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1. Introduction. Interest in the ranges of Lyapunov transformations began with
Taussky in [5]. Recently in a series of papers, Loewy has studied the ranges of Lyapunov
transformations on matrices. In particular in [2] and [3], the following result was obtained.

THEOREM. Let A,BeC"•" and suppose that LA is invertible. Then the following are
equivalent.

(i) B = (al+ ifiA)(yA + iSI)"1 for some real scalars with ay + 05 = 1.
(ii) LA(PSD(n)) = LB(PSD(n)).

Here LA is the Lyapunov transformation corresponding to A i.e. LA(X) = AX+XA*,
and PSD(n) denotes the set of all positive semi-definite n*n matrices.

In this short note we shall obtain a generalization of the above result to the case when
A and B are bounded linear operators on any Hilbert space.

2. Mappings which preserve the positive cone. Let H be any Hilbert space and let
L(H) denote the set of all bounded linear operators on H. L(H)sa and L(H)+ will denote
the self-adjoint and positive parts of L(H) respectively.

2.1 LEMMA. Suppose a is an invertible bounded linear mapping of L(H) onto itself
which takes L(H)+ onto itself, and maps I to I. Then a is either a *-automorphism of L(H)
or a *-anti-automorphism of L(H).

Proof. Let H^O. Then ||H|| J - H ^ O , so that a(H)^ a(\\H\\ I) = \\H\\ I. Thus |

The same argument applied to a 1 shows that ||H||=s||a(ff)||. Hence a is isometric on
L(H)+. a therefore preserves the extreme points of the positive part of the unit ball, i.e. a
maps projections onto projections.

From here we may argue as Kadison in [1] to show that a is (in the terminology of
[1]) a C*-isomorphism of L(H). The proof is completed by noting that it is shown also in
[1] that such a map on L(H) must be either a *-automorphism or a *-anti-automorphism
of L(H).

2.2 LEMMA. Suppose LA and LB are two invertible Lyapunov transformations of L(H)
and that LA(L(H)+) = LB(L(H)+). Then there is some non-singular V in L(H) such that
LA

lLB{X) = VXV* for all X in L(H).

Proof. LA
1LB(L(H)+) = L(H)+. Let TeL(H)+ be such that L^LB{T) = L Then

llTir 'T^i, so that ||T)r1/ = LA
1LB(| |T|r iT)^LA

1LBa). Thus LA
lLB{T) is invertible and

equals S2 for some non-singular S in L(H)sa.
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Let a(X) = S~ 1 LA 1 L B (X)S~ 1 . Then a satisifies the conditions of Lemma 2.1 and so is
either a *-automorphism or a *-anti-automorphism.

If a is a *-automorphism, we can find a unitary U in L(H) such that a(X) = UXU*
(see [4 Ch. 4], for example). Taking V = SU gives the required result.

Now if a is a *-anti-automorphism of L(H), by the same token we can find a
conjugate linear isomorphism U of H onto itself such that a(X) = L/X*^/"1 for all X in
L(H). Thus LB(X) = LA(Sl/X*lT1S). Now if X is given by X£ = <& a)r (for some a, r in
H), X*£ = (£, r)<r and evaluating both sides at a gives

(a, <T)BT + (B*<T, <T)T = (U-1S*, T>ASl/o- + <l/-1SA*a, T)S[/O-.

The L.H.S. is linear in T, the R.H.S. is conjugate linear in T. Thus both sides are
identically zero, from which one can deduce that A and B are both scalar multiples of I. S
can then be chosen to be a positive multiple of I, so that a is the identity map. This
contradicts the assumption that a is an anti-automorphism.

3. Main result. We first prove:

3.1 LEMMA. LA = LB if and only if B = A + ikI for some A e U.

Proof, "if" is easy. Suppose A = At + iA2 (with At self-adjoint) and suppose that
LA = 0. Then 0 = LA(I) = 2A1) and so Aj = 0. Hence, for all X in L{H), 0 = LA(X) =
i(A2X—XA2) and so A2 = AI for some real A.

3.2 THEOREM. Suppose LA and LB are two non-singular Lyapunov transformations.
Then the following are equivalent.

(i) B = (al+ ipA)(yA + iSI)'1 for some real a, 0, y, S with ay+ $8 = 1.
(ii) LA(L(H)+) = LB(L(H)+).

Proof. (i)^>(ii). As in [2] and [3] we can show that (i) implies that either LB is a
positive multiple of LA or a positive multiple of L(A+jAI)-i for real A. From this (ii) follows
easily.

(ii)=>(i). Using Lemma 2.2, we can find some non-singular V in L{H) such that
BX+XB* = AVXV* + VXV*A* for all A in L(H). If X is given by X£ = <£ a)r where
or, T are arbitrary vectors of norm one, we get

BT + (B*o-,a)T = (V*cr,o-)AVT + (V*A*o;a)VT. (1)
Choosing two values of a and eliminating Br from (1) we see that

for some scalars y and 8. If y = 0, V is a multiple of / and so LB is a multiple (which must
be positive) of LA. Lemma 3.1 then allows us to display B in the form (i). We shall
therefore assume that y? 0. Multiplying V by some scalar of unit modulus leaves the
equations unaltered, but allows us to assume that y is real. Further, using (1) with a = T
gives

2 Re(B<r, <r> = 2?"1 Re<Vo-, o> + i y " 1 ^ - 8) \(Va, a)\2

and so 8 = 8 as required.
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Returning once more to (1), we see that B + \I= vAV+pV for some scalars
A, /A, v. This may be rewritten as BV~1 = (aJ+i/3A) for some scalars a, /3. Using the
original equation we get BV~1XV*-1 + y-1XV*~1B* = AX+XA* for all X in L(H)
which reduces to

(ay + $8 - -l)XA* = i(?/3 - py)AXA*.
This shows that (y/3-/3y) = O, and so /3e U, and gives yLaA + (pS-l)LA = Q. Hence, by
Lemma 3.1, aA = -y~1(^8-\)A + ikI, for some A e U. Thus a = -y"1(/3S-l) as re-
quired, or A is a multiple of I. In this case either LB or -LB maps L(H)+ onto L(H)+

and so (as in §2)LB(X) = UXU* for some U in L(H). Arguing as above shows that U is a
multiple of I, and so (by Lemma 3.1) also is B. This completes the proof.

3.3 REMARKS. For finite dimensional H, LB is non-singular whenever LA is, and so
Theorem 3.2 gives Loewy's theorem. Essentially, this is because any linear mapping
taking PSD(n) onto PSD(n) must be non-singular. This may be false, however, in general.
For example, when H=€2(Z+) and 17 is the unilateral shift, the mapping a(X)= U*XU
takes L(H)+ onto L(H)+ yet has no inverse.

The author would like to thank the referee for making some helpful comments in the
preparation of this paper.
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