurston obstruction for GΓ ◦GΓ.

We will assume that there is a Thurston obstruction Σ and arrive at a contradiction. After passing
to a subset, we may assume that Σ is irreducible. Isotoping the curve system Σ, we may assume that
Σ intersects the graph 𝒯(GΓ) minimally (see Subsection 3.5 for the definition of 𝒯(GΓ)). Let 𝜆 be an
edge in 𝒯(GΓ); then Λ = {𝜆} is an irreducible arc system. Let Σ̃ be the union of those components of
G−2
Γ (Σ) which are isotopic to elements of Σ.

We claim that Σ̃ does not intersect G−2
Γ (𝜆) \ 𝜆. Indeed, applying Theorem 4.12, we are led to the

following two cases. In the first case, we have Σ · 𝜆 = 0; hence, G−2
Γ (Σ) cannot intersect G−2

Γ (𝜆) and
the claim follows. In the second case, since GΓ (𝜆) = 𝜆, we conclude that 𝜆 is the unique component of
G−2
Γ (𝜆) isotopic to 𝜆. Thus, the only component of G−2

Γ (𝜆) intersecting Σ̃ is 𝜆, so the claim follows.
Applying this argument on all the edges of 𝒯(GΓ), we conclude that Σ̃ does not intersect

G−2
Γ (𝒯(GΓ)) \𝒯(GΓ).

Let F be a face of 𝒯(GΓ) with vertices of 𝜕𝐹 denoted by 𝑣1, . . . , 𝑣𝑘 counterclockwise. Denote
𝑒𝑖 ⊆ 𝜕𝐹 be the open edge connecting 𝑣𝑖 , 𝑣𝑖+1. We claim that the graph obtained by removing the
boundary edges of F

𝒯𝐹 := 𝒯(GΓ) \

𝑘⋃
𝑖=1

𝑒𝑖

is still connected. Since 𝒯(GΓ) is connected, any vertex v is connected to the set {𝑣1, . . . , 𝑣𝑘 } in 𝒯𝐹 .
Thus, it suffices to show that 𝑣𝑖 and 𝑣𝑖+1 are connected in 𝒯𝐹 for all i. As the planar dual Γ of 𝒯(GΓ)
is 2-connected and has no self-loop, each face of 𝒯(GΓ) is a Jordan domain. Hence, there exists a
face 𝐹𝑖 ≠ 𝐹 of 𝒯(GΓ) sharing 𝑒𝑖 on the boundary with F. Moreover, since Γ has no multi-edge, the
boundaries of any two faces of 𝒯(GΓ) intersect at most at one edge. Thus, 𝜕𝐹𝑖 ∩ 𝜕𝐹 = 𝑒𝑖 ∪ {𝑣𝑖 , 𝑣𝑖+1}.
Hence, 𝑣𝑖 and 𝑣𝑖+1 are connected by a path in 𝜕𝐹𝑖 \ 𝑒𝑖 ⊆ 𝒯𝐹 , and this proves the claim.

Therefore, by Lemma 3.22, we deduce that

(G−1
Γ (𝒯(GΓ)) \𝒯(GΓ)) ∪𝑉 (𝒯(GΓ))

is connected. Thus, (G−2
Γ (𝒯(GΓ)) \𝒯(GΓ))∪𝑉 (𝒯(GΓ)) is a connected graph containing the postcritical

set 𝑃(GΓ ◦ GΓ) = 𝑉 (𝒯(GΓ)). This forces Σ to be empty, which is a contradiction.
Therefore, GΓ is equivalent to an anti-rational map RΓ. Since GΓ is critically fixed, so is RΓ. �

Let ℎ0, ℎ1 : (S2, 𝑃(GΓ)) → (S2, 𝑃(RΓ)) be two orientation-preserving homeomorphisms so that
ℎ0 ◦ GΓ = RΓ ◦ ℎ1 where ℎ0 and ℎ1 are isotopic relative to 𝑃(GΓ) = 𝑉 (𝒯(GΓ)).

We now use a standard pullback argument to prove the following.

Lemma 4.14. ℎ0 (𝒯(GΓ)) is isotopic to the Tischler graph 𝒯(RΓ).

Proof. Let 𝛼 be an edge of 𝒯(GΓ); then GΓ (𝛼) = 𝛼. Consider the sequence of homeomorphisms ℎ𝑖 with

ℎ𝑖−1 ◦ GΓ = RΓ ◦ ℎ𝑖 .

Each ℎ𝑖 is normalised so that it carries 𝑃(GΓ) to 𝑃(RΓ). Note by induction, 𝛽𝑖 = ℎ𝑖 (𝛼) is isotopic to 𝛽0
relative to the endpoints. Applying isotopy, we may assume that there is a decomposition 𝛽0 = 𝛽−0+𝛾0+𝛽

+
0 ,
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where 𝛽±0 are two internal rays and 𝛾0 does not intersect any invariant Fatou component. Then every
𝛽𝑖 = 𝛽−𝑖 + 𝛾𝑖 + 𝛽

+
𝑖 has such a decomposition, too.

Note that RΓ (𝛾𝑖+1) = 𝛾𝑖 and RΓ : 𝛾𝑖+1 → 𝛾𝑖 is injective for each i. Since RΓ is hyperbolic and
the curves 𝛾𝑖 are uniformly bounded away from the postcritical point set of RΓ, we conclude that the
sequence of curves {𝛾𝑖} shrinks to a point. Thus, if 𝛽 is a limit of 𝛽𝑖 in the Hausdorff topology, then 𝛽 is
a union of two internal rays and it is isotopic to 𝛽0. Therefore, ℎ0 (𝛼) is isotopic to an edge of 𝒯(RΓ).

Since this is true for every edge of 𝒯(GΓ) and ℎ0 is an orientation-preserving homeomorphism, by
counting the valence at every critical point, we conclude that ℎ0 (𝒯(GΓ)) is isotopic to 𝒯(RΓ). �

Therefore, after performing isotopy, we may assume that ℎ0 restricts to a homeomorphism between
the graphs ℎ0 : 𝒯(GΓ) −→ 𝒯(RΓ). By lifting, ℎ1 : 𝒯(GΓ) −→ 𝒯(RΓ) is also a homeomorphism.
Let F be a face of Γ. By our construction of GΓ (see Equation 3.2), GΓ is conjugate to 𝑧𝑑𝐹 on the
corresponding component Ω𝐹 , where 𝑑𝐹 + 1 is the number of edges in the ideal boundary of the face F.
Since 𝒯(GΓ) is constructed by taking the union over all faces of the fixed internal rays under such
conjugacies (see Equation 3.3), the dynamics of GΓ and RΓ on each edge of 𝒯(GΓ) and 𝒯(RΓ) are
conjugate. Therefore, after further isotoping ℎ0, we may assume that

ℎ0 = ℎ1 : 𝒯(GΓ) −→ 𝒯(RΓ)

gives a conjugacy between GΓ and RΓ from 𝒯(GΓ) to 𝒯(RΓ). Hence, both ℎ0 and ℎ1 send a face of
𝒯(GΓ) homomorphically to the corresponding face of 𝒯(RΓ).

As an application of the above, we will show that the dynamics on the limit set and Julia set are
topologically conjugate (cf. [24, Theorem 6.11]).

Lemma 4.15. There is a homeomorphism ℎ : Λ(𝐺Γ) −→ J(RΓ) satisfying ℎ ◦ GΓ = RΓ ◦ ℎ.

Proof. Let 𝑃0 consist of the points of tangency of the circle packing, 𝑃𝑖+1 := G−1
Γ (𝑃𝑖) and 𝑃∞ :=

⋃∞
𝑖=0 𝑃

𝑖 .
Then 𝑃∞ corresponds to the 𝐺Γ orbit of the cusps and hence is dense in Λ(𝐺Γ). Let 𝑄0 := ℎ0 (𝑃

0),
which is also the set of repelling fixed points of RΓ and𝑄𝑖+1 := R−1

Γ (𝑄𝑖). Then𝑄∞ :=
⋃∞
𝑖=0 𝑄

𝑖 is dense
in J(RΓ).

Recall that for each face F of Γ, the dynamics of GΓ (respectively of RΓ) on the corresponding
component of Ω(𝐺Γ) (respectively on the corresponding critically fixed Fatou component of RΓ) can
be uniformised to 𝑧𝑑 on D. Let Π be the closed ideal 𝑑 + 1-gon in D with ideal vertices at the fixed
points of 𝑧𝑑 on S1. Let LG,𝐹 and LR,𝐹 be the image of Π under the uniformising map in the dynamical
plane of GΓ and RΓ respectively and LG and LR be the union over all faces.

Let E0 := Ĉ \LG and H0 := Ĉ \LR. Inductively, let E𝑖+1 := G−1
Γ (E𝑖) and H𝑖+1 := R−1

Γ (H𝑖). Note that
these sets are the analogues of D𝑖 for kissing reflection groups. Since GΓ (respectively RΓ) sends a face
of 𝒯(GΓ) (respectively a face of 𝒯(RΓ)) to its complement univalently, our construction guarantees
that E1 ⊆ E0 and H1 ⊆ H0. Inductively, we see that {E𝑖} and {H𝑖} are nested sequences of closed sets.
Thus, we have

Λ(𝐺Γ) =
∞⋂
𝑖=0

E𝑖

and

J(RΓ) =
∞⋂
𝑖=0

H𝑖 .

Since RΓ is hyperbolic and H𝑖 contains no critical value, the diameters of the components of
H𝑖 ∩ J(RΓ) shrink to 0 uniformly. On the other hand, since GΓ = NΓ on Λ(𝐺Γ), the diameters of the
components of E𝑖 ∩ Λ(𝐺Γ) shrink to 0 uniformly by Lemma 3.3.
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After isotoping ℎ0, we may assume that ℎ0 (E0) = H0. We consider the pullback sequence {ℎ𝑖} with

ℎ𝑖−1 ◦ GΓ = RΓ ◦ ℎ𝑖 ,

where each ℎ𝑖 carries 𝑃(GΓ) to 𝑃(RΓ). Since we have assumed ℎ0 = ℎ1 on 𝑃0, inductively, we have
ℎ 𝑗 = ℎ𝑖 on 𝑃𝑖 and ℎ 𝑗 (𝑃𝑖) = 𝑄𝑖 for all 𝑗 ≥ 𝑖. We define ℎ(𝑥) := lim ℎ𝑖 (𝑥) for 𝑥 ∈ 𝑃∞.

Then a similar argument as in the proof of Proposition 3.21 implies that h is uniformly continuous
on 𝑃∞. Indeed, given 𝜖 > 0, we can choose N so that the diameter of any component of H𝑁 ∩ J(RΓ)
is less than 𝜖 . We choose 𝛿 so that any two nonadjacent components of E𝑁 ∩ Λ(𝐺Γ) are at least 𝛿
distance away. If 𝑥, 𝑦 ∈ 𝑃∞ are at most 𝛿 distance apart, they lie in two adjacent components of E𝑁 , so
ℎ 𝑗 (𝑥), ℎ 𝑗 (𝑦) lie in two adjacent components of H𝑁 for all 𝑗 ≥ 𝑁 . Hence, 𝑑 (ℎ 𝑗 (𝑥), ℎ 𝑗 (𝑦)) < 2𝜖 .

Since 𝑃∞ and 𝑄∞ are dense on Λ(𝐺Γ) and J(RΓ) (respectively), we get a unique continuous
extension

ℎ : Λ(𝐺Γ) −→ J(RΓ).

Applying the same argument on the sequence {ℎ−1
𝑗 }, we get the continuous inverse of h. Thus, h is a

homeomorphism. Since h conjugates GΓ to RΓ on 𝑃∞, it also conjugates GΓ to RΓ on Λ(𝐺Γ). �

We are now ready to prove Proposition 4.10 (cf. [24, Proposition 6.13]).

Proof of Proposition 4.10. By Lemma 4.9, the dual graph of a Tischler graph (of a critically fixed anti-
rational map) is 2-connected simple and plane.

Conversely, given any 2-connected simple plane graph Γ, by Lemma 4.13 and Lemma 4.14 we can
construct a critically fixed anti-rational map RΓ whose Tischler graph is the planar dual of Γ.

It remains to show that GΓ and RΓ are topologically conjugate. Let h be the topological conjugacy
on Λ(𝐺Γ) produced in Lemma 4.15. Let U be a critically fixed component GΓ. Then by construction,
there exists Φ : D −→ 𝑈 conjugating 𝑚−𝑑 (𝑧) = 𝑧𝑑 to GΓ. The map extends to a semiconjugacy between
S1 and 𝜕𝑈.

Similarly, let V be the corresponding critically fixed Fatou component of RΓ. Then we have Ψ :
D −→ 𝑉 conjugating 𝑚−𝑑 (𝑧) = 𝑧𝑑 to RΓ, which extends to a semiconjugacy. Note that there are 𝑑 + 1
different choices of such a conjugacy, and we may choose one so that ℎ ◦ Φ = Ψ on S1. Thus, we can
extend the topological conjugacy h to all of U by setting ℎ := Ψ ◦Φ−1.

In this way, we obtain a homeomorphic extension of h to all critically fixed components of GΓ. Lifting
these extensions to all of the preimages of the critically fixed components of GΓ, we get a map defined
on Ĉ. Since the diameters of the preimages of the critically fixed components (of GΓ) as well as the
corresponding Fatou components (of RΓ) go to 0 uniformly, we conclude that all of these extensions
paste together to yield a global homeomorphism, which is our desired topological conjugacy. �

In light of Proposition 4.10, we see that the association of the isomorphism class of a 2-connected
simple plane graph to the Möbius conjugacy class of a critically fixed anti-rational map is well defined
and surjective. To verify that this is indeed injective, we remark that if two (plane) graphs Γ and Γ′ are
isomorphic as plane graphs, then the associated Tischler graphs are also isomorphic as plane graphs.
This means that the corresponding pair of critically fixed anti-rational maps are Thurston equivalent.
Thus, by Thurston’s rigidity result, they are Möbius conjugate.

As in the kissing reflection group setting, we define a geometric mating of two (anti-)polynomials as
follows.

Definition 4.16. We say that a rational map (or an anti-rational map) R is a geometric mating of two
polynomials (or two anti-polynomials) 𝑃± with connected Julia sets if we have

◦ a decomposition of the Fatou set F(𝑅) = F+ � F− with J(𝑅) = 𝜕F+ = 𝜕F−; and
◦ two continuous surjections from the filled Julia sets 𝜓± : K(𝑃±) → F± that are conformal between

IntK(𝑃±) and F±

https://doi.org/10.1017/fms.2021.81 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2021.81


32 Russell Lodge et al.

so that

𝜓± ◦ 𝑃± = 𝑅 ◦ 𝜓±.

As a corollary, we have the following.

Corollary 4.17.

1. A critically fixed anti-rational map R is an anti-polynomial if and only if the dual graph Γ of 𝒯(𝑅)
is outerplanar.

2. A critically fixed anti-rational map R is a geometric mating of two anti-polynomials if and only if the
dual graph Γ of 𝒯(𝑅) is Hamiltonian.

3. A critically fixed anti-rational map R has a gasket Julia set if and only if the dual graph Γ of 𝒯(𝑅)
is 3-connected.

Proof. The first statement follows from Proposition 4.10 as the graph Γ is outerplanar if and only if
there is a vertex in the dual graph Γ∨ = 𝒯(𝑅) with maximal valence if and only if R has a fully branched
fixed critical point.

For the second statement, let Γ be a 2-connected simple plane graph. Let 𝐺Γ be an associated
kissing reflection group and GΓ and RΓ be the associated branched covering and anti-rational map. By
Proposition 4.10, GΓ and RΓ are topologically conjugated by h.

If RΓ is a geometric mating of two anti-polynomials 𝑃± which are necessarily critically fixed, then
the conjugacy gives a decomposition of Ω(𝐺Γ) = Ω+ � Ω−. It is not hard to check that the Γ-actions
on Ω± are conjugate to the actions of the function kissing reflection groups 𝐺± on their filled limit
sets, where 𝐺± correspond to 𝑃±. Thus, 𝐺Γ is a geometric mating of the two function kissing reflection
groups 𝐺±, so Γ is Hamiltonian by Proposition 3.21.

Conversely, if Γ is Hamiltonian, then 𝐺Γ is a geometric mating of two function kissing reflection
groups 𝐺± and we get a decomposition of Ω(𝐺Γ) by Proposition 3.21. The conjugacy h transports
this decomposition to the anti-rational map setting. One can now check directly that RΓ is a geometric
mating of the anti-polynomials 𝑃± that are associated to the function kissing reflection groups 𝐺±.

The third statement follows immediately from Propositions 4.10 and 3.10. �

Remark 4.18. The Hubbard tree of a critically fixed anti-polynomial P is a strict subset of𝒯(𝑃)∩K(𝑃),
where K(𝑃) is the filled Julia set of P (cf. [20, §5]).

Remark 4.19. It is not hard to see that the existence of a Hamiltonian cycle for 𝒯(𝑅)∨ is equivalent to
the existence of an equator for R in the sense of [30, Definition 4.1]. This gives an alternative proof of
the second statement of Corollary 4.17 (cf. [30, Theorem 4.2]).

4.3. Dynamical correspondence

Let 𝐺Γ and RΓ be a kissing reflection group and a critically fixed anti-rational map associated to a
2-connected simple plane graph Γ. Here we summarise the correspondence between various dynamical
objects associated with the group and the anti-rational map.

◦ Markov partitions for limit and Julia sets: The associated circle packing P gives a Markov partition
for the group dynamics on the limit set (more precisely, for the action of the Nielsen map NΓ on
Λ(𝐺Γ)). On the other side, the faces of the Tischler graph determine a Markov partition for the action
of RΓ on the Julia set. The topological conjugacy respects this pair of Markov partitions and the
itineraries of points with respect to the corresponding Markov partitions.

◦ Cusps and repelling fixed points: The orbits of parabolic fixed points of 𝐺Γ bijectively correspond
to pairs of adjacent vertices or, equivalently, to the edges of Γ. On the other side, the repelling fixed
points of RΓ are in bijective correspondence with the edges of the Tischler graph 𝒯 = Γ∨ and thus
also with the edges of Γ. They are naturally identified by the topological conjugacy.
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◦ 𝝈-Invariant curves and 2-cycles: Each 𝜎-invariant simple closed curve on the conformal boundary
𝜕M(𝐺Γ) corresponds to a pair of nonadjacent vertices on a face of Γ (see the discussion on pinching
deformations after Proposition 3.17 for the definition of the involution 𝜎). On the other side, the
above Markov partition for RΓ |J(R(Γ)) shows that each 2-cycle on the ideal boundary of an invariant
Fatou component corresponds to a pair of nonadjacent vertices on the associated face of Γ. These
𝜎-invariant curves and 2-cycles are naturally identified by the topological conjugacy. We remark
that it is possible that a 𝜎-invariant curve yields an accidental parabolic element, in which case the
corresponding 2-cycle on the ideal boundary of the invariant Fatou component coalesces and gives
rise to a repelling fixed point of RΓ. This happens if and only if the two corresponding vertices are
adjacent in Γ.

◦ Question mark conjugacy: If we choose our group 𝐺Γ so that each conformal boundary is the
double of a suitable regular ideal polygon, then the restriction of the homeomorphism h of Lemma
4.15 between the boundary of an invariant Fatou component and the boundary of the correspond-
ing component of Ω(𝐺Γ) gives a homeomorphism between the ideal boundaries 𝜙 : S1 −→ S1 that
conjugates 𝑧𝑒 to the Nielsen map N𝑒 of the regular ideal (𝑒 + 1)-gon reflection group. This con-
jugacy 𝜙 is a generalisation of the Minkowski question mark function (see [21, §3.2, §5.4.2] [24,
Remark 9.1]).

◦ Function groups and anti-polynomials: If 𝐺Γ is a function kissing reflection group (of rank 𝑑 + 1),
then it can be constructed by pinching a 𝜎-invariant multicurve 𝛼 on one component of 𝜕M(G𝑑)
(recall that G𝑑 is the regular ideal polygon group of rank 𝑑 + 1). Under the natural orientation-
reversing identification of the two components of 𝜕M(G𝑑), the multicurve 𝛼 gives a 𝜎-invariant
multicurve𝛼′ on the component of 𝜕M(𝐺Γ) associated to the𝐺Γ-invariant domainΩ0 ⊆ Ω(𝐺Γ). The
multicurve 𝛼′ consists precisely of the simple closed curves corresponding to the accidental parabolics
of 𝐺Γ. On the other side, the corresponding 2-cycles on the ideal boundary of the unbounded
Fatou component (that is, the basin of infinity) generate the lamination for the Julia set of the
anti-polynomial 𝑅Γ.

◦ Quasi-Fuchsian closure and mating: If 𝐺Γ lies in the closure of the quasi-Fuchsian deformation
space of G𝑑 , then 𝐺Γ is obtained by pinching two nonparallel 𝜎-invariant multicurves 𝛼+ and 𝛼−

on the two components of 𝜕M(G𝑑); equivalently, 𝐺Γ is a mating of two function kissing reflection
groups 𝐺+ and 𝐺−. On the other side, the critically fixed anti-rational map RΓ is a mating of the
critically fixed anti-polynomials 𝑃+ and 𝑃−, which correspond to the groups𝐺+ and𝐺− (respectively).
The topological conjugacy between NΓ |Λ(𝐺Γ) and RΓ |J(RΓ) is induced by the circle homeomorphism
that conjugates N𝑑 to 𝑧𝑑 .

4.4. Mating of two anti-polynomials

In this subsection, we shall discuss the converse question of mateablity in terms of laminations. Let

𝑃(𝑧) = 𝑧𝑑 + 𝑎𝑑−2𝑧
𝑑−2 + 𝑎𝑑−3𝑧

𝑑−3 + . . . + 𝑎0

be a monic centred anti-polynomial with connected Julia set. We denote the filled Julia set by K(𝑃).
There is a unique Böttcher coordinate

𝜓 : C \ D −→ C \K(𝑃)

with derivative 1 at infinity that conjugates 𝑧𝑑 to P. We shall call a monic centred anti-polynomial
equipped with this preferred Böttcher coordinate a marked anti-polynomial. Note that when the Julia set
is connected, this marking is equivalent to an affine conjugacy class of anti-polynomials together with
a choice of Böttcher coordinate at infinity. If we further assume that the Julia set is locally connected,
the map 𝜓 extends to a continuous semi-conjugacy 𝜓 : S1 −→ J(𝑃) between 𝑧𝑑 and P. This semi-
conjugacy gives rise to a 𝑧𝑑-invariant lamination on the circle S1 for the marked anti-polynomial. The
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coordinate on S1 � R/Z will be called external angle. The image of {𝑟𝑒2𝜋𝑖𝜃 ∈ C : 𝑟 ≥ 1} under 𝜓 will
be called an external ray at angle 𝜃 and will be denoted by 𝑅(𝜃). If 𝑥 ∈ J(𝑃) is the intersection of two
external rays, then x is a cut-point of J(𝑃) (equivalently, a cut-point of K(𝑃)).

If we denote C = C ∪ {(∞, 𝑤) : 𝑤 ∈ S1} as the complex plane together with the circle at infinity,
then a marked anti-polynomial extends continuously to C by the formula 𝑃(∞, 𝑤) = (∞, 𝑤𝑑).

Let P and Q be two marked degree d anti-polynomials. To distinguish the two domains C , we denote
them by C𝑃 and C𝑄. The quotient

S2
𝑃,𝑄 := (C𝑃 ∪ C𝑄)/{(∞𝑃 , 𝑤) ∼ (∞𝑄, 𝑤)}

defines a topological sphere. Denote the equivalence class of (∞𝑃 , 𝑤) by (∞, 𝑤) and define the equator
of S2

𝑃,𝑄 to be the set {(∞, 𝑤) : 𝑤 ∈ S1}. The formal mating of P and Q is the degree d branched cover
𝑃⊥⊥𝑄 : S2

𝑓 ,𝑔 → S2
𝑓 ,𝑔 defined by the formula

(𝑃⊥⊥𝑄) (𝑧) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑃(𝑧) 𝑧 ∈ C𝑃 ,

(∞, 𝑧𝑑) for (∞, 𝑧),
𝑄(𝑧) 𝑧 ∈ C𝑄 .

Suppose that P and Q have connected and locally connected Julia sets. The closure in S2
𝑃,𝑄 of the

external ray at angle 𝜃 in C𝑃 is denoted 𝑅𝑃 (𝜃) and, likewise, the closure of the external ray at angle
𝜃 in C𝑄 is denoted 𝑅𝑄 (𝜃). Then 𝑅𝑃 (𝜃) and 𝑅𝑄 (−𝜃) are rays in S2

𝑃,𝑄 that share a common endpoint
(∞, 𝑒2𝜋𝑖𝜃 ). The extended external ray at angle 𝜃 in S2

𝑃,𝑄 is defined as 𝑅(𝜃) := 𝑅𝑃 (𝜃) ∪ 𝑅𝑄 (−𝜃). Each
extended external ray intersects each of K(𝑃), K(𝑄) and the equator at exactly one point.

We define the ray equivalence ∼𝑟𝑎𝑦 as the smallest equivalence relation on S2
𝑃,𝑄 so that two points

𝑥, 𝑦 ∈ S2
𝑃,𝑄 are equivalent if there exists 𝜃 so that 𝑥, 𝑦 ∈ 𝑅(𝜃). A ray equivalence class 𝛾 can be

considered as an embedded graph: the vertices are the points in 𝛾 ∩ (K(𝑃) ∪K(𝑄)) and the edges are
the external extended rays in 𝛾. We also denote by [𝑥] the ray equivalence class of x. The diameter of a
ray equivalence class is computed with respect to the graph metric. The vertex set of a ray equivalence
class [𝑥] has a natural partition consisting of the two sets [𝑥] ∩ K(𝑃) and [𝑥] ∩ K(𝑄), and using this
partition [𝑥] is seen to be a bipartite graph.

An equivalence relation ∼ on S2 is said to be Moore-unobstructed if the quotient S2/∼ is homeomor-
phic to S2. The following theorem is due to A. Epstein (see [36, Proposition 4.12]).

Proposition 4.20. Let P and Q be two anti-polynomials of equal degree 𝑑 ≥ 2 with connected and
locally connected Julia sets. If the equivalence classes of ∼𝑟𝑎𝑦 are ray-trees having uniformly bounded
diameter, then S2

𝑃,𝑄/∼𝑟𝑎𝑦 is Moore-unobstructed.

We remark that the proof of this theorem uses Moore’s theorem. It is originally stated only for
polynomials, but the proof extends identically to the case of anti-polynomials. There is also a partial
converse of the above statement which we will not be using here.

For a critically fixed anti-polynomial P, we have the following description of the cut-points of K(𝑃).
The result directly follows from the dynamical correspondence between function kissing reflection
groups and critically fixed anti-polynomials discussed in Subsection 4.3.

Lemma 4.21. Let P be a critically fixed anti-polynomial. Then any cut-point of K(𝑃) is eventually
mapped to a repelling fixed point that is the landing point of a 2-cycle of external rays.

An extended external ray that contains a repelling fixed point of a critically fixed anti-polynomial is
called a principal ray. The ray equivalence class of a principal ray is called a principal ray class.
In our setting, the Moore obstructions can be detected simply by looking at these principal ray
classes.
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Lemma 4.22. Let P and Q be two marked anti-polynomials of equal degree 𝑑 ≥ 2, where P is critically
fixed and Q is postcritically finite and hyperbolic.

1. If a principal ray equivalence class of ∼𝑟𝑎𝑦 contains more than one cut-point of K(𝑃), it must contain
a 2-cycle or a 4-cycle.

2. The equivalence ∼𝑟𝑎𝑦 is Moore-obstructed if and only if some principal ray equivalence class
contains a 2-cycle or a 4-cycle.

Proof. We first note that since the second iterate of a postcritically finite anti-polynomial is a postcriti-
cally finite holomorphic polynomial with the same Julia set, it follows from [31, §9, §19] that the Julia
sets of 𝑃,𝑄 are connected and locally connected.

Let 𝑥 ∈ K(𝑃) be a repelling fixed point whose ray equivalence class [𝑥] contains more than one
cut-point of K(𝑃). Each point of J(𝑃) is the landing point of one or two rays. Since [𝑥] is connected,
there must be cut-points 𝑤′, 𝑧′ ∈ [𝑥] in K(𝑃) so that 𝑤′ ∼𝑟𝑎𝑦 𝑧

′ with 𝑤′ and 𝑧′ having graph distance
two. Let 𝛾 be the union of the two rays realising the connection between 𝑤′ and 𝑧′. For some iterate j,
we have from Lemma 4.21 that (𝑃⊥⊥𝑄) 𝑗 (𝑤′) and (𝑃⊥⊥𝑄) 𝑗 (𝑧′) are fixed points, which we denote w and
z respectively. The graph distance between w and z is either 0 or 2. In the former case, 𝑤 = 𝑧, and since
Q is hyperbolic and hence a local homeomorphism on J(𝑄), we have that (𝑃⊥⊥𝑄) 𝑗 (𝛾) is a 2-cycle.
Since x is a fixed point, its ray class is forward invariant, so (𝑃⊥⊥𝑄) 𝑗 (𝛾) must be contained in [𝑥]. This
yields a 2-cycle in [𝑥].

Suppose now that 𝑤 ≠ 𝑧. There then exist two extended external rays 𝛼𝑧 and 𝛼𝑤 that land at z and w
and share a common endpoint 𝑣 ∈ K(𝑄). Let 𝛾 be the concatenation of these two rays. Each of 𝛼𝑧 , 𝛼𝑤
must have dynamical period 2 since they land at fixed cut-points of P. If v is a fixed point, then the graph
𝛼𝑤 ∪ (𝑃⊥⊥𝑄) (𝛼𝑤 ) is a cycle of length 2 for ∼𝑟𝑎𝑦 . If v has period 2, then 𝛾 ∪ (𝑃⊥⊥𝑄) (𝛾) is a cycle of
length 4 for ∼𝑟𝑎𝑦 . As argued before, either of these cycles must be in [𝑥]. This concludes the proof of
statement 1.

If a principal ray equivalence contains a cycle, it is immediate that ∼𝑟𝑎𝑦 is Moore-obstructed. Now
assume that no principal ray equivalence class contains a 2-cycle or a 4-cycle. This means that the
diameter of a principal ray equivalence class is bounded by 4 as there can be at most one cut-point of
K(𝑃) in this class. Any principal ray equivalence class must evidently be a tree.

Now let 𝑧 ∈ J(𝑃). If there is no cut-point in the equivalence class [𝑧], then [𝑧] is a tree and has
diameter at most 2. Otherwise, by Lemma 4.21, it is eventually mapped to a principal ray equivalence
class. Since both P and Q are hyperbolic, the map 𝑃⊥⊥𝑄 is a local homeomorphism on J(𝑃) and
J(𝑄). Since all of the principal ray equivalence classes are trees, in particular, simply connected, any
component of its preimage under 𝑃⊥⊥𝑄 is homeomorphic to it. Thus, by induction, we conclude that [𝑧]
is a tree and has diameter at most 4. Now by Proposition 4.20, the mating is Moore-unobstructed. �

We now prove that for a large class of pairs of anti-polynomials, the absence of Moore obstruction is
equivalent to the existence of geometric mating.

Proposition 4.23. Let P and Q be marked anti-polynomials of equal degree 𝑑 ≥ 2, where P is critically
fixed and Q is postcritically finite and hyperbolic. There is an anti-rational map that is the geometric
mating of P and Q if and only if ∼𝑟𝑎𝑦 is not Moore-obstructed.

Proof. The only if part of the statement is immediate. To prove the if part, we will first show that the
absence of Moore obstruction can be promoted to the absence of Thurston obstruction. Note that the
only case where (𝑃⊥⊥𝑄)2 has nonhyperbolic orbifold is when P and Q are both power maps, in which
case the conclusion of the theorem is immediate. Thus, we assume for the remainder of the proof that
(𝑃⊥⊥𝑄)2 has hyperbolic orbifold.

Suppose (𝑃⊥⊥𝑄)2 has a Thurston obstruction Γ. We may assume that Γ is irreducible. Since Q has
no Thurston obstruction, there is some edge 𝜆 in the Hubbard tree 𝐻𝑃 so that Γ · 𝜆 ≠ 0. Note that 𝜆 is
an irreducible arc system consisting of one arc, so it follows from [42, Theorem 3.9] that Γ must also
be a Levy cycle consisting of one essential curve 𝛾.

https://doi.org/10.1017/fms.2021.81 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2021.81


36 Russell Lodge et al.

Figure 4.2. Two cubic anti-polynomials together with all rays that have period 2 or smaller. The first
map is a critically fixed anti-polynomial so that the 1/8 and 5/8 rays co-land. The second map is produced
by tuning the first map with basilicas so that the pairs (0/1, 3/4) and (1/2, 1/4) co-land. The unique
principal ray equivalence class has no cycle. Their mating is depicted below using the software [1].

Since 𝑃⊥⊥𝑄 is hyperbolic, the Levy cycle is not degenerate (as defined in [42, §1]). Thus, there is a
periodic ray class that contains a cycle [42, Theorem 1.4(2)]. By the hypothesis that there is no Moore
obstruction, no such periodic ray class exists. This is a contradiction and so no Thurston obstruction exists
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for (𝑃⊥⊥𝑄)2. By Proposition 4.11, it follows that 𝑃⊥⊥𝑄 is also unobstructed and Thurston equivalent to
a rational map.

Having shown that 𝑃⊥⊥𝑄 has no Thurston obstruction, the Rees–Shishikura theorem (which extends
directly to orientation-reversing maps) implies that the geometric mating of P and Q exists [41, Theorem
1.7]. �

Recall that a pair of laminations on S1 for marked anti-polynomials is said to be nonparallel if they
share no common leaf under the natural orientation-reversing identification of the two copies of S1.
This is equivalent to saying that the ray equivalence classes contain no 2-cycle. We immediately have
the following corollary from Lemma 4.22 and Proposition 4.23.

Corollary 4.24. A marked critically fixed anti-polynomial P and a marked postcritically finite, hyper-
bolic anti-polynomial Q are geometrically mateable if and only if the principal ray equivalence classes
contain no 2-cycles or 4-cycles.

Two marked critically fixed anti-polynomials P and Q are geometrically mateable if and only if their
laminations are nonparallel.

Proof. The first statement is immediate.
To see the second one, we note that according to Lemma 4.21, the lamination of a marked critically

fixed anti-polynomial is generated by the period 2 cycles of rays landing at the repelling fixed points
(which are cut-points). In light of this, it is easy to see that for two marked critically fixed anti-
polynomials, no principal ray equivalence class contains a 4-cycle. The second statement now follows
from this observation and the first statement. �
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