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A B S T R A C T

Background: Approximately 30% of patients with schizophrenia experience auditory hallucinations that
are refractory to antipsychotic medications. Here, we evaluated the feasibility and efficacy of transcranial
alternating current stimulation (tACS) that we hypothesized would improve auditory hallucination
symptoms by enhancing synchronization between the frontal and temporo-parietal areas of the left
hemisphere.
Method: 22 participants were randomized to one of three arms and received twice daily, 20 min sessions
of sham, 10 Hz 2 mA peak-to-peak tACS, or 2 mA tDCS over the course of 5 consecutive days. Symptom
improvement was assessed using the Auditory Hallucination Rating Scale (AHRS) as the primary outcome
measure. The Positive and Negative Syndrome Scale (PANSS) and the Brief Assessment of Cognition in
Schizophrenia (BACS) were secondary outcomes.
Results: Primary and secondary behavioral outcomes were not significantly different between the three
arms. However, effect size analyses show that tACS had the greatest effect based on the auditory
hallucinations scale for the week of stimulation (1.31 for tACS; 1.06 and 0.17, for sham and tDCS,
respectively). Effect size analysis for the secondary outcomes revealed heterogeneous results across
measures and stimulation conditions.
Conclusions: To our knowledge, this is the first clinical trial of tACS for the treatment of symptoms of a
psychiatric condition. Further studies with larger sample sizes are needed to better understand the effect
of tACS on auditory hallucinations.

© 2018 Elsevier Masson SAS. All rights reserved.
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1. Introduction

Approximately 30% of patients diagnosed with schizophrenia
experience auditory hallucinations (AH) that are resistant to
treatment with antipsychotic medication and are associated with a
significant decrease in the quality of life [1]. Non-invasive brain
stimulation may provide a viable treatment option for this patient
population. For example, transcranial magnetic stimulation (TMS)
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has reduced AH in some, but not all, clinical trials [2]. The reason
for this heterogeneity in outcomes remains unknown. In addition,
TMS is expensive and needs to be performed in the clinic. In
contrast, transcranial current stimulation applies a weak electric
current to the scalp and represents a potentially attractive
alternative due to the low-cost and portability of the technology
[3]. Transcranial direct current stimulation (tDCS) significantly
reduced AH symptoms measured by the Auditory Hallucination
Rating Scale (AHRS) in a double-blind, sham controlled study [4].
In this study the anode (assumed to increase neural activity) and
the cathode (assumed to decrease neural activity) were placed over
the dorso-lateral prefrontal cortex (dl-PFC) to target hypoactivity
and the temporo-parietal junction (TPJ) to target hyperactivity,
respectively. However, in a recent study from our group with a
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similar design, active tDCS did not separate from sham on the AHRS
score, due at least in part to a substantial placebo response to sham
stimulation [5]. The reasons for this discrepancy are uncertain but
it is notable that the outcomes of these two studies differ primarily
in the magnitude of the placebo response. Other studies examining
the efficacy of tDCS for the treatment of psychiatric disorders have
found mixed results [6,7].

Here, we pursued a novel approach and asked if targeting
aberrant temporal organization of brain activity can modulate
medication-refractory AH in schizophrenia patients. This approach
Fig.1. A Symbolic representation of tACS (left) and tDCS (right) stimulation waveforms. B
representation. Two stimulators were used, one connected to the electrode located ove
electrode.
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was motivated by previous magnetoencephalography (MEG) and
electroencephalography (EEG) studies that have noted changes in
cortical oscillation patterns and functional connectivity specifically
during AH [8–13]. Transcranial alternating current stimulation
(tACS) employs a weak electric current for non-invasive brain
stimulation similar to tDCS. However, the stimulation current
assumes a sine-wave waveform to target brain oscillations in a
frequency-specific manner that engages and enhances naturally
occurring cortical oscillations at the applied frequency [14–16]. It is
hypothesized that alpha oscillations (8–12 Hz) are generated by
 Location of electrodes on scalp. C Electric field simulation: 2D (top) and 3D (bottom)
r F3/Fp1, one connected to the electrode over T3/P3 and both connected to the Cz
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thalamo-cortical and intra-cortical circuits [17,18] making this
frequency band susceptible to cortical brain stimulation. For
example, a study conducted by Herrmann et al. [19] successfully
demonstrated the enhancement of alpha band oscillations using
tACS and simultaneous EEG in healthy human participants.

In this study, tACS was used to target alpha oscillations, given
the deficits in resting state alpha band power in patients with
chronic schizophrenia and first episode psychosis [20,21]. To our
knowledge, this represents the first study of tACS in psychiatric
patients. This was a double-blind, sham controlled pilot study that
compared tDCS, tACS, and sham stimulation in an across-
participant design in patients with schizophrenia and persistent
AH. Due to the novelty of tACS in schizophrenia, we performed this
pilot feasibility study for which we formulated outcomes based on
raw effect sizes. We hypothesized that tACS outperforms both tDCS
and sham stimulation in terms of reduction of AHRS scores.

2. Methods

2.1. Participants

This study was conducted at the University of North Carolina at
Chapel Hill (ClinicalTrials.gov NCT02360228) and was approved by
the UNC Chapel Hill Institutional Review Board. Participants were
recruited from local clinics both affiliated and unaffiliated to the
university.

2.1.1. Inclusion criteria
Participants were diagnosed with schizophrenia or schizoaf-

fective disorder (confirmed by the Structured Clinical Interview for
DSM-IV Axis I Disorders); experienced at least three AH per week
(as determined by the frequency item in the AHRS); clinical
stability as demonstrated by no hospitalizations for the past 3
months; stable dosing of antipsychotic medications (no changes in
medication or doses for 1 month prior to enrollment); verified by
chart review and/or discussion with the treating clinician to have
treatment-persistent AH, defined as having ongoing AH during
trials of at least 2 antipsychotic agents of adequate dose and
duration; stable AH as demonstrated by having less than or equal
to 20% change in AHRS scores across a 2 week interval during the
screening period; ability to provide written informed consent.

2.1.2. Exclusion criteria
No concurrent anticonvulsant medications or daily treatment

with benzodiazepines (limited as-needed use that was discon-
tinued more than 48 h prior to a study session was allowed); no
DSM-IV diagnosis of alcohol or substance abuse within the past
month or DSM-IV diagnosis of alcohol or substance dependence
within the past 6 months; no history of significant head injury or
traumatic brain injury, prior brain surgery or any brain devices/
implants, history of seizures, unstable medical illness, or
pregnancy.

This study used a Data Safety Monitoring Board (DSMB),
through the North Carolina Translational & Clinical Sciences
Institute to ensure participant safety. Bi-annual reviews of blinded
data and adverse events were submitted to the DSMB.

2.2. Study design

This study was a double blind, randomized, sham controlled
pilot clinical trial, with three study arms (10 Hz 2 mA tACS, 2 mA
tDCS, sham 10 Hz, Fig.1A). The CONSORT diagram is included in the
Supplementary materials. Participants were assigned to a code in
chronological order based on the date of enrollment. Randomiza-
tion was blocked such that all three groups had 8 participants. All
authors and members of the research team were unaware of the
rg/10.1016/j.eurpsy.2018.01.004 Published online by Cambridge University Press
group assignments until completion of the entire study. To
administer stimulation in a double-blind fashion, we developed
a custom built Matlab (Mathworks, Natick, MA) interface that
controlled two Neuroconn DC Plus stimulators (Neuroconn Ltd.,
Ilmenau, Germany) via the “remote in” feature. This setup provided
stimulation linked to the study code and recorded the applied
waveform for subsequent verification by a group member not
associated with this study.

2.3. Electrode montage

All three study arms used the same electrode montage to ensure
blinding of the research personnel to the stimulation condition.
Three electrodes with ten20 paste (Bio-Medical Instruments,
Clinton Township, Michigan) were applied to the scalp. One
5 � 5 cm electrode was placed between F3 and Fp1 (left dl-PFC)
and one 5 � 5 cm electrode was placed between T3 and P3 (left
TPJ). A third “return/reference” electrode (5 � 7 cm) was placed
over Cz. The resulting electric field distribution is shown in Fig. 1C.
These figures were created using the Soterix Medical HD-TargetsTM

software (Soterix, New York, NY). After specifying the brain region
and stimulation electrode location, the resulting simulation
depicted the current flow through the head. The location of the
stimulation electrodes was determined using the 10–20 placement
system. The choice of location for the stimulation electrodes was
motivated by previous tDCS studies for auditory hallucinations in
schizophrenia [4,5]. In order to maintain the double blind nature of
the study, the location of the tACS electrodes had to necessarily be
the same. The stimulation amplitudes for the tACS condition were
chosen in a way that the peak amplitude at the third electrode at Cz
never exceeded 2 mA.

2.4. Stimulation paradigms

Each participant completed twice-daily 20 min stimulation
sessions, separated by 3 h, over 5 consecutive days. The 10 Hz tACS
stimulation waveform was a sine-wave with a peak-to-peak
amplitude of 2 mA. Both stimulators delivered a 2 mA peak-to-
peak amplitude current between the frontal site and Cz and
between the temporo-parietal site and Cz, respectively. For tDCS,
the stimulation paradigm was +2 mA at the frontal site (F3/Fp1)
and �2 mA at the temporo-parietal site (T3/P3). Sham stimulation
included 10 s of ramp-in to 20 s of 10 Hz tACS, with a ramp-out of
10 s for a total of 40 s of stimulation. Ramping up and down the
stimulation amplitude is a common approach for transcranial
current stimulation to reduce skin sensation at stimulation onset.
All three conditions used this procedure. The brief stimulation
delivered as part of the sham stimulation is unlikely to be
biologically active, since duration of tACS appears to be an
important variable in terms of the modulation of brain activity
after discontinuation of stimulation. Recently, brief periods of tACS
were shown to be ineffective in modulating alpha oscillations in
healthy human participants [22].

During stimulation, all participants were kept in the same
relaxed state. Each participant was seated comfortably upright
with their eyes open and asked to focus on the ReefScapes video
(Undersea Productions, Queensland, Australia) directly in front of
them. This video also served the purpose of helping to disguise the
phosphenes induced by tACS.

2.5. Assessment of side effects

We administered an adverse effects stimulation questionnaire
at the end of each 20 min stimulation session. This assessment was
a Likert Scale and measured patient-reported headache, neck pain,
scalp pain, tingling, itching, ringing/buzzing noise, burning

https://doi.org/10.1016/j.eurpsy.2018.01.004


Table 1
Stimulation Side Effect Scores.

Side Effect tACS tDCS Sham

Mean SD Mean SD Mean SD p-value

Headache 1.2 0.39 1.0 0 1.3 0.63 .30
Neck pain 1.0 0 1.0 0.17 1.2 0.48 .07
Scalp pain 1.5 0.57 1.4 0.72 1.5 0.85 .94
Tingling 1.9 0.44 2.1 0.99 2.0 0.98 .84
Itching 1.6 0.65 2.1 0.97 1.4 0.67 .18
Ringing/Buzzing noise 1.0 0 1.0 0.12 1.0 0.12 .57
Burning sensation 1.6 0.56 2.4 0.96 2.1 1.11 .17
Local redness 1.0 0 1.0 0 1.0 0.12 .36
Sleepiness 1.2 0.37 1.9 1.07 1.9 0.9 .03
Trouble concentrating 1.2 0.39 1.5 0.79 1.6 0.67 .33
Improved mood 1.4 0.58 1.2 0.4 1.5 0.65 .49
Worsening of mood 1.0 0 1.0 0 1.1 0.24 .17
Dizziness 1.0 0 1.1 0.44 1.3 0.54 .05
Flickering Lights 1.3 0.53 1.0 0 1.5 0.85 .16

tACS: transcranial alternating current stimulation; tDCS: transcranial direct current
stimulation.
Values in bold indicate p-values below significance threshold p = 0.05.
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sensation, local redness, sleepiness, trouble concentrating, im-
proved mood, worsening of mood, dizziness, and flickering lights
on a scale from 1 (absent) to 4 (severe). After the final stimulation
session, participants were asked whether they thought they had
received stimulation over the past week, and whether they
thought their symptoms (AH) had improved.

2.6. Screening procedures

At the initial session, data was collected for each participant
regarding demographics, handedness, their belief in the treatment
(to understand susceptibility to placebo effect), and current
medications which was verified with medical records or treatment
providers. All available information from participants, medical
records and providers was used to assess whether the AH met
study criteria for medication-refractory. All assessments were
administered by a researcher blind to the group assignment.

2.7. Analysis

For analysis, custom written scripts in R (R Foundation for
Statistical Computing, Vienna, Austria) and SPSS software version
24.0 (IBM, Armonk, NY) were used. Libraries used in R included
lme4 [23] and pbkrtest [24]. Differences in demographics and
characteristics of the three study arms and the severity of adverse
effects were assessed with a one-way ANOVA. Pearson’s Correla-
tion was used to assess possible susceptibility to placebo response
using the Hunter Beliefs About Treatment Questionnaire, (used
with the permission of the UCLA Laboratory of Brain, Behavior and
Pharmacology,© 2005, 2017 UC Regents). Pearson’s Correlation was
also used to examine correlation between age of participant and
amount of symptom improvement. We used a linear mixed model
analysis with fixed factors of “session” (baseline at day 1 of
stimulation, day 5 of stimulation, 1 week follow up, and 1 month
follow up) and “condition” (10 Hz tACS, tDCS, active sham 10 Hz),
with random factor “participant” to account for repeat measures
within participants. The interaction between “session” and
“condition” is defined as the effects of “session” on “condition”.
Kenward-Roger approximations were used to calculate P-values
and perform F-tests for each factor and their interaction in the
mixed model. Post-hoc analyses included paired t-tests to compare
the four sessions, with a Bonferroni correction to account for
multiple comparisons.

2.8. Outcome measures

The primary outcome measure was defined as the change in AH
severity measured by the Auditory Hallucination Rating Scale
(AHRS) from baseline (day 1 of stimulation) to day 5 of stimulation.
The AHRS was administered before the 1st stimulation session on
day 1 of stimulation and after the 10th stimulation on day 5 of
stimulation. The AHRS was also administered at the one-week and
the one-month follow up. We also included changes in the
oscillatory structure of the resting state EEG data which was
collected at 4 time points throughout the study (day 1, day 5, one
week follow up and one month follow up). The EEG data will be
reported in a separate manuscript.

Secondary outcomes included change in overall symptoms as
measured by the Positive and Negative Syndrome Scale (PANSS)
and changes in cognitive function as assessed by the Brief
Assessment of Cognition in Schizophrenia (BACS) from baseline
(day 1 of stimulation) to day 5 of stimulation. Both the PANSS and
the BACS were administered before the 1st session of stimulation,
after the 10th session of stimulation, and the one month follow up.

Data was also collected to determine whether participants
believed their symptoms (AH) had improved after the 5 days of
oi.org/10.1016/j.eurpsy.2018.01.004 Published online by Cambridge University Press
stimulation with a self-rating questionnaire. Participants were
asked at day 5 of stimulation, the one week and one month follow
up. During the stimulation week, questionnaires were adminis-
tered immediately after stimulation, typically with a brief delay of
less than 10 min to give the participant the chance to rinse out
electrode paste from their hair.

3. Results

3.1. Study sample

Twenty-five clinically stable participants with a diagnosis of
schizophrenia or schizoaffective disorder were randomized to one
of three treatment arms (tACS, tDCS, or active sham). One
participant randomized to the tACS group withdrew due to
unrelated health concerns (instability of diabetes related symp-
toms not well controlled by the medication regimen during their
participation in the study), a total of 24 participants completed the
study (schizophrenia: 15, schizoaffective disorder: 7; 15 men, 7
women). Two participant datasets were not included in analysis
due to instability of AH symptoms at baseline and non-adherence
to antipsychotic medication during study participation that was
unknown to the study team at the time of stimulation. In this
paper, we present the analysis of the remaining 22 participants.

3.2. Safety and tolerability

Participants in all treatment arms tolerated stimulation well
(Table 1). Mild tingling, itching and burning were reported by some
participants. Some participants in both tACS and sham treatment
groups reported the appearance of flashing lights, likely related to
phosphenes that result from retinal stimulation or, potentially,
stimulation of visual cortex by tACS. Group-averaged side-effect
scores did not exceed a value of 2 (on a scale from 1 to 4) and there
were no statistically significant differences between groups for the
averaged total score (p = .31). There were no significant adverse
events reported throughout the entirety of the study. All
participants who completed the study were able to sit through
all 10 stimulation sessions during the treatment week. Participants
who decided not to continue with their participation in the study
withdrew for reasons unrelated to the stimulation itself, as
reported to study personnel.

https://doi.org/10.1016/j.eurpsy.2018.01.004
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3.3. Auditory Hallucination Rating Scale (AHRS)

Effect size calculations of baseline to day 5 of stimulation
resulted in the largest effect size for tACS (1.31), followed by the
sham and the tDCS arms (1.06 and 0.17, respectively, Supplemen-
tary Table 1). The tACS group displayed a mean improvement of
15% (mean: �3.75 points, SD 2.87), the tDCS group displayed a
mean improvement of 5% (mean: �1.14 points SD 6.15), and the
sham group had a mean improvement of 10% (mean: �2.29 points
SD 2.14) after 5 consecutive days of twice daily stimulation (Fig. 2,
Table 2; individual trajectories in Fig. 3). An exploratory F-test with
Kenward-Roger approximation analysis was conducted examining
factors “session”, “condition” and the interaction between
“session” and “condition”. These factors were compared across
time points “baseline”, “day 5 of stimulation”, “1 week” and “1
month”. The interaction analysis examined whether there was an
impact of “session” on “condition” for the AHRS scores. Factor
“session” was found to be significant (F3,63 = 5.05, P < .01). Analyses
conducted with a Bonferroni correction resulted in a difference
between “baseline” and “1 month”. Factors “condition” and the
interaction were not significant (Table 3).

3.4. Positive and Negative Syndrome Scale (PANSS)

Effect size calculations of baseline to day 5 of stimulation show
the largest effect size for tDCS (1.13), with tACS and sham having a
small effect size (0.42 and 0.39, respectively, Supplementary
Table 2). Effect size calculations were also conducted for the PANSS
Hallucinations question. Results of this analysis showed that tACS
had the largest effect size at baseline to day 5 of stimulation (0.48),
while tDCS also had a small effect size (0.30) and sham had no
effect size (0.00, Supplementary Table 3). An exploratory analysis
of the PANSS total scores with a linear mixed model showed that
factor “session” was significant (F-test with Kenward-Roger
approximation with time points “baseline”, “1 week”, and “1
month”; F2,42 = 4.95, P = .01). We found no significant effects for the
factor “condition” or the interaction for the PANSS total score. No
significant effect was found for factors “session”, “condition”, or
the interaction for the positive symptom subscale. No significant
Fig. 2. Normalized AHRS scores for tACS, tDCS and sham groups at baseline (before first s
the one month follow up (F2).

rg/10.1016/j.eurpsy.2018.01.004 Published online by Cambridge University Press
effect was found for “condition” or the interaction for the negative
symptom subscale. However there was a significant effect found
for factor “session” (F2,42 = 6.87, P = .003) for the negative symptom
subscale. No significant effect was found for the factors “session”,
“condition”, or the interaction for the general psychopathology
subscale. No significant effect was found for the factors “session”,
“condition”, or the interaction for the hallucination question in the
positive symptom subscale. Results are presented in Table 2.

3.5. Brief Assessment of Cognition in Schizophrenia (BACS)

Effect size calculations of baseline to day 5 of stimulation show
the largest effect size for tDCS (1.50), with sham having a medium
effect size (0.57) and tACS having a small effect size (0.26,
Supplementary Table 4). In an exploratory analysis of the BACS
total scores with a mixed linear model, we found a significant effect
for factor “session” (F-test with Kenward-Roger approximation
with the time points “baseline”, “1 week”, and “1 month”;
F2,42 = 4.31, P = .02). No significant effect was found for factor
“condition” or the interaction. Results can be seen in Table 2.

*Results from Participant Demographics, Participant Expectation
of Outcomes, Self-Rating of Improvement, and Participant Age and
AHRS Improvement can be found in Supplementary materials, along
with the corresponding tables and figures.

4. Discussion

4.1. tDCS efficacy

Although several studies have examined tDCS, conclusive
results have not emerged as to whether it represents an effective
treatment of AH. Studies examining once daily tDCS, either over 5
consecutive days [4] or 3 consecutive weeks (15 total stimulation
sessions) [25], did not find significant changes in severity of AH.
Studies conducted by Brunelin et al. [4] and Mondino et al. [26]
looked at twice daily tDCS for the treatment of AH in patients with
schizophrenia, both of which had positive results. In fact, one study
found that the improvement in AH remained apparent through the
3 month follow up [4]. Interestingly, although the treatment
timulation), Day 5 (after the last stimulation), at the one week follow up (F1), and at

https://doi.org/10.1016/j.eurpsy.2018.01.004


Table 2
AHRS, PANSS and BACS scores.

Measure tACS (n = 8) tDCS (n = 7) Sham (n = 7)

Mean SD Mean SD Mean SD p-value

Age (years) 47 9.72 29.57 10.97 38.86 10.01 .01

Baseline Measures
AHRS Total Score 25.88 3.8 23 6.9 24.71 5.91 .61
PANSS

Total Score 52.75 7.74 58.86 14.66 57 11.6 .58
Positive Symptoms 15.5 3.96 17.71 3.35 16.57 4.4 .54
Negative Symptoms 13.13 4.58 13.71 7.23 13.29 3.9 .98
General Psychopathology 24.13 3.72 27.43 5.8 26.71 7.95 .53
Hallucinations 4.63 0.52 4.57 0.79 4.57 0.79 .99

BACS Total Score 31.21 5.68 38.26 9.01 38.93 7.17 .10

After tACS/tDCS/sham stimulation
AHRS Total Score 22.13 5.82 21.86 9.58 22.43 5.56 .99
PANSS

Total Score 51.25 8.19 54.71 11.84 55.29 10.86 .71
Positive Symptoms 15.88 4.29 16.00 2.77 16.14 4.30 .99
Negative Symptoms 11.75 3.11 12.00 6.51 13.00 4.08 .87
General psychopathology 23.63 3.34 26.71 5.15 26.14 6.94 .49
Hallucinations 4.38 0.52 4.14 1.68 4.57 0.79 .76

BACS Total Score 31.58 5.77 42.05 10.82 41.50 10.52 .07

1 week follow up
AHRS Total Score 21.88 6.22 21.43 6.55 22.29 4.19 .98

1 month follow up
AHRS Total Score 22.25 6.09 23.29 7.63 20.86 4.85 .77
PANSS

Total Score 51.13 9.95 52.86 7.47 51.57 12.20 .94
Positive Symptoms 15.63 4.17 15.86 2.27 16.71 4.82 .86
Negative Symptoms 11.50 3.30 12.29 7.11 10.57 2.23 .79
General Psychopathology 24.00 6.00 24.71 3.45 24.29 6.82 .97
Hallucinations 4.25 0.46 4.57 0.98 4.43 0.79 .72

BACS Total Score 29.81 5.50 39.71 9.39 40.83 9.71 .03

tACS: transcranial alternating current stimulation; tDCS: transcranial direct current stimulation; AHRS: Auditory Hallucination Rating Scale; PANSS: Positive and Negative
Syndrome Scale; BACS: Brief Assessment of Cognition in Schizophrenia.
Values in bold indicate p-values below significance threshold p = 0.05.

Fig. 3. Change in Auditory Hallucination Rating Scale (AHRS) score for each participant in transcranial alternating current stimulation (tACS) arm, transcranial direct current
stimulation (tDCS) arm, or sham arm. AHRS scores were collected at baseline (before first stimulation), after stimulation (after last stimulation, at the one week follow up (F1),
and the one month follow up (F2)).
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duration used in our current study mirrored the treatment
duration in [4], there were no sustained improvement in AH past
the one week follow up in our study. Although the current trial was
smaller, each study was double blinded and randomized, with
similar study inclusion/exclusion criteria. It is not clear why these
studies differ substantially in response to tDCS in the same
population. These inconsistent findings indicate that the benefits
of tDCS for persistent AH remain uncertain and will require further
study.
oi.org/10.1016/j.eurpsy.2018.01.004 Published online by Cambridge University Press
4.2. tACS dosage

Although the stimulation paradigm mirrored the twice daily
treatment in the Brunelin study [4] which found improvement in
AH symptoms up to 3 months after the week of stimulation, the
present study did not find benefits of tACS past the one week
follow up in terms of raw effect sizes when compared to sham
stimulation. The tACS and sham arms had similar effect sizes for
the difference from “Day 1” to “1 Week Follow-Up”, while the sham
arm had the largest effect size for difference from “Day 1” to “1

https://doi.org/10.1016/j.eurpsy.2018.01.004


Table 3
F-test with Kenward-Roger Approximation Analysis Results.

Factor Session Condition Interaction (Session � Condition)

F-value p-value F-value p-value F-value p-value

AHRS Total Score F3,63 = 5.05 .003 F2,19 = 0.02 .97 F6,57 = 1.16 .34

PANSS
Total Score F2,42 = 4.95 .01 F2,19 = 0.28 .76 F4,38 = 0.72 .59
Positive Symptoms F2,42 = 1.02 .37 F2,19 = 0.13 .88 F4,38 = 1.73 .16
Negative Symptoms F2,42 = 6.87 .003 F2,19 = 0.03 .97 F4,38 = 1.27 .30
General Psychopathology F2,42 = 1.74 .19 F2,19 = 0.42 .66 F4,38 = 0.56 .69
Hallucinations F2,42 = 1.43 .25 F2,19 = 0.04 .96 F4,38 = 1.01 .41

BACS Total Score F2,42 = 4.31 .02 F2,19 = 3.44 .05 F4,38 = 1.40 .25

AHRS: Auditory Hallucination Rating Scale; PANSS: Positive and Negative Syndrome Scale; BACS: Brief Assessment of Cognition in Schizophrenia.
Values in bold indicate p-values below significance threshold p = 0.05.
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Month”. It is possible that the duration of treatment may need to be
extended past the five day mark in order to sustain symptom
improvement. Early TMS studies for depression administered
stimulation in short periods for a total of two weeks [27], while it
has become common practice for treatments to last in durations of
four to six weeks [28]. Future studies may consider increasing the
frequency or duration of treatment.

4.3. Effect sizes

Due to the small sample size used in this study, statistically
significant results were not expected. Raw effect sizes were used to
understand the effect that tACS, tDCS and sham had on AH
symptoms. As shown, tACS had the largest effect size for the AHRS.
However, tDCS had the largest effect sizes for the PANSS and BACS
assessments. The divergence of improvement on these different
scales may be explained by the multifaceted nature of the disease.
Just as not all antipsychotics produce the same improvement in a
specific symptom, the different stimulation paradigms may not
affect the same symptom clusters. The large effect for the BACS in
the tDCS group is intriguing given the emerging literature of anodal
tDCS applied to left prefrontal cortex for remediating cognitive
deficits in patients with schizophrenia [7,29]. We performed an
exploratory analysis to understand to what extent this effect on
cognition was a result of the significantly different mean ages
across the three groups. Across all participants, we found no
significant correlation between age and the difference in BACS
scores from day 1 to day 5 (r = 0.004, n = 22, p = .78). This suggests
that the effect of tDCS on cognition is not uniquely an artefact of
the uneven age distribution across the three study arms.

4.4. Blinding

In contrast to tDCS, tACS can induce the appearance of flashing
lights, or phosphenes, that are caused by stimulation of the optical
nerve [30]. Several steps were taken in this study to ensure the
participants were unable to distinguish whether they had been
assigned to the tACS, tDCS or sham group. The sham was designed
to mimic the skin sensations of the tACS group in order to blind
participants assigned to this group (sometimes referred to as
“active”). All participants were asked to sit still with their eyes
open while a ReefScapes video was played on a projector screen in
front of them which displayed underwater sceneries with tropical
fish. The shifting sunlight of the water and the flashing colors of the
fish served as a method of disguising the phosphenes induced by
tACS and the sham. The blinding of this study was successful, with
only one participant believing that they had not received
stimulation.
rg/10.1016/j.eurpsy.2018.01.004 Published online by Cambridge University Press
4.5. Electric field distribution

We emphasize that the two groups that received active
stimulation differed in the waveform of the stimulation used
and also in terms of the spatial targeting. In designing this study,
we prioritized the full blinding of study participants and
researchers to the assigned stimulation condition. In this decision,
we have accepted this limitation of the study.

4.6. Limitations

There are several limitations to this study that should be
addressed. This was an exploratory study with a low number of
participants. Due to this small sample size and 3 separate arms, the
study was only powered to detect very large effect size changes.
Future studies should examine tACS with a fully powered sample
size. As this was a randomized treatment study with no blocking
for age, the average age of the tACS treatment arm was significantly
higher than the tDCS and the sham group. It is possible that the age
of the tACS group diminished the effects of the stimulation, as
neuroplasticity can decrease with age [31,32]. As a result, our study
may underestimate the effect of tACS. Future studies should
examine whether a younger population may demonstrate
enhanced effects with tACS. The choice of tACS was motivated
by targeting long-range functional interactions between the
targeted cortical sites. Future analysis of the EEG data and
subsequent studies with more targeted neuroimaging to examine
changes in structural and functional connectivity will be needed to
delineate to what extent clinical improvement is indeed driven by
connectivity changes. Lastly, we decided to position the electrodes
on the same scalp locations for all groups to allow for successful
blinding of the research personnel. As a result, the spatial electric
field distribution for the tACS and tDCS group is not exactly
identical.

5. Conclusions

In this first study to examine the effects of tACS on persistent
auditory hallucinations in patients with schizophrenia, the results
indicate a difference in symptom response between tACS and tDCS.
Further research is needed with a larger sample size and longer
treatment duration to better understand the treatment possibili-
ties with tACS and the effects on auditory hallucinations in patients
with schizophrenia.
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