LINEAR COMBINATIONS OF BERNSTEIN
POLYNOMIALS

P.L. BUTZER

1. Introduction. If f(x) is defined on [0, 1], then its corresponding Bernstein
polynomial

(1) Bu(x) = Brf(x) = yz:%f(m_l) Pra(®),  Pralx) = (Z) (1 —x)",

approaches f(x) uniformly on [0, 1], if f(x) is continuous on [0, 1]. If f(x) is
bounded on [0, 1], then at every point x where the second derivative f”(x)
exists (Voronowskaja [7], see also [5])

lim [B{(x) — f()] = 222 pr),

00 2
hence if " (x) is not zero on [0, 1], the order of approximation to f(x) by the
B, (x) is exactly O(n~1). It follows that the existence of derivatives of higher
order of f(x) cannot improve this order of approximation.

In this paper we shall introduce certain linear combinations of Bernstein
polynomials which, under definite conditions, approximate f(x) more closely
than the Bernstein polynomials.

Polynomials approaching f(x) more closely than the Bernstein polynomials,

but of a different type from those considered here, were also considered by
Bernstein [1] namely,

o) = 35 [ 1607 = =D | o,

y=

Then if ] f (x)] < M and if f®(x) exists at the point x, it can be shown that

2
fim n*[Q4(w) — )] = T A2 0 ) - LB 0,

We remark that the combinations we consider do not contain the values of
the derivatives of f(x).

2. Preliminary results. We shall here recall some known facts, for their
proofs one may consult [5, §§1.5-1.6]. With Bernstein [1] we define
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(2) Spr(x) = Z(, o™t — %) poalx) (=12 ...:7=0,12...)

and for n™ S, ,;(x) we shall often write T, ,(x). If f(x) is defined on [0, 1] with
|f(%)| < M then at points where @ (x) exists [1],

2k (1)
®3) Blw) = 1) + L 500 + 5

7.

where ¢, >0 as n — «.
The recursion formula

T ri1(x) = x(1 — )[T5 ,(x) + nrT, r—1(x)]

is known, and by induction we obtain, putting x(1 — x) = X,
Too=1 T,1=0, T,.=nX, T,:=n(l—2x)X,
(4) Tn.4

3°X 4+ n(X — 6X7), T,s= (1 — 2x)[10n°X* + n(X — 12X7)],
T,s = 15n°X° 4+ 52°X° (5 — 26X) + nX[1 — 30X + 120X7],

In general, for 7 fixed, every 0 < x < 1, T}, ,(x) can be written as a polynomial

in 7,
(5) Tor(x) = ¢ro(®@) 1" + w1 (@) 0 ™ 4 Gppa@)n” P G
of degree
1
IR &4 for even 7,
v =[] {%(1’ - 1) for odd 7,

where the ¢, »_(x) are polynomials in x, independent of 7.
Moreover, for every 7, one can show [5] there exists a constant 4, (depending
only on 7) such that for every 0 < x < 1,

(6) 0< Torx) < 44,
Calling p = 2r/8 for a given 8 > 0, we have also

@ > v = mx Ppoa(x) < A7
v=0

If 6 =n0<a< 4%, itis known that [5] for every [ > 0, there is a constant
C where C = C(q, /) such that

®) > pualx) < Cnh

lin=1T—z >

3. The linear combination. If f(x) is defined on [0, 1], we define the

polynomials
&) = [¥@)]" = Blx)
9) (2F — 1) Q&) — orglz—tl _ glak=21 E=12 ...
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One can rewrite the relation (9) as
(10) P (x) = apBaory(x) + ap_1Bor-1n(x) + a_2Bor-s(x) + . . . + B (%)

where by induction, explicit values can be found for the constants a;, a; = a;(k).
Note that

(11) apt+op1t o2t ... ta=1

The polynomial (10) is the linear combination of the ordinary Bernstein poly-
nomials we consider in this paper.

Forr=1,2,3,...,n=1,2,3,..., we also define
@ -1neH = 2"@[”-” S E=1,2,....

Corresponding to the relation (3), for the linear combination (10) we have
the following result:

LeEmMMA 1. If fO*429 (x) exists at the point x, then
2(k+s) f(T)

(13) LM (x) = fx) + 2

=1

where ¢, >0 asn— «.

Proof. We prove this lemma by induction. So we suppose (13) holds and if
f@+2542) (1) exists we show that (13) holds with 2k replaced by 2(k + 1). We

have
2k+25+2

()
W) = 1)+ 2 TN ) + e

By the relations (9) and (i2) we deduce that
@ = DR (x) — f@)] = 2" RET — f] — [& — f]

2k+2s+2 (1) 2k+2s4+2 p(71)
X X
2k+1 zl: f ( ) [Ziklr Zl f ( ) @[2101 ( ) -+ k+s+l
=

- @ - 1)2“wam<x) B 4

This establishes the lemma.
We shall now prove the approximation theorem for our linear combination.

TuroreM 1. If f(x) is defined on [0, 1] with ] f (x)] < M and if f@ (x) exists
at the point x, then

(14) | () — fx) | = 0™,
and moreover,
(15) [ (x) — fe) | = o™ as n— o, E=1,2,....
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Proof. By Lemma 1 we have
(r)
81[12“ Zf (x) @[H]( ) + 6, >0 as n— ®,
=1
and if we can show that
f(r (V) [2k] —k—1

(16) Z Gur () = 0(m™)
then the relation (15) will hold. For this purpose we need

LeEmMMA 2. With S defined by (12),

(17) S (x) =0 for1 <r<k+1,

(18) &M () = o™ forr=1,2,3,....

To prove this lemma, we note that by (5)

(19) SEMw) = G (@) 7 4 Grpal0) I L () 0,

Applying to n~* the difference operator which connects @ with &2 in
(12), we obtain

2*Cn) -t = =1
This is of form an=*, and @ = 0 if £ = 5. Operating on the right-hand side of
(19) with difference operators for s = 1,2,3,..., %k and omitting vanishing
terms we therefore have

S () = dupa(@) P+ L+ G (@) Y

where the ¢;(x) are polynomials in x independent of #. This proves (18). If
kE+ 1> 7r — 1, all terms vanish, and we obtain (17). The lemma is complete.

The relation (15) now follows. By Lemma 1, we find
()
2k2] L) (x) [25—2) &
W) — f) + 2 et + 5
and on account of (18), we deduce (14). This establishes the theorem.
In the particular case of the previous theorem for & = 3, i.e., if f®®(x) exists
at x, we have by the relations (4) and (13)

lim 2°[2L (x) — f(x)] = lim »® [§ Bl (x) — 2Bl (x) + 1 B,{(x) - f (x):l

n—c0

_ é X — 6X )f<4>(x) +5 1 — 2%) Xzf(5)(x) LB Xsf(fs)(x) ,
and also
lim 7° [, (x) — f(x)]

N->00
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4. Further theorems on the order of approximation. If f(x) is defined and
continuous on [0, 1], then

w(é)=wf(6)Er|nlax]f(x—|—h)—f(x)], 0<x<1, 0<x+1rL1
nl<s
is called the modulus of continuity of the function f(x).

THEOREM 2. If fO% (x) exists and is continuous on [0, 1] having a modulus of
continuity we(5), then

199 = 1) | < max |G o (7, i}
where C = C(k) and C' = C'(k; f).

Proof. Since f®® (x) exists and is continuous, for x1, xs thereisan g, x; < 7 < x2
such that

) = ) = 3 (o — ) L) g B m B gy g
By (11) we have

& - = Z {a, [Bain(x) — f(x>]}
; {afz @ ™) = 1@)] pv.mm}
S a5 e - 90 )

- X (2_ ! x) (2%) (2K)
+ 22 | T (PE) — P @) | prainlx)
=0 =0 (Zk)I
= E1 + 22:
where £, = £;(»), x < & <27%/n, 0 <j <k Now

2in 2k 2in (1)
55 @t = 98 ) = 3 3 @ = 0 a0

y=0 i=1
_ 0] @)
= ;@2% 1( ) 7! .

Therefore
= 3 el ® < 3 et 18,

i=1 7=0
and by Lemma 2 we obtain
< C'nF

We now evaluate Z,. Since for a modulus of continuity, w(A) < (1 + Nw(9)
for any A > 0-we have
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An OB

55 @< a0 e — £00) | )

wé](ea))l{ i @7 = )Py pin(x) + < Zf @™ =) g~ x lp"'w"(x)}

?52(;){2 @ = 2)¥pan(x) + 5 Zﬂ |27 — xl”‘“f’m<x)}'

=0

and by (6) and (7), this expression does not exceed

w2 (5) A, }
k)] {(zfn)'“ T 5@ -

Hence

wa (8) <& A A’
and putting in particular § = #~* we have

c
1221 nk‘*’%(‘n )-
This proves Theorem 2.

COROLLARY. If f®® (x) exists and belongs to Lip o, 0 < a < 1, that s 1f

If @+ k) — @) | <K R
then
[ () — f(x) | < M

where M is a constant.

In connection with Theorem 2, we remark that if f(x) is continuous on [0, 1]
having a modulus of continuity, »(8), then for the ordinary B,(x), Popoviciu
[6] has shown that

| Bi(x) — f(x) | <Fw(@™).
Regarding the case £ = 1 of the preceding corollary, compare [2].

5. Another property of the (%1 (x). If f(x) satisfies only a Lipschitz condition
of order o, 0 < a < 1, then

k

| () — fx) | < ;) | s | | Bain(x) — f(x) | = O(n7*),

and we shall show that this order of approximation cannot in general be improved,
that is, one can find functions f(x) € Lip @ (0 < « < 1) such that

| & @) = f() | > Co
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with some constant C; > 0. This shows that in general, *!(x), £ > 1 does not
approximate f(x) more closely than B/(x). We shall show this for the particular
case k£ = 1, the general case k£ > 1 can be treated along similar lines. We have
the following theorem.

THEOREM 3. For every 0 < a < 1, there exist functions f(x) € Lip a such that
the order of approximation given by

|87 (@) — fx) | = 0(n™)
cannot be 1mproved.

Proof. We shall consider the function f(x) = fx - x0|°‘ with fixed 0 < xp < 1
(and where 0 < o < 1). This function satisfies the Lipschitz condition of order
a, namely

[x+h—x | = |x—x |"< |B]|"
Now for fixed 0 < xo < 1 and v > 3, for all » which satisfy
(20) o™ — %0 | < w7, 0
it is known that [3, p. 133]

21)  Ryu(xo) = v — a0 | “puu(o)

N
=
N
r®

~ |vp._1 — X |a

R . S -1 _ 2 | _ .
= [2mxo(1 — xo)#];eXp[ 2x0(1 — x9) (u %o) ]_ Pou(0) 5
this is a uniform asymptotic relation, that is, uniformly for all » satisfying (20),

. Rv (OC())
] LAY AN A, .
“1_1')2 P, u(x0)

We now obtain by a well-known argument [5]

Rv,u(xo) = Sv,u(xO)

(r+1)p—2

= pl[2mxo(1 — xo)]_*f

1

—1 a _ M _ 2
| vie %o | expl: Toa(l = x0) (u — x0) ]du
uniformly as u — « for all » satisfying (20). Now
™ =2 "= Ju—x["=0 (| —ul)=0E")
uniformly in v and « as lv,u.—l - ul < p7Y, and so we deduce

(22) R, .(x0) =2 S, u(x0)
) . (r+p—2 " [ i 2]
= u’[27xe(1 — x0)] fw_! | — x0 |“exp| — el = x0) (u — x0)° | du
(r+Dp—2

+0 [u"’ ph2mre(1 — x0)]7* J:'u“ exp l:- 59#30—0) (u — xo){l du]
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uniformly in » satisfying (20), as u — .
Since ]v;rl — xol“ < 1 and applying (8) we have
lvﬂ_l — Xo |apv,u(x0) < Z P, M(xO) Cz# y

=122, [>5, =22, [>8,

where 6 = u™ for every I > 0 with 0 < y < %, and where the constant
= Ca(y, ). We take I > 3a. Then for § <y < 3,

SRt = T RaG)t ¥ R

|m—14zo |<80 |vn—1o~xo |> °

I

a2y, Rolo) +0 )
I4e) 20 Sl +o @™

=17, 1<8,0

I

where ¢, — 0 for u — . We now obtain

[ f(0) — 8 (o) | = | 8P (o) | = | 2Ban(o) — Ba(o) | > 2Baa(%0) — Ba(%0)

= 2,2:0Ry'2n(x0) - yz:onn(xO)
=@+, X Swlw) = (L+eh) D Sualw) + o),

v(2n) 1=z, 1<B, lyn—1"2, 1<8,
where 6, = (2n)77,6; = n %, and ¢, » 0 and ¢/, - 0 asn — «. Applying (22),
this expression is seen to be equal to

" o (1 — wo)] 7

2+€n [xo(l“fXJo) f a a2
0 v exp (— v") dv

\/7r
-
+0[@).%

1+ay2mu—xnﬂ
Vo J'O

co e fi

where + < v < 1. But the second and fourth terms need not be considered,
as they are of order O(n®); the integrals in the remaining two terms converge
to the same positive limit, and the difference of the factors outside these integrals
is of the form

(1 — x0)] 7
exp (— o%) dv

“[2u0(1 — x0)] 7
2" exp (— 9°) do

n® 7 2JCO(1 -_ xo)]
exp (— o)) dv | + o(n‘%“),

Can ™ 4 o(n %)
where C; is positive as 0 < o < 1. So we deduce

| f(o) = & (wo) | > Cn™™
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where C, is a strictly positive constant, proving the theorem.
We have constructed linear combinations of the Bernstein polynomials
B, (x), namely

& (x)

of degree 2*n, which under conditions imposed on the corresponding function,
approach f(x) more closely than

sz,,(x).

The order of approximation of a function by polynomials of best approximation
is generally better than that given by the

L (x).

For instance, if f®®(x) € Lip @, 0 < @ < 1, there are polynomials P,(x) of
degree % such that

| Pa(x) = fx) | < M~

[4, p. 18]. For the
2.7 ()
of degree 2%z we have

|28 () — f(x) | < Mn*7H

It remains an open question whether there are other linear combinations of
degree not exceeding 2%z approaching f(x) more closely than the combination

QL ().
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