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An approach formulated by vector algebra is proposed to deal with great circle sailing
problems. Using the technique of the fixed coordinates system and relative longitude
concept, derivations of formulae for this approach are simpler than those of the conventional
methods. Due to fixing the initial great circle course, the great circle track (GCT) is deter-
mined. Since the course is fixed (known as “COFI” in this paper), the proposed approach,
which we have named the “COFI method”, can directly calculate the waypoints along the
GCT. It is considered that the COFI method is a more understandable and straightforward
method to solve waypoint problems than older approaches in the literature. Based on the
COFI method, a program has been developed for the navigator. In addition, the spherical
triangle method with respect to the equator crossing point (STM-E) is developed by
supplemental theorem. Several examples are demonstrated to validate the proposed COFI
method and STM-E.
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1. INTRODUCTION. The shortest distance between any two non-antipodal
points on a sphere’s surface is the only great circle track (GCT) passing through them.
The Earth can be considered as a sphere for obtaining the waypoints on the GCT by
using great circle sailing (GCS). However, because of the Earth’s rotation, the Earth is
approximately an oblate spheroid (or ellipsoid of revolution). Consequently, the
Mercator chart or an Electronic Chart Display and Information System (ECDIS)
usually uses the WGS 84 (World Geodetic System ellipsoid of 1984). A great circle
other than a meridian or the equator is a curved line whose true direction changes
continually, thus navigators do not usually attempt to follow it exactly. Instead, they
select a number of waypoints along the GCT, construct rhumb lines between the
waypoints on the Mercator chart or in the ECDIS, and then steer along these rhumb
lines (Bowditch, 2002). In practical navigation, the waypoints on the GCT are entered
into the ECDIS, GPS, or a fully integrated navigation system. Then, the vessel is
programmed to follow the GCT by sailing from waypoint to waypoint by rhumb line,
with allowances made for wind and current effects.
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When the Earth is regarded as a sphere, the navigator has to give initial conditions
for obtaining the waypoints along the GCT. Generally speaking, these given initial
conditions include: giving the longitudes of the waypoints to obtain their latitudes
(Condition 1); giving the great circle distances to yield the latitudes and longitudes of
the waypoints (Condition 2). Once all the waypoints on the GCT are available, the
navigator needs to take the Earth as an oblate spheroid for practical navigation.
Because the GCT is composed of legs of rhumb lines, the course and distance of the
rhumb line between two adjacent waypoints can be determined by using the Mercator
sailing.
The spherical triangle method (STM) with a reference point at the vertex (called

STM-V) has been developed to solve the waypoints on the GCT for many years. It can
handle the waypoints problem under Conditions 1 or 2 (Holm, 1972; Bowditch, 1981,
2002; Keys, 1983; Cutler, 2004; Chen et al., 2004). The advantage of this method is
that the solved formulae are simplified because the method uses Napier’s rules
of right-angled spherical triangles. Finding the equator crossing point of the GCT is
easier than finding the vertex of the GCT. In addition, when the supplemental theorem
is introduced, the right-angled spherical triangles can be converted into quadrantal
spherical triangles (Clough-Smith, 1966). Therefore, a method with the reference point
at the equator crossing point (called STM-E) should be available. The STM-E has the
same advantage as the STM-V and can also deal with the waypoints problem under
Condition 1 or 2. However, a common disadvantage of the STM-V and STM-E is that
the reference point should be determined in advance. Owing to this disadvantage, both
methods are usually considered as a type of indirect approach (IA).
To overcome this shortcoming, some researchers take the departure point as the

reference point. This means one can replace the Greenwich meridian by the meridian
of the departure point and this is usually called the relative longitude concept. Simi-
larly, Jofeh (1981) constructed a linear equation (LE) of the GCT, which appears as a
straight line on the polar gnomonic chart. According to his method, the latitudes of
thewaypoints are determined only under Condition 1. Unfortunately, when the depart-
ure and destination points are located in different hemispheres, the method fails.
Later, Miller et al. (1991) first used the technique of the fixed coordinates system to
construct a vector expression of the waypoints and then adopted linear combination
(LC) of a vector basis to formulate another vector expression. Comparing the com-
ponents of the different vector expressions yields three key formulae, that is, five-parts
formula (x-component), five-parts formula (y-component) and side cosine law
(z-component). Then, a combination of the five-parts formula (x-component) and
the side cosine law (z-component) can handle the waypoints problem but only under
Condition 2. Thereafter, Chen et al. (2004) first combined the technique of the fixed
coordinates system with the relative longitude concept (FCRL) and then proposed the
great circle equation method (GCEM), in which the great circle equation is formulated
by vector algebra. It is found that the GCEM can deal with the waypoints problem
only under Condition 1. In addition, like Miller et al. (1991), Nastro and Tancredi
(2010) adopted linear combination (LC) of a different vector basis with the FCRL,
also reaching three key formulae. That is, five-parts formula (x-component), sine law
(y-component) and side cosine law (z-component). Then, the sine law divided by the
five-parts formula obtains the four-parts formula. A combination of this formula and
the yielded side cosine law can handle the waypoints problem but only under
Condition 2. However, tedious derivations make their solutions hard to understand.
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In contrast to the IA, the methods mentioned above all belong to a type of direct
approach (DA). The comparison of the mentioned methods is listed in Table 1. In this
table, it is found that the DA can solve the waypoints problem under either Condition
1 or Condition 2; while the IA can deal with the problems under both Conditions 1
and 2.
To overcome the complex derivations (Miller et al., 1991; Nastro and Tancredi,

2010), the concise derivation of the formulae by using multiple products of vector
algebra (VA-MP) with the FCRL is proposed to solve the waypoints problem under
Condition 2. Once the initial great circle course is fixed (COFI), the GCT can be deter-
mined. With this characteristic, the proposed approach is named the “COFI method”.
Further, to tackle the waypoints problem covering Conditions 1 and 2, a program,
based on the COFI method and the simplified GCEM, has been developed for the
practical navigator. In addition, because the STM-E can deal with the waypoints
problem under two given conditions, derivations of the method are also included in
this article.
Theoretical backgrounds of the STM-E, the COFI method and the simplified

GCEM are presented in Section 2. Section 3 describes the computation procedures
of the COFI method and the simplified GCEM. Validated examples are given in
Section 4. Finally, the work is summarised and concluded in Section 5.

2. THEORETICAL BACKGROUNDS.
2.1. Deriving Formulae for the STM-E. As mentioned in the previous section,

the supplemental theorem can be used to derive the formulae of the STM-E for solving
the waypoints problem. The supplemental theorem describes (Clough-Smith, 1966):

“The angles in the polar triangle are supplements of the corresponding sides in the primitive
triangle, and the sides in the polar triangle are supplements of the corresponding angles in the
primitive triangle.”

Due to this property, those formulae used in right-angled spherical triangles can
also work in quadrantal spherical triangles. In addition, because the great circle arc
from the equator crossing point to the pole should be 90°, the equator crossing point,

Table 1. A comparison of different methods for solving the GCS.

Authors Category Condition 1 Condition 2

Holm, 1972 IA (STM-V) available NA
Jofeh, 1981 DA (LE) Available* NA
Bowditch, 1981 and 2002 IA (STM-V) available available
Keys, 1983 IA (STM-V) available available
Miller et al., 1991 DA (LC) NA available
Cutler, 2004 IA (STM-V) available available
Chen et al., 2004 IA (STM-V) available available

DA (GCEM) available NA
Nastro and Tancredi, 2010 DA (LC) NA available
Chen et al., 2013 (the current paper) IA (STM-E) available available

DA (COFI) NA available

* This method fails when departure and destination points are located in different hemispheres.
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the pole nearer the departure and waypoints along the GCT can form numerous
quadrantal spherical triangles as shown in Figure 1. Consequently, the solving steps of
the STM-E are presented as follows. All the symbols used below are listed in the
Appendix.
Step 1. Finding the great circle distance (D) and the initial great circle course angle

(C ) as shown in Figure 1. The great circle distance and the initial course angle can be
calculated by the side cosine law and the four-parts formula of the spherical
trigonometry, respectively as (Chen et al., 2004):

cosD = sinLF sinLT + cosLF cosLT cosDLo, (1)

tanC = sinDLo
(cosLF tanLT) − (sinLF cosDLo) . (2)

Step 2. Finding the longitude of the equator crossing point, λE, as shown in Figure 2.
By using Napier’s rules of quadrantal spherical triangles, the following two formulae

Figure 1. An illustration of the STM-E for solving the problem of GCS.

Figure 2. An illustration of finding the equator crossing point on the GCT by using Napier’s rule
of quadrantal spherical triangles.
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can be yielded as:

tanDLoFE = − sinLF tanC, (3)
sinCE = cosLF sinC. (4)

Note that if DLoFE has the same name as DLo (i.e. both West or both East) and
λF is available, λE can be obtained by Equation (3). In addition, CE, can be obtained
by Equation (4) and it will be used in the following step.
Step 3. Finding the latitudes and longitudes of the waypoints along the GCT is

shown in Figure 3. Since only CE is available, the given condition is necessary for
obtaining the waypoints. By using Napier’s rules of quadrantal spherical triangles, we
can yield the following formulae under both Conditions 1 and 2.
Condition 1. When λX is given, DLoEX can be obtained. Then, LX can be calculated

from the following formula

tanLX = + cotCE sinDLoEX . (5)
Note that if DLoEX is the contrary name to DLo (i.e. one East and one West), the
right-hand side of Equation (5) should take the positive sign. It means LX and LF

are located in the same hemisphere. Conversely, if DLoEX has the same name as DLo,
the right-hand side of Equation (5) should be treated as negative sign. It means LX and
LF are located in different hemispheres.
Condition 2. When the DEX is given, the waypoints can be obtained from the

formulae,

sinLX = cosCE sinDEX , (6)
tanDLoEX = sinCE tanDEX . (7)

In Equation (6), note that when LX is smaller than LF, the waypoints are on the
GCT. This means LX and LF are located in the same hemisphere. Thus, LX is taken
as the positive. Similarly, when LX is smaller than LT, the waypoints are on the
GCT but LX and LT are located in different hemispheres. In this regard, LX is taken as
the negative. In Equation (7), if the value of tan DLoEX is negative, (180°−DLoEX)
should replace (−DLoEX) for satisfying the definition ofDLoEX. As for the designated

Figure 3. An illustration of finding the waypoints on the GCT by using Napier’s rule of quadrantal
spherical triangles.
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east or west of DLoEX, it depends on the sign of LX. If LX is positive, DLoEX is
contrary name toDLo. However, if LX is negative,DLoEX has the same name asDLo.
Obviously, too many judgments of sign conventions arise in the solving procedures of
the STM-E and this makes use of this method hard work for the navigator. However,
the STM-E method still offers a way to solve the waypoints problem.

2.2. Deriving Formulae for the COFI method. As the Earth is treated as a unitary
sphere, the vector expression of any point G(L, λ) on the Earth’s surface in a Cartesian
coordinates system can be written as:

G
⇀ = cosL cos λ, cosL sin λ, sinL[ ], L = − π

2
,
π

2

[ ]
, λ = [0, 2π). (8)

To avoid an additional judgment of sign convention, the technique of the fixed
coordinates system is first considered, that is, the north latitude is treated as a positive
value and the south latitude is taken as a negative one. As shown in Figure 4, intro-
ducing the relative longitude concept, the unit vectors of the North Pole (P), the depart-
ure (F), the destination (T) and the waypoints (X ) on a GCT can be expressed as:

P
⇀ = 0, 0, 1[ ], (9)

F
⇀ = cosLF, 0, sinLF[ ], (10)

T
⇀ = cosLT cosDLo, cosLT sinDLo, sinLT[ ], (11)

X
⇀ = cosLX cosDLoFX , cosLX sinDLoFX , sinLX[ ]. (12)

Figure 4. An illustration of four position vectors.
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When the vector algebra is introduced, derivations of the formulae used for the
COFI will be simpler and clearer than those of the DA. Therefore, we adopt multiple
products of the vector algebra to yield the great circle distance, the initial course and
the waypoints on the GCT (Spiegel, 2009; Chen et al., 2004).

2.2.1. Obtaining the great circle distance. As shown in Figure 4, there are two
ways to obtain the great circle distance. One is to yield the great circle arc (D) of the
spherical triangle by the dot product of two unit vectors. That is,

F
⇀ · T⇀ = cosD

= cosLF cosLT cosDLo+ sinLF sinLT,
(13)

in which the first row of the above equation uses the geometric definition of vector
product, while the second row uses the algebraic operation of vector product.
Another method is to adopt the dot product of two normal vectors, (P⇀×T

⇀) and

(P⇀×F
⇀), to yield the dihedral angle (DLo) of the spherical triangle. Therefore,

(P⇀ × T
⇀) · (P⇀ × F

⇀) = cosLT cosLF cosDLo

= (P⇀ · P⇀) (P⇀ · F⇀)
(T⇀ · P⇀) (T⇀ · F⇀)

∣∣∣∣∣∣
∣∣∣∣∣∣ = cosD− sinLF sinLT.

(14)

Similarly, two rows of Equation (14) represent the same mathematical meanings as
those of Equation (13). After arranging Equations (13) or (14), we can write the same
governing equation as:

cosD = sinLF sinLT + cosLF cosLT cosDLo. (15)

Equation (15) is the well-known side cosine law of spherical trigonometry.
2.2.2. Obtaining the initial great circle course angle. To yield the initial great

circle course angle, that is, the dihedral angle (C ) of the spherical triangle, we adopt

the dot product of two normal vectors, (F⇀×P
⇀) and (F⇀×T

⇀). Hence,

(F⇀×P
⇀) · (F⇀×T

⇀) = cosLF sinD cosC

= sinLT − sinLF cosD,
(16)

in which the first row uses the geometric definition of vector products, while the second
row uses the algebraic operation of vector products. Rearranging Equation (16)
obtains the governing equation as:

cosC = sinLT − sinLF cosD
cosLF sinD

. (17)

Equation (17) is another form of the side cosine law of the spherical trigonometry.
2.2.3. Obtaining the latitudes of waypoints along the GCT. As the initial great

circle course is fixed, the GCT can be determined. Then, giving the great circle
distance from the departure point (Condition 2) we can obtain every waypoint

along the GCT. Replacing the parameter vector T
⇀

of Equation (16) by the variable
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vector X
⇀

yields

(F⇀ × P
⇀) · (F⇀ × X

⇀) = cosLF sinDFX cosC

= sinLX − sinLF cosDFX .
(18)

Rearranging Equation (18) obtains

sinLX = sinLF cosDFX + cosLF sinDFX cosC. (19)
The above equation is also the side cosine law of the spherical trigonometry.

2.2.4. Obtaining the longitudes of waypoints along the GCT. Replacing para-
meter vector T

⇀
of Equation (14) by variable X

⇀
vector yields

(P⇀ × X
⇀) · (P⇀ × F

⇀) = cosLX cosLF cosDLoFX
= cosDFX − sinLF sinLX .

(20)

Rearranging Equation (20), we have

cosDLoFX = cosDFX − sinLF sinLX

cosLF cosLX
. (21)

The above equation is another form of the side cosine law of spherical trigonometry.
Note that Equations (19) and (21) are a set of the governing equations to obtain the

latitudes and longitudes of the waypoints along the GCT under Condition 2. In sum-
mary, formulae used in the COFI method are only a form of the side cosine law of
spherical trigonometry. Therefore, introducing the vector algebra into derivations of
the COFI method makes this method simpler and clearer than the conventional
approaches.

2.3. Reformulating the formulae used for the GCEM. To solve the waypoints
problem covering Conditions 1 and 2, the GCEM and the COFI method should
be combined for the practical navigator. Therefore, revisiting and simplifying the
formulae of the GCEM are described as follows.

2.3.1. Revisiting the GCEM. Those formulae used for the GCEM are briefly
revisited here (Chen et al., 2004). As shown in Figure 4, if three vectors are coplanar,
the scalar triple product is equal to zero. That is,

(F⇀ × T
⇀) · X⇀ = 0. (22)

Now, assuming

F
⇀×T

⇀ = a, b, c[ ], (23)
and substituting Equations (10) and (11) into Equation (23) yield

a = − sinLF cosLT sinDLo, (24)
b = sinLF cosLT cosDLo− cosLF sinLT, (25)

c = cosLF cosLT sinDLo. (26)
Finally, the Great Circle Equation can be formulated as

a cosLX cosDLoFX + b cosLX sinDLoFX + c sinLX = 0. (27)
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Note that Equation (27) implies the information of the great circle, for example, the
waypoints along the GCT, the equator crossing point and the vertex.

1. The waypoints along the GCT: When λX is given, DLoFX can be obtained.
Rearranging Equation (27) yields

tanLX = a cosDLoFX + b sinDLoFX
−c

. (28)

2. The equator crossing point: Since LE=0, substituting it into Equation (28) yields

tanDLoFE = − a
b
. (29)

3. The vertex: When the vertex is the highest latitude for the great circle, the first
derivative of Equation (28) must be zero. Therefore, we have

tanDLoFV = b
a
. (30)

Substituting the above result into Equation (28) yields

tanLV = a cosDLoFV + b sinDLoFV
−c

. (31)

2.3.2. Simplifying formulae used for the GCEM. Because Equation (25) used for
obtaining the parameter, b, is complex, we need to simplify it for a practical use. First,
Equations (15) and (17) can be rewritten as

cosDLo = cosD− sinLF sinLT

cosLF cosLT
, (32)

sinLT = sinLF cosD+ cosLF sinD cosC. (33)
Then, substituting Equations (32) and (33) into Equation (25) and rearranging it yield

b = − sinD cosC. (34)
Introducing the sine law of spherical trigonometry, that is,

cosLT sinDLo = sinD sinC, (35)
and substituting Equation (35) into Equations (24) and (26), respectively yield

a = − sinLF sinD sinC, (36)
c = cosLF sinD sinC. (37)

Therefore, the concise formulae used for the simplified GCEM are as follows.

1. The waypoints along the GCT: Substituting Equations (34), (36) and (37) into
Equation (28) and rearranging it yield

tanLX = cosC sinDLoFX + sinLF sinC cosDLoFX
cosLF sinC

. (38)

2. The equator crossing point: Substituting Equations (34) and (36) into Equation
(29) yields

tanDLoFE = − sinLF tanC. (39)
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3. The vertex: Substituting Equations (34) and (36) into Equation (30) yields

tanDLoFV = 1
sinLF tanC

. (40)

Further, substituting Equations (34), (36) and (37) into Equation (31) yields

tanLV = cosC sinDLoFV + sinLF sinC cosDLoFV
cosLF sinC

. (41)

3. COMPUTATION PROCEDURES AND NUMERICAL PRO-
GRAM. The great circle sailing problem is first to obtain the waypoints along the
GCT. Then, the course and distance of the rhumb line between two adjacent way-
points can be determined by using theMercator sailing. All required formulae used for
the numerical program are listed as

M = ae ln tan 45°+ L
2

( )
× 1− e sinL

1+ e sinL

( )e
2

[ ]
, (42)

in which e=0·081819190842622 for WGS 84 (NIMA, 2000) and ae=3437·74677078
nautical miles (nm) (Bowditch, 2002).
According to the formulae of the Mercator sailing,

ℓ = LXi+1 − LXi , dlo = λXi+1 − λXi , m = MXi+1 −MXi , (43)

tan cm = dlo× 60′

m
, (44)

dm = ℓ sec cm, cm = 90°
dlo cos LXi , cm = 90°

{
(45)

3.1. Computation procedures for the simplified GCEM and the COFI method.

. Step 1. Great circle information.
1. Calculate the great circle distance and initial course angle by using

Equations (15) and (17), respectively.
2. Calculate the equator crossing point by using Equation (39).
3. Calculate the vertex by using Equations (40) and (41).

. Step 2. Waypoints along the GCT.
Condition 1. Use the longitudes of the waypoints to obtain the latitudes by using
Equation (38).

Condition 2. Use the great circle distances from the departure to yield the latitudes
and longitudes of the waypoints by using Equations (19) and (21).

. Step 3. According to Mercator sailing, the Mercator course and distance of every
rhumb line between two adjacent waypoints can be determined by using
Equations (42), (43), (44) and (45).

3.2. Developing the numerical program. A GCS program, called “GCSPro”,
covering Conditions 1 and 2, has been developed based on the COFI method and the
simplified GCEM. For ease of use, GCSPro uses Visual Basic (VB) with a graphical
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user interface (GUI) for programming. In addition, for the purpose of choosing
reasonable numbers of the waypoints, a diagram of total Mercator distance versus
waypoints number (called tMd-n diagram) is provided for the navigator.

4. DEMONSTRATED EXAMPLES AND DISCUSSION.
4.1. Example 1. A vessel is proceeding from New York (USA) to Cape Town

(South Africa). The master desires to use the great circle sailing from L40°27·0′N, λ073°
50·0′W to L34°25·0′S, λ018°10·0′E.

4.1.1. Required. Calculate the following cases under different given conditions
by using the STM-E.

1. Calculate the great circle distance, initial course and the latitudes and longitudes
of the waypoints along the GCT at longitude 060°W and at each 10° of longitude
thereafter to longitude 010°E (Condition 1).

2. Calculate the latitudes and longitudes of the waypoints along the GCT at equal
interval of great circle distance, 600 (10°) nautical miles (nm), from the equator
crossing point (Condition 2).

4.1.2. Solution.

1. The STM-E is adopted to solve the waypoints along the GCT under Condition
1. Results and the solving procedures with the suggested formulae are shown in
Table 2.

Table 2. Results of solving waypoints along the GCT under λX by using the STM-E in Example 1.

Process

Item

Equation Input Output Solution

1 (1) LF=40°27·0′ (N) D=112·867789° D66772·1′
2 (2) LT=−34°25·0′ (S) C=−63·479168°

=116·520832*
N116·5°E
Cn=116·5°DLo=092°E

3 (3) LF=40°27·0′ DLoFE=52·43302404°E λE=021°24·0′W

4 (4)
C=116·520832°
λF=073°50·0′W CE=42·91376773°

5 (5)

DLoEX=021°24·0′W*060°W
=38°36·0′W LX=33°51·8′ (33°51·8′N, 060°W)

DLoEX=28°36·0′W LX=27°14·6′ (27°14·6′N, 050°W)

DLoEX=18°36·0′W LX=18°56·2′ (18°56·2′N, 040°W)

DLoEX=08°36·0′W LX=09°08·2′ (09°08·2′N, 030°W)

DLoEX=01°24·0′W LX=−01°30·3′ (01°30·3′S, 020°W)

DLoEX=11°24·0′E LX=−12°00·2′ (12°00·2′S, 010°W)

DLoEX=21°24·0′E LX=−21°25·7′ (21°25·7′S, 000°)

DLoEX=31°24·0′E LX=−29°16·0′ (29°16·0′S, 010°E)

* Since tan(−θ)= tan(180°−θ), (−θ) is replaced as (180°−θ).
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Table 3. Results of solving waypoints along the GCT under DEX by using the STM-E in Example 1.

Process

Item

Equation Input Output Solution

Process 1–4 is the same as Table 2.
Preliminary: λE=021°24·0′W CE=42·91376773°

5 (6)
DEX=00°

LX=00°=LE
(00°, 021°24·0′W)6 (7) DLoEX=00° (λX=λE)

5 (6)
DEX=10°

LX=±07°18·4′ (07°18·4′N, 028°14·8′W)
6 (7) DLoEX=06°50·8′(W/E) (07°18·4′S, 014°33·2′W)

5 (6)
DEX=20°

LX=±14°30·4′ (14°30·4′N, 035°19·1′W)
6 (7) DLoEX=13°55·1′(W/E) (14°30·4′S, 007°28·9′W)

5 (6)
DEX=30°

LX=±21°28·8′ (21°28·8′N, 042°51·6′W)
6 (7) DLoEX=21°27·6′(W/E) (21°28·8′S, 000°03·6′E)

5 (6)
DEX=40°

LX=±28°05·0′ (28°0·0′N, 051°08·5′W)
6 (7) DLoEX=29°44·5′(W/E) (28°05·0′S, 008°20·5′E)

5 (6)
DEX=50°

LX=±34°07·6′ (34°07·6′N, 060°27·5′W)
6 (7) DLoEX=39°03·5′(W/E) (34°07·6′S, 017°39·5′E)

5 (6)
DEX=60°

LX=±39°21·9′
(39°31·9′N, 071°06·3′W)6 (7) DLoEX=49°42·3′(W)

Figure 5. Results of running the GCSPro under Condition 2 in Example 2.
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2. The STM-E is adopted to solve the waypoints along the GCT under Condition
2. Results and the solving procedures with the suggested formulae are shown in
Table 3.

4.1.3. Discussion. In this example, although the STM-E can solve waypoints
problems under Conditions 1 and 2, many sign convention judgments arise in the
solving procedure of the STM-E. Anyway, it still offers another solving approach for
the IA.

4.2. Example 2. A vessel is proceeding from San Francisco (USA) to Sydney
(Australia). The navigator desires to use great circle sailing from L37°47·5′N, λ122°
27·8′W to L33°51·7′S, λ151°12·7′E (Bowditch, 1981, P.616–618).

4.2.1. Required. Using GCSPro to calculate the latitudes and longitudes of the
waypoints on the GCT 360 nm apart (Condition 2), and the information for the great
circle (eg. the great circle distance, initial course, the equator crossing point and the
vertices).

4.2.2. Solution. GCSPro is used to solve the waypoints on the GCT under
Condition 2. Results including of the waypoints, great circle information, and a tMd-n
diagram are shown in Figure 5. The comparison of results obtained by the COFI
method and those by the Ageton method (tabular method) is shown in Table 4. In
addition, when the “show data” button in Figure 5 is clicked, detailed numerical

Table 4. A comparison of results obtained by the Ageton method and the COFI method in Example 2.

Item The Ageton method* The COFI method

D 644·5′ 6445·22′
C 240°17·5′ 240·3°
V L46°39·5′S, λ100°29·7′E L46°39·5′S, λ100°30·0′E
DFX=6° L34°39·0′N, λ128°48·3′W L34°38·7′N, λ128°47·9′W
DFX=12° L31°12·0′N, λ134°39·3′W L31°11·7′N, λ134°39·0′W
DFX=18° L27°30·0′N, λ140°04·3′W L27°30·0′N, λ140°04·5′W
DFX=36° L15°24·0′N, λ154°26·3′W L15°23·9′N, λ154°26·1′W
DFX=54° L02°29·0′N, λ167°09·3′W L02°28·9′N, λ167°09·3′W
DFX=60° L01°52·5′N, λ171°17·3′W L01°52·9′S, λ171°16·6′W

* Resource: Bowditch, 1981, P.616–618.

Table 5. The relationship between total Mercator distance (nm) and waypoint number on the GCT in
Example 2.

Waypoints no. Total Mercator distance Waypoints no. Total Mercator distance

0 6484·60 9 6466·74
1 6483·89 10 6466·56
2 6475·60 11 6466·43
3 6471·67 12 6466·32
4 6469·65 13 6466·24
5 6468·49 14 6466·17
6 6467·77 15 6466·12
7 6467·30 16 6466·07
8 6466·97 17 6466·03
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information of total Mercator distance versus numbers of waypoints will display in the
format shown in Table 5.

4.2.3. Discussion. In this example, the COFI method has been validated
successfully. In Table 4, it is found that the COFI method is more accurate than
the Ageton method because the former is free of rounding errors, which was also
reported in Bowditch (2002). As for Table 5, the total Mercator distance of 16
waypoints is nearly equal to that of 8 waypoints and their distance difference is less
than 1 nm. An optimum number of waypoints can be determined from this table for
the navigator.

4.3. Example 3. A vessel is proceeding from Sydney (Australia) to Balboa
(Panama). The master desires to use the great circle sailing from L33°51·5′S, λ151°
13·0′E, to L08°53·0′N, λ079°31·0′W (Chen et al, 2004. pp. 317–319).

4.3.1. Required. Using GCSPro to calculate the latitudes and longitudes of the
waypoints on the GCT at longitude and at each 10 degrees of longitude thereafter to
longitude (Condition 1), and the information for the great circle (eg. the great circle
distance, initial course, the equator crossing point and the vertices).

4.3.2. Solution. GCSPro is used to solve the waypoints along the GCT under
Condition 1 successfully. Results including the waypoints, great circle information
and a tMd-n diagram are shown in Figure 6.

4.3.3. Discussion. Based on the proposed COFI method and the simplified
GCEM, the developed GCSPro program has been validated by Examples 2 and 3. It is
found that the GCSPro program shows the advantages of completeness and practical
application.

Figure 6. Results of running the GCSPro under Condition 1 in Example 3.
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5. CONCLUSIONS. In this paper, the COFI method has been developed to
calculate the waypoints along the GCT successfully using the multiple products of the
vector algebra (VA-MP). Due to fixing the initial great circle course, the GCT can be
determined and the waypoints along the GCT can be calculated directly. In addition,
without tedious derivations, the COFI method is simpler and more straightforward
than the conventional methods. A program, GCSPro, for calculating GCT problems
has been validated by the practical examples. It is found that the program can be user
friendly and effectively operated by the navigator under two given initial conditions.
Finally, the STM-E has been derived and also offers another way to solve the
waypoints problem successfully.
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APPENDIX

F the departure
T the destination
Pnr the pole nearer the departure in Figures 1, 2 and 3
P the North Pole
E the equator crossing point of the great circle
V the vertex of the great circle
X; Xi The waypoints along the GCT
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L the latitude
LF the latitude of the departure
LT the latitude of the destination
LV the latitude of the vertex
LX the latitudes of the waypoints on the GCT
λ the longitude
λF the longitude of the departure
λT the longitude of the destination
λV the longitude of the vertex
λX the longitudes of the waypoints on the GCT
λE the longitude of the equator crossing point
DLo the difference of longitude from the departure to the destination
DLoFV the difference of longitude from the departure to the vertex
DLoFX the difference of longitude from the departure to the waypoints
DLoFE the difference of longitude from the departure to the equator crossing point
DLoEX the difference of longitude from the equator crossing point to the waypoints
[a, b, c] the parameter vector of the great circle equation
D the great circle distance from the departure to the destination
DFE the great circle distance from the departure to the equator crossing point
DEX the great circle distance from the equator crossing point to the waypoints
DFX the great circle distance from the departure to the waypoints
C the initial great circle course angle from the departure to the destination
CE the course angle of the equator crossing point toward the departure
CX the course angle of the waypoint toward the destination in Figure 3
dm the distance between two adjacent waypoints in Mercator sailing
cm the course angle in Mercator sailing
M meridional parts
ae the equatorial radius of the Earth (nm)
E first eccentricity of WGS 84
l the difference of latitude between two adjacent waypoints
dlo the difference of longitude between two adjacent waypoints
m the difference of meridional parts
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