Journal of Glacielogy, Vol. 11, No. 63, 1972

SOME EFFECTS OF MULTIPLE SCATTERING ON THE
DISTRIBUTION OF SOLAR RADIATION IN SNOW AND ICE

By Bruce R. BARKSTROM
(Dearborn Observatory, Northwestern University, Evanston, Illinois 60201, U.S.A.)

AssTRACT. Multiple scattering of the solar flux in snow and “bubbly” ice can account for the variable
albedo, the non-specular reflection, the non-exponential flux decrease near the surface, and the large upward
flux within the medium. The scattering problem has been formulated and solved exactly, assuming isotropic
scattering in a plane-parallel, semi-infinite, grey medium. The solution shows a non-exponential flux
decrease near the surface and an exponential decrease deep in the medium. For such a medium, the albedo
will increase with decreasing solar altitude in a manner which agrees to within one per cent of observed
snow albedos in the Antarctic.

Resume.  Quelques effels de la dispersion multiple sur la disiribution de la radiation solaire dans la neige et la glace.
Les dispersions multiples du flux solaire dans la neige et la glace bulleuse peuvent expliquer la variabilité de
I’albedo, la réflexion d'un type non spéculaire, une décroissance non exponentielle du flux prés de la surface
et un important flux ascendant a 'intérieur du milieu. Le probléme de la dispersion a été formulé et résolu
exactement, en émettant 'hypothese d’une dispersion isotrope dans un milieu gris semi-infini entre des plans
paralléles. La solution montre une décroissance non exponentielle du flux prés de la surface et une décrois-
sance exponentielle dans la profondeur du milieu, Pour un tel milieu, I'albedo augmentera quand diminue
la hauteur du soleil d’'une maniére qui concorde & un pour cent preés avec les albedos observés pour la ncige
dans I’Antarctique.

ZUSAMMENFASSUNG.  Einige Auswirkungen der Vielfachstrewung auf die Verteilung von Sonnenstrahlung in Schnee und
Eis. Die Vielfachstreuung (multiple scattering) der Sonnenstrahlung in Schnee und blasenhaltigem Eis kann
die Ursache fiir die Albedounterschiede, die nicht-totale Reflexion, die nicht-exponentielle Strahlungs-
abnahme nahe der Oberfliche und die starke Gegenstrahlung innerhalb des Mediums sein. Das Problem
der Streuung wurde, unter Annahme isotroper Streuung in einem planparallelen, semi-infiniten, grauen
Medium formuliert und exakt gelést. Die Losung liefert eine nicht-exponentielle Strahlungsabnahme nahe
der Oberfliche und eine exponentielle Abnahme in grosserer Tiefe des Mediums. Fiir ein solches Medium
ergibt sich mit abnehmender Sonnenhéhe eine Albedozunahme, die innerhalb von 1%, mit den in der
Antarktis beobachteten Schneealbedowerten iibereinstimmt.

INTRODUCTION

If one shines a light on a snowball or a “*bubbly’ ice cube, a large fraction of the incident
light is scattered out through the sides. Scattering is also seen in the various kinds of ice
which form on northern lakes and rivers. If the ice contains very few bubbles, solar radiation
is specularly reflected. In directions away from the sun, little light is reflected back to the
observer, and the ice appears black. However, if the ice contains many bubbles, or if snow
covers it, the solar beam is scattered in all directions, and the surface appears almost uniformly
bright. Clearly, scattering should be important in distributing light in layers of snow and
“bubbly™ ice.

QUANT[TA‘TIVF. REASONS FOR CONSIDERING MULTIPLE SCATTERING

The qualitative observations above may be supplemented by more precise measurements.
To describe the behavior of light, we introduce the specific intensity I(z, u, ¢). The basic
definition of / may be found in a number of books, e.g. Chandrasekhar (1950) or Gillham
(1970). The arguments of [ are as follows: z is the vertical distance from the top of the ice or
snow, u is cos f, where (6, ¢) are polar coordinates describing the direction in which the light
is travelling, and # = o is in the downward (- z) direction.

The downward flux @/ (z) measured by a photocell or similar instrument imbedded in
the ice or snow approximates the flux

27 ml2 2w T

Dl(z) = f d¢ fdf) sin @ cos 81(z,cos 8, ¢) = f d¢ " dp pl(z, p, ¢). ()
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Similarly, the total flux is
o(2) = [ @b [ duntam ). (2)
(1] =1

If a thick layer of ice contains no bubbles, the intensity of the reflected solar beam and the
intensity of the beam in the ice are simply related to the incident solar intensity. Within this
homogeneous ice layer, the specific intensity will obey the familiar Bouguer-Lambert law:

I(z, py $) = {(1—a) Do/n?} B(n—pto) B($—cbo) exp (—r2/pto), (3)

where a is the albedo of the ice, @, is the solar constant above the ice, n is the index of refrac-
tion,  is the absorption coefficient, ¢, is the azimuth of the sun, and p, is cos ;. f, is related
to the solar altitude by Snell’s law. The flux of solar radiation within the ice will be

D(z) = P (2) = {(1—a) Popo[n*} exp (—Kz[p)- (4)

The constants a and n are required to give conservation of energy at the surface of the ice. If
the sensor within the ice is surrounded by a hemispherical bubble of air, then we must multiply
the result in Equation (4) by »? to derive the measured flux. Clearly, once we have measured
the index of refraction and the extinction coefficient in the laboratory, we know the distribution
of solar radiation in clear ice. Since 7 and « are fairly independent of pressure and tempera-
ture over the range of these variables encountered in meteorological work, the radiation
distribution in and the albedo of clear ice should also be independent of the weather.

This is not true of the properties of snow or “bubbly” ice. For example, snow albedos
range from o.go for fine-grained, wind-packed snow to 0.45 for old, wet snow (Liljequist,
1956). Snow albedos are even reported to change from morning to afternoon, for the same
solar altitude (Hubley, 1955; Liljequist, 1956). Large variations of albedo are to be expected
for snow or “bubbly” ice if their scattering properties depend strongly upon temperature or
pressure. For example, we might expect a considerable difference in the distribution of light
scattered by a particle of ice covered with a thin layer of water, as compared with the distribu-
tion of light scattered by a similar dry particle. Also, the size and shape of ice grains and air
bubbles should have a strong effect on the scattering properties of the medium.

There are other difficulties in applying Equation () or Equation (4) to snow or “bubbly™
ice. The extinction coeflicients of these media are large near the surface and decrease to a
constant value larger than that of clear ice, as may be seen in Ambach and Mocker (1959) or
Lyubomirova (1962). If interpreted strictly, an extinction coefficient that depends on depth
indicates that radiation is not extinguished exponentially. Attempts to explain this pheno-
menon on the basis of selective absorption, e.g. Liljequist (1956), are not entirely convincing.
Lyubomirova (1962) has suggested that multiple scattering will also lead to a non-exponential
flux decrease near the surface and an exponential flux decrease deeper in the medium. As we
will show, it should be possible to distinguish observationally between selective absorption
and multiple scattering by the dependence of the flux extinction on solar altitude.

In addition to a variable extinction coefficient, snow, and presumably “bubbly” ice, show
a sizeable upward flux. Liljequist (1956) suggests that his measurements show that the
upward flux is about 409, of the downward flux. Tt is difficult to explain this observation
without resorting to multiple scattering.

Despite the apparent importance of multiple scattering there appears to be little work
which has used modern techniques in radiative transfer. Dunkle and Gier (1953) and Dunkle
and Bevans (1956) have formulated the problem in terms of a two-stream model. The former
find that in this approximation, the ratio of upward to downward flux is a constant determined
by a distributed reflectivity and the absorption coefficient. Liljequist (1956) has modified
Dunkle and Gier’s (1953) approach near the upper boundary by introducing an ad hoc surface
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reflectivity. Lyubomirova (1962) assumes that the scattered light is proportional to the
diminishing solar flux. She shows from observations that the scattered radiation builds up
beneath the surface and then decreases. We will formulate the scattering problem in terms of
conventional radiative transfer theory.

MATHEMATICAL FORMULATION OF THE SCATTERING PROBLEM

On a scale of a few tenths of a millimeter, both snow and “bubbly” ice are extremely
heterogeneous materials. Thus, we might think of snow as small, irregular particles of ice
imbedded in air, and of “bubbly” ice as small parcels of air imbedded in ice. For transfer
calculations, we could compute the way in which light is scattered by an “average™ particle or
parcel, and then use the results to compute the effects of multiple scattering by a large number
of similar particles. However, because the irregular shape and random orientation of either
ice grains or air bubbles make such an approach very complicated, we will use a phenomeno-
logical approach to radiative transfer to gain some idea of the effects of multiple scattering.

In the phenomenological approach, we note that snow or “bubbly” ice often has homo-
geneous properties on the scale of a few millimeters. We can then follow Chandrasekhar’s
(1950) approach to the optical properties of the medium. We assume that the snow or ice
can be characterized by a volumetric scattering coefficient o (m='). From a beam of radiation
incident normally on a thin slab of volume dV having a cross-section dX and a thickness ds,
the power scattered is

ol ds d2 dw = ol dV dw. (5)

dw is a small element of solid angle about the normal to the surface of the slab. The power
scattered into an element of solid angle dw” about a direction inclined at an angle @ to the
direction of incidence of dV is

2 (cos ) (dw'[gm) of AV da, (6)
where p (cos @) is the phase function. The total power within the beam scattered by dV is
(47)71 [ p (cos 6) dw’ oI AV de, (7)
so that
(4m)1 [ p (cos 6) dw’ = 1. (8)
Similarly, the total power absorbed in dV from the heam in dw is
wlds dX dew = I dV daw, (9)

where x (in m~1) is the (true) absorption coefficient.

The scattering and absorption coefficients are assumed to depend on the physical condi-
tion of the ice and snow. However, «, o and p do not completely specily the scattering problem.
In some cases, it is useful to have sources of radiation which add to the beam within a solid
angle dw a power

qds d2 dw/q4m = ¢ dV dw/4qm. (10)

For example, if we wish to consider only the diffuse radiation within the snow or ice, we can
use a source g which describes the radiation which is directly scattered from the solar beam.
Similarly, we could describe by ¢ the radiation which is directly scattered from the “beam?”
of diffuse solar radiation that penetrates the medium. Finally, we must specify the boundary
conditions on I.
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If we assume that the snow or ice layer can usually be treated as a plane-parallel medium,
then the changes in [ are described by the equation of transfer:

pol(z, p, $)[0z = —(k+0) I(z, p, $)+

+(47T)"0f dg¢’ f di'p(p, ¢; p's ¢) 1(z, 0/, ¢) + (4m)g(2, s ¢). (11)

Although Equation (11) can be written so that it applies to each frequency, we assume
that /, , o, p and ¢ are independent of frequency. We do so because the sunlight reflected
from snow or ice is essentially uncolored, i.e. they are grey media.

Our particular interest lies in the distribution of solar radiation in a thick layer of snow or
“bubbly” ice. The properties of ice and snow are often macroscopically homogeneous over
large depths. The assumption of homogeneity allows us to define a new depth variable—the
optical depth—

7= (kto0) 2 =x2 (r2)
where y (also measured in m~1) is called the extinction coeflicient. The constant
o = of(k+o0) (13)

is the single-scattering albedo. As we have already noted, little is known about the nature of
scattering in snow or ice, i.e. p is unknown. We still therefore take the simplest possible choice:

Pl psp's ¢') = 1. (14)

The boundary conditions for the problem are complicated by refraction. We included
refraction in the treatment of solar radiation in clear ice. However, we have not included it
explicitly in our derivation of Equation (11) because it is almost impossible to measure the
index in translucent media. The path of a light beam is very difficulty to follow far into the
medium, so Snell’s Law cannot be used. We shall continue to neglect effects of refraction, even
at the surface of the medium. No special surface reflectivity is to be invoked. The grains of
snow on the surface scatter light in the same way as the grains deeper in the layer; the bubbles
which pit the surface of a homogeneous layer of “bubbly” ice scatter light in essentially the
same way as the bubbles deeper in the layer. In other words, light is not specularly reflected
from the surface of the ice or the snow. We assume that the direct solar beam entirely pene-
trates the medium. The outward flux comes from the scattered radiation. Since the diffuse
solar radiation under clear skies usually contributes ten to twenty per cent of the global solar
flux (Liljequist, 1956; Rusin, 1961), we neglect the contribution of the diffuse solar radiation
to the distribution of solar radiation in the snow or ice. Finally, if the snow or ice layer is
fairly thick, the solar radiation is almost completely extinguished at the bottom of the layer.
This allows us to neglect the light absorbed or reflected by the underlying medium, and to
treat a deep layer of snow or “bubbly” ice as a semi-infinite, plane-parallel “atmosphere™.

These abstractions allow us to simplify the transport problem considerably. The radiation
scattered from the direct solar beam will obey the equation

w ol (z, p)[or 41" (1, p) = (w/2) f I'(7, p') dp'+(w[qm) Do exp (—7/us)  (15)

where I is subject to the boundary conditions

I'(o, p) = o, =0, (16a)
and
lim I'(7, p) = o. (16b)
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Equation (15) agrees with equation (126) in Chapter 1 of Chandrasekhar (1950), except that
our u is measured in the opposite direction from his.

It we replace the incident solar beam in Equation (15) by the axi-symmetric incident
beam (@,/2m) 6(n—p,), the diffuse solar radiation in the scattering medium still obeys
Equations (15) and (16a, b). In addition, the flux and mean intensity of the new incident
beam are identical with those of the original beam. Therefore, the solar radiation in snow and
“bubbly” ice should be essentially the same as the distribution of the specific intensity

(7, ) = I'(7, p) +(Pof27) exp (—7[po) 8(p— o), (17)
which satisfies the homogeneous transfer equation

1

p ol (r, p)[Or+1(7, p) = (w/2) f I(r, p) dy', (18)
and has the boundary conditions
I(0, ) = (Bofom) u—pue)y i ia > 0 (19a)
and
lim (7, @)= 6. (19b)

SOLUTION FOR THE SOLAR RADIATION FIELD

The problem set down in Equations (18) and (19a-b) can be solved by using the singular
eigenfunction method. The solution may be found in Case and Zweifel (1967) in the form

I(r, p) = (Po[2m) [ﬂu(uo) boi () exp (—T!Vo)-l-f A, (po) bu(p) exp (—7/v) dV] (20)

where the expansion coeflicients are

Ao+ (1to) = — 2y (o) [mro X (vo) (21)

and
4y(p) = SE T 00) ), (22)

with

bo () = @vo/2(vo—p)

bulp) = (wv]2) P(v—p) 4 A(¥) 8(v—p),
P being the mnemonic symbol to remind us to take the principal value of the integral in
Equation (20),

=¥
g(v) = {2 (v) 4 (mmv[2)2},
y(v) = vo/2(1 —=) (v2—v2) X(—v),

Vot 1 2
v, In =—,
. {vnl} w

X(—v) is the X-function tabulated in Appendix L of Case and Zweifel (1967) (after
Mendelson, unpublished) for various values of w. The functions ¢,,(x) and ¢,(p) are the

and
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eigenfunctions for the homogeneous transfer equation with respective eigenvalues v, and v. ¢,
and ¢, are normalized in the sense

f A=, Deesian -

The total solar flux within the snow or ice is related to the specific intensity by

1

®(r) = 2m f pl (7, p) dpe. (24)

Integrating Equation (18) over p, and multiplying by 27, we find
1

do/dr = —am(1—w) f}(T, ) dis. (25)

Using the normalization condition, Equation (23), the solar flux divergence can therefore be

written
1

db[dr — — (1—) Blag, (o) exp (—7fvy) + j A, (o) exp (=) dv].  (26)

(4]

PROPERTIES OF THE SOLUTION

The solution to the transport problem has several interesting features. First, the specific
intensity decreases non-exponentially near the surface, and exponentially deep in the medium.
This property may be seen by noting that »,~* << 1 < v ' for 0 < v < 1. Thus, we can con-
sider the integral in Equation (20) to be a boundary transient, and the discrete term to a
characteristic or asymptotic solution.

The asymptotic solution might be considered a modified “Bouguer-Lambert Law™.
However, the distribution of light deep in the scattering medium does not depend inversely
upon the sine of the solar altitude. If we follow the procedure described in Lyubomirova
(1962) for measuring the “extinction coeflicient” K, clear ice should give K¢ = x/u, in
accordance with Equation (4). However, the “asymptotic extinction coefficient” in Equation
(20) would be Ky = (k+0)/v,. Clearly, Ry is independent of solar altitude. So far as the
author knows, there are no observations to decide whether or not the extinction coeflicient
in snow or translucent ice depends upon .

If we take the asymptotic values of the measured extinction coefficients, we can derive a
value for y which will allow us to relate 7 to z. Using Liljequist’s (1956) mean value for A5 of
0.145 cm™', we find

x = volis = 5.797 X 14.5 m~" = 85.1 m~%. (27)
In deriving this number, we used a value for v, which corresponds to w = 0.9g90. This high
single scattering albedo is based on the observed albedo, in a manner which will be discussed
shortly. From Equation (27), we see that 7 — 1 corresponds to about 0.85 cm, 7 = 3 to
about 2.55 cm. The absorption coeflicient is related to x according to

k= (I—w) ¥y = 0.851 m~L (28)

The interesting point about this value of « is that it is slightly smaller than the value of 2 m="
observed for normally incident light on glass-like river ice (Lyubomirova, 1962). The
theoretical value of ¥ may be slightly larger if @ is smaller. In view of the possible experi-
mental error, the agreement between theory and experiment is reasonable. This result
suggests that the absorption occurs in the ice of the scattering media.
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In addition to having an extinction coefficient that is independent of depth, the asymptotic
distribution of solar intensity is independent of depth. It is given by

IAS(T: F‘NIAS(T: Q) = Vux'l("u_P")' (29)
Clearly, Ixs becomes more isotropic as v, (or =) increases. This leads us to expect an increase
in the ratio of upward to downward flux as = increases. From Equation (29) we can show
that

ass = D1 as/Plas = {1—vo In (1—v ")} /{wo In [vo/(vo—1)]—1}. (30)

Again, this ratio is independent of 7 and p,. Table I shows a ass for several values of w. As
expected, asg increases with »,. Liljequist’s (1956) observation that axs in Antarctic snow is
about 0.43 implies that w is approximately 0.9. As we will show, such a value of @ is too low
to give good agreement with the observed albedo. It is not clear whether the discrepancy is
due to the theory or observational error. Apparently, the observations are not easy to make,

TABLE I. ASYMPTOTIC RATIO OF UPWARD TO DOWNWARD FLUX
AS A FUNCTION OF SINGLE SCATTERING ALBEDO

w Vo das
1.000 ee} 1.000
0.990 5.80 0.828
0.950 2.63 0.592
0.900 1.90 0.458
0.8o0 1.41 0.330

Since we have an expression for the solar radiation within the snow or ice, we can find the
amount of radiation which emerges from the upper surface. Thus, we expect that the albedo
of snow or “‘bubbly” ice in direct sunlight is

= —{zﬂfmo, 1) du}/%@,,. (31)

==
From certain identities involving the X-function, Case and Zweifel (1967) obtain an expres-
sion equivalent to

D, ',V(f-‘-n) { Vo— o }
i : — = £ < 0L 22
© ) = 2 X G o—))” ¥ L
By using the identity
) fy(—m
B = D g | Blg, :
(—#o) f.u’+;zo p J i n (33)

o

and the related fact from McCormick and Kuscer (1965) that

f y(p) dp = 1, (34)
it is possible to show that
a(pg) = 1—{X (—po) (ot 1)} 7" (85)
Clearly, a is a function of y, and w. From values of v,~! given by Case and others (1953) and

the tables of the X-function given in Case and Zweifel (1967) we can find the albedo as a
function of u, and . The results are shown in Table 11.
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TasLE II. ALBEDO AS A FUNCTION OF THE ANGLE OF INCIDENCE
AND THE SINGLE SCATTERING ALBEDO

w vo po = 1.0 Mo = 0.7 Ho = 0.3
X a X a X a

1.00 o) 0.596 1.000 0.730 1.000 1.055 1.000

0.99 5-797 0.595 0.753 0.729 0.789 1.052 0.844

0.95 2.634 0.592 0.535 0.724 0.585 1.043 0.673

0.90 1.904 0.589 0.415 0.719 0.466 1.032 0.561

0.80 1.410 0.581 0.285 0.708 0.330 1.007 0.419

X (—p,) depends very little upon = for the values of w shown in Table II. By rearranging
Equation (35), we find

vo = {(1—a) X (—po)} ' —po: (36)

Thus, if we have observations of the albedo for snow or “bubbly” ice under clear skies, we can
compute approximate values of v, by using the tables of X (—p,) for an approximate value of
w. Some Antarctic expeditions have this kind of data, e.g. Liljequist (1956); Rusin (1961).
Figure 1 shows the observed and computed values of the albedo as functions of y, (or sine of
the solar altitude). Rusin’s (1961) observations are those for station Mirny (lat. 66° 33" S.,
long. 93° o1’ E.). His albedos are given to two significant figures, and this uncertainty is
reflected in the bars of Figure 1. The observations of Liljequist (1956) are averages for clear
skies in November 1951, and in December 1951—January 1952, at Maudheim (lat. 71° 03" S.,

y | | | | | =fi | 1 |
(e 1

Q= ——== THEORY r_
@ RUSIN
A0  LILJEQUIST

» | | | [ 1 1 | 1 1
9 I T ] 1 T | 1 i i

Mo

Fig. 1. Plot of the clear-sky albedo (a) versus the sine of the solar altitude (o). Data are from Antarclic expeditions: and
Liljequist and Rusin (1961). Upper data ( /\)—average clear-sky albedo for November 1951. Middle data ([)—
average clear-sky albedo for December 1951 January 1952, Theorelical curves were computed from Equation (35) using
the X-function for @ = 0.990, and values of vy corresponding lo @ = 0.990 (———), 0.998 ( —-), and
;983 [ s )
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long. 10° 56" W.). The November observations are about o.015 higher than those of
December—January. No uncertainties are shown for Liljequist’s data because his table gives
the albedos to three figures.

A value of v, was determined for each solar altitude, using the data of Rusin and Liljequist
and interpolating in p, from the table of X (—pu,) for @ = 0.ggo. The mean values are
vy = 5.7+0.3 for the November data, v, = 5.34+0.2 for the December—January data, and
vy = 4.5-+0.1 for Rusin’s data. The uncertainties listed are standard deviations. Rusin’s
albedo at 5° gave a value of v, more than three standard deviations from the mean, so it was
not included in computing the mean. The theoretical curves shown in Figure 1 were com-
puted using Equation (35) and X (—p,) for @ = 0.99. The values of v, used in Figure 1 were
5.797, 5.289 and 4.407, in descending order. The corresponding values of @ are 0.990, 0.988
and 0.983. The theoretical curve for v, = 5.797 was used rather than that for v, = 5.713,
because the former corresponds to w = 0.9, for which the tabulated X-function is exact.

The observed albedos are for clear skies, so that direct solar radiation should be the pre-
dominant source of radiation in the snow. However, some light is scattered by the atmosphere,
contaminating the direct solar beam with light scattered from altitudes lower than the sun’s.
Since the albedo is highest for the most obliquely incident light, the scattered light tends to
increase the albedo. This effect becomes more important at lower solar altitudes because
there is more scattered light (Liljequist, 1956; Rusin, 1961). In addition, there may be obser-
vational errors connected with measuring the direct solar flux (Fritz, 1958). Thus, the observed
albedos at low solar altitudes are more uncertain than those at high solar altitudes. Nonethe-
less, the computed albedos agree with the observed albedos to within 19, except at p, = 0.08.

The increase of albedo with decrease of solar altitude also appears to be in qualitative
agreement with Langleben’s (1968) ice albedo measurements and Hubley’s (1955) glacier
albedo measurements. The latter suggests that powder snow has an albedo very near 1.00
independent of solar altitude. This is very interesting in the light of Equation (35). It would
appear that the very small grains of powder snow have a single scattering albedo approaching
1.0 (v, — ). Hubley (1955) also suggests that the albedo of snow on glaciers increases with
the increase of light coming from small altitudes. In general, then, our theory seems to be in
accord with albedo observations.

THE SOLAR FLUX DIVERGENCE

Once we know the value of @ which applies to the medium in which we are interested, we
can compute the radiation field within it. Two of the most important moments of the field
are the flux, @(r), and the mean intensity:

2w

30 = [ @b [ aurtend). (37)

For the solar radiation in the snow or “bubbly” ice, these two moments are related according
to a variant of Equation (25):

do/dr = —(47)"'(1—=) F. (38)
Therefore, if we have @, we can find 7, and vice versa,
The flux divergence is also important because it is directly related to the heating of the
medium by solar radiation. If we neglect conduction, convection, and latent-heat transfer
within a snow or ice layer, then the temperature in the layer will change according to the

equation
d® ddy, pe 07 (z, c)/?:.! =
{ ) = By (59)
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where T(z,t) is the temperature at a time ¢ and a depth z, p is the density (kg m=3), ¢ is the
specific heat of the material (k] kg—! deg—'), @ is the total flux of solar radiation (kW m~-2),
®1.is the total flux of long-wave radiation (kW m~2), [ is the latent heat of melting (334 kJ kg1,
and m is the rate of melting (kg m=3 s—1).

m is zero as long as T is less than o C, and the temperature in the layer then changes in
accordance with Equation (39). Once the melting point is reached, the temperature remains
at 0° C, and we have the steady-state condition

m = —I-1 {d®|dzdDy/dz}. (40)

Near the top of the layer, the long-wave flux may be important. For example, if the tempera-
ture of the air above the layer is below 0° C, long-wave radiation will be emitted by the top
few centimeters of the layer in an attempt to heat the air, and the melting rate will be de-
creased. If we neglect the long-wave flux, for purposes of simplification, then the melting
rate will be given by

m— —11dDjdz = (xP,/l){—d(®|By)/dr}. (41)

Using @, = 1.000 kW m~2, y = 85.1 m~', and [ = 334 k] kg, we find that
m = 0.255 [—d(D/P,)/dr] kg m 3 s (42)

The total melting rate (kg m—2s~!) for any finite layer may be found by integrating m over
the proper limits of depth. Thus, if we wish to find the total down-wasting of the layer, we
must integrate m over the whole layer. Since the flux vanishes at the lower boundary, the
number of grams of water per square meter per second produced by the direct solar radiation
is (1—a) pe@,l".

Because the flux divergence is so important, we have computed it for a scattering medium
withw = 0.ggo. The results are shown in Figure 2. A definite region of non-exponential flux
divergence is evident near the surface. If the melting rate is proportional to the flux diver-
gence, it is clear from Figure 2 that the snow or ice will melt fastest just beneath the surface
when the sun is high in the sky. As the sun sets, the fastest melting moves to the surface. The
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Fig. 2. Plot of the flux divergence (—d{®|Dy}|d7) versus the optical depth (v) for various solar altitudes. The theoretical
values of the flux divergence were computed using w = 0.990. T = 2.0 corresponds lo aboul 1.7 cm for Liljequist’s (1956)
data. This plot is also proportional to the melting rate under some conditions (see Equation (42)).
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calculations show that the flux divergence is exponential beyond = & 3. On the basis of the
measurements quoted previously, this depth corresponds to about 2.6 cm. Clearly, all
measurements of the asymptotic flux extinction coefficient should be made well below this
level.

In some cases we may wish to melt snow more rapidly than would occur naturally. One
way to accomplish this end is to scatter an absorber on top of the snow, decreasing the albedo.
the flux divergence and albedo calculations suggest that a similar result could be achieved by
scattering the absorber while the snow is falling. Since the absorption is then dispersed
throughout the layer, less melt water should be evaporated than is the case when the absorber
is on top of the layer.

SUGGESTIONS FOR FURTHER INVESTIGATION

As we mentioned earlier, anisotropic scattering needs to be included in a definitive theory
of multiple scattering in snow and “bubbly™ ice. The ice grains in snow and the air bubbles
in ice probably scatter radiation in a manner very similar to that of water droplets in air.
The latter are known to scatter radiation very anisotropically. The observed albedo could be
produced by any of a large number of combinations of single scattering albedo and phase
function, so our determination of = is not unique. Constraints might be placed on such
combinations by either directly measuring or computing = and p. In some cases of anisotropic
scattering, the singular eigenfunction solutions to the transport equation can be extended
(Case and Zweifel, 1967; Mika, 1961). Depending on the degrees of anisotropy, there are one
or more discrete eigenvalues. We still anticipate that the flux divergence will be non-
exponential near the surface, and exponential deep in the medium. The theoretical results
will probably also need to be extended to include finite layers of snow.

There also appear to be a large number of observations which could improve our under-
standing of multiple scattering in snow and ice. First, it would be very helpful to have obser-
vations of the azimuthal distribution of scattered light, rather than just albedo measurements.
As shown by the observations of Salomonson and Marlatt (1968), snow tends to forward
scatter. With an extension of the theory, such azimuthal observations could be used to
determine the phase function. Second, measurements of the flux extinction in different colors
would be very helpful in deciding what role is played by selective extinction. The theory
presented here could lend some help in interpreting the results. Third, the relation between
= and p could be determined observationally for different kinds of snow and ice. Hopefully,
this relationship would simplify the relationship between the physical properties of the media
and their albedo. Finally, measurements of the ratio of upward to downward flux would be
of great interest in deciding whether or not the single scattering albedo measured by asg
agrees with the single scattering albedo deduced from the albedo. However, even at this
stage, multiple scattering in snow and ice can tie together many disparate observations.
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