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Abstract. This article is to discuss the automatic continuity properties and the
representation of disjointness preserving linear mappings on certain normal Fréchet
algebras of complex-valued functions. This class of operators is defined by the con-
dition that any pair of functions with disjoint cozero sets is mapped to functions
with disjoint cozero sets, and subsumes the class of local operators. It turns out that
such operators are always continuous outside some finite singularity set of the
underlying topological space. Our main emphasis is on disjointness preserving
operators from Fréchet algebras of differentiable functions. Such operators are
shown to admit a canonical representation that involves weighted composition for
the derivatives. This result extends the classical characterization of local operators as
linear partial differential operators.
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1. Introduction. Given two linear spaces Að�Þ and Bð�Þ of complex-valued
functions on the non-empty sets � and �; respectively, a linear mapping
T : Að�Þ ! Bð�Þ is said to be disjointness preserving provided that

ðTf ÞðTgÞ ¼ 0 for all f; g 2 Að�Þ with fg ¼ 0:

This condition means precisely that T maps any two functions with disjoint cozero
sets to functions with disjoint cozero sets. Here, the cozero set, coz f; of a function
f 2 Að�Þ is, as usual, defined as the set of all ! 2 � for which fð!Þ 6¼ 0: Disjointness
preserving mappings are also known as Lamperti operators [6] and as separating
mappings [7].

In the case in which � ¼ � and Að�Þ � Bð�Þ; it is easily seen that a linear
mapping T : Að�Þ ! Bð�Þ is disjointness preserving if it is local, in the sense that

ðTf Þg ¼ 0 for all f 2 Að�Þ and g 2 Bð�Þ with fg ¼ 0:

Examples of local mappings include multiplication and differential operators.
If the spaces Að�Þ and Bð�Þ are both algebras with respect to pointwise multi-

plication, then it is clear that all algebra homomorphisms from Að�Þ into Bð�Þ are
disjointness preserving. Moreover, if Að�Þ and Bð�Þ are vector lattices, then every
lattice homomorphism T : Að�Þ ! Bð�Þ is disjointness preserving, since this condi-
tion may also be expressed as Tf

�� �� ^ Tg
�� �� ¼ 0, for all f; g 2 Að�Þ with f

�� �� ^ g
�� �� ¼ 0:
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We mention that the local mappings on a vector lattice Að�Þ are precisely the band
preserving linear operators on Að�Þ; see [16, Proposition 3.1.2].

Further typical examples of disjointness preserving mappings are provided by
weighted composition operators of the form

ðTf Þð�Þ ¼ hð�Þfð’ð�ÞÞ for all f 2 Að�Þ and � 2 �;

for suitable functions ’ : � ! � and h : � ! C: Such operators arise naturally in
connection with the Banach–Stone theorem. In fact, it is known that, in certain
important special cases, all disjointness preserving operators are weighted composi-
tion operators. For pertinent results in the case of vector lattices, we refer to
Abramovich [1], Arendt [6], and Luxemburg [14], while disjointness preserving
operators between certain Banach algebras of continuous functions have been
studied by Araujo and Jarosz [5], Beckenstein, Narici, and Todd [7], Font [9], [10],
Font and Hernández [11], and Jarosz [12]. For a recent survey and further refer-
ences, we direct the reader to Narici and Beckenstein [17].

In this article, our main interest is in disjointness preserving mappings on com-
plete metrizable topological algebras of differentiable functions on an open subset �
of Rn: We first show that such a mapping is, in a natural sense, continuous outside
some finite subset of �; and then proceed to its representation as a certain kind of
differential operator.

To describe our principal results, let Cmð�Þ denote, for a given integer m 	 0;
the algebra of all m times continuously differentiable complex-valued functions on
�; endowed, as usual, with the topology of locally uniform convergence for the
functions and all their partial derivatives up to the order m: For a multi-index
� ¼ ð�1; . . . ; �nÞ 2 Nn

0 of non-negative integers, let �j j :¼ �1 þ � � � þ �n be the order
of �; and, for �j j 
 m; let D� :¼ @�11 � � � @�nn represent the corresponding linear partial
differential operator acting on Cmð�Þ: Also, let Cð�Þ denote the algebra of all con-
tinuous complex-valued functions on a locally compact Hausdorff space �; and let
C0ð�Þ consist of those functions in Cð�Þ that vanish at infinity.

Under appropriate conditions, we shall prove that every disjointness preserving
operator T from Cmð�Þ into Cð�Þ or C0ð�Þ admits a representation of the form

ðTf Þð�Þ ¼
X
�j j
m

h�ð�ÞðD�f Þð’ð�ÞÞ for all f 2 Cmð�Þ and � 2 �;

with suitable continuous functions ’ : � ! � and h� : � ! C, for all � 2 Nn
0 with

�j j 
 m: As a special case, we shall obtain the algebraic characterization of linear
partial differential operators as local operators in the sense of Peetre [19].

2. Automatic continuity. If Að�Þ is a space of analytic functions on a domain �
in the complex plane, then the identity theorem implies that every linear mapping on
Að�Þ is local, and that every linear mapping from Að�Þ into another space of func-
tions is disjointness preserving. This shows that additional conditions are needed to
obtain meaningful results. Here we shall focus on disjointness preserving operators
on spaces which admit partitions of unity.

Given a normal Hausdorff space �; a linear subspace Að�Þ of the space Cð�Þ of
all continuous complex-valued functions on � is said to be normal if, for all disjoint
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closed subsets F and G of �; there exists a function f 2 Að�Þ that satisfies f � 1 on F
and f � 0 on G: We first show that, on such spaces, local operators are precisely
those which shrink the support. As usual, the support, supp f; of a function f 2 Cð�Þ

is defined as the closure of the cozero set of f:

Lemma 1. Let Að�Þ and Bð�Þ be normal linear subspaces of Cð�Þ; and suppose
that Að�Þ � Bð�Þ: Then, for every linear mapping T : Að�Þ ! Bð�Þ; the following
assertions are equivalent:

(a) T is local;
(b) ðTf Þg ¼ 0 for all f; g 2 Að�Þ with fg ¼ 0;
(c) supp ðTf Þ � supp f for all f 2 Að�Þ:

Proof. The implication ðaÞ ) ðbÞ is trivial. To show ðbÞ ) ðcÞ, let f 2 Að�Þ be
given, and consider a point ! 2 � n supp f: Then, by the normality of Að�Þ; there
exists some g 2 Að�Þ for which gð!Þ ¼ 1 and g � 0 on supp f: It follows that fg ¼ 0;
hence ðTf Þg ¼ 0 by condition ðbÞ, and therefore ðTf Þð!Þ ¼ 0: Thus coz ðTf Þ � supp f;
which implies ðcÞ.

Finally, to establish ðcÞ ) ðaÞ, let f 2 Að�Þ and g 2 Bð�Þ satisfy fg ¼ 0; and
consider a point ! 2 � for which ðTf Þð!Þ 6¼ 0: Since ! 2 supp ðTf Þ � supp f by con-
dition ðcÞ, there exists a net ð!�Þ�2J in � with the property that !� ! ! and fð!�Þ 6¼ 0
for all � 2 J: But then gð!�Þ ¼ 0 for all � 2 J; so that gð!Þ ¼ 0; by the continuity of g:
Thus ðTf Þð!Þgð!Þ ¼ 0; and therefore ðTf Þg ¼ 0; as desired. &

To investigate the continuity properties of disjointness preserving mappings, we
shall appeal to the automatic continuity theory for generalized local operators from
[2] and [4]. Let Fð�Þ denote the collection of all closed subsets of �; and, for a
topological linear space X; let SðXÞ be the family of all closed linear subspaces of X:
A mapping E : Fð�Þ ! SðXÞ is called a precapacity if Eð;Þ ¼ f0g and EðF Þ � EðGÞ,
for all F;G 2 Fð�Þ with F � G: The following result is contained in [4, Theorem 4.3].

Theorem 2. Let � : X ! Y be a (possibly discontinuous) linear mapping from a
complete metrizable topological linear space X into a Banach space Y; let � be a nor-
mal Hausdorff space, and let EX : Fð�Þ ! SðXÞ and EY : Fð�Þ ! SðYÞ be pre-
capacities such that the following conditions are fulfilled:

(a) X ¼ EXðUÞ þ EXðVÞ for all open sets U;V 2 � for which U [ V ¼ �;
(b) EYð

T
F�Þ ¼

T
EYðF�Þ for every collection of sets F� 2 Fð�Þ;

(c) �EXðF Þ � EYðF Þ for all F 2 Fð�Þ.
Then the singularity set

�ð�Þ :¼ f! 2 � : � j EXðUÞ is discontinuous for all open sets U � � with ! 2 Ug

is finite, and � j EXðF Þ is continuous for all F 2 Fð�Þ for which F \ �ð�Þ ¼ ;: More-
over, if EYðF Þ ¼ f0g for all finite sets F � �; then � is automatically continuous.

From general topology we recall that a topological space � is said to be a k-
space if � is compactly generated, in the sense that a subset U of � is open whenever
U \ K is open in K for every compact subset K of �: Evidently, each locally compact
and each first countable topological space is a k-space. Hence the next theorem applies,
for instance, to every metric space and, in particular, to every open subset of Rn:
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It is well known and easily seen that, for every k-space �; the space Cð�Þ is
complete with respect to the topology of uniform convergence on the compact sub-
sets of �: Moreover, Cð�Þ is metrizable whenever � is the union of a sequence of
compact sets Kn � � such that each compact subset of � is contained in Kn for some
n 2 N:

Theorem 3. Let � be a normal Hausdorff space that is a k-space, and let Að�Þ

and Bð�Þ be normal subalgebras of Cð�Þ such that Að�Þ � Bð�Þ: Suppose that Að�Þ

and Bð�Þ are each endowed with the topology of a complete metrizable topological
algebra. Then Að�Þ is continuously embedded in Bð�Þ; and Bð�Þ is continuously
embedded in Cð�Þ: Moreover, every local linear mapping T : Að�Þ ! Bð�Þ is auto-
matically continuous.

Proof. ðiÞ For every point ! 2 �; let 	! : Cð�Þ ! C denote the evaluation func-
tional given by 	!ðgÞ :¼ gð!Þ for all g 2 Cð�Þ: The crucial part of the proof consists
of showing that, for every local linear mapping T : Að�Þ ! Bð�Þ; the composition
	! � T is continuous for all ! 2 �:

Indeed, if this is known, then we obtain, in particular, that the topology of Bð�Þ

is finer than the topology of pointwise convergence on Bð�Þ, as the identity mapping
on Bð�Þ is local. Hence, given an arbitrary null sequence ð fnÞn2N in Að�Þ for which
ðTfnÞn2N converges in the topology of Bð�Þ to some g 2 Bð�Þ; we obtain, for each
! 2 �; that ðTfnÞð!Þ ! gð!Þ and ðTfnÞð!Þ ¼ ð	! � T Þð fnÞ ! 0 as n ! 1: It follows
that g ¼ 0; and therefore, by the closed graph theorem, that T is continuous.

Since the inclusion mapping from Að�Þ into Bð�Þ is local, we conclude that
Að�Þ is continuously embedded in Bð�Þ: Moreover, another straightforward appli-
cation of the closed graph theorem confirms that, for each compact subset K of �;
the restriction mapping RK : Bð�Þ ! CðKÞ given by RK f :¼ f jK for all f 2 Bð�Þ, is
continuous with respect to the supremum norm of the Banach space CðKÞ: This
shows that Bð�Þ is indeed continuously embedded in Cð�Þ:

ðiiÞ To prepare for the main part of the proof, we introduce the space
X :¼ Að�Þ; and claim that the definition

EXðF Þ :¼ f f 2 Að�Þ : supp f � F g for all F 2 Fð�Þ;

yields a precapacity. Evidently, EX is monotone with respect to inclusion and satis-
fies EXð;Þ ¼ f0g: To see that EXðF Þ is a closed linear subspace of Að�Þ; it suffices, by
the continuity of the algebra multiplication in Að�Þ; to establish the identity

EXðF Þ ¼ f 2 Að�Þ : fg ¼ 0 for all g 2 Að�Þ with supp g \ F ¼ ;
� �

;

for every F 2 Fð�Þ: The inclusion � is trivial. To see the converse, let f 2 Að�Þ be a
function for which supp f 6� F: Then there exists a point ! 2 � n F with fð!Þ 6¼ 0: We
choose an open neighborhood U of ! such that ! 2 U � U � � n F; and then, by
normality, a function g 2 Að�Þ that satisfies gð!Þ ¼ 1 and g � 0 on � nU: It follows
that supp g � U � � n F and ð fgÞð!Þ 6¼ 0: Thus fg 6¼ 0, for some g 2 Að�Þ with
supp g \ F ¼ ;; as desired.

ðiiiÞ It is now easily seen that 	! � T is continuous for every isolated point ! 2 �:
Indeed, for such a point, we obtain, again by the normality of Að�Þ; the decom-
position
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Að�Þ ¼ EXðf!gÞ þ EXð� n f!gÞ:

Since the latter spaces are closed, the continuity of 	! � T follows from a standard
application of the open mapping theorem, once the continuity of the two restrictions
ð	! � T Þ j EXðf!gÞ and ð	! � T Þ j EXð� n f!gÞ has been established. But this is immedi-
ate, since EXðf!gÞ is one-dimensional, while, by locality and Lemma 1, 	! � T van-
ishes on EXð� n f!gÞ:

ðivÞ It remains to prove the continuity of 	! � T for a point ! 2 � that is not
isolated in �: Since � is a k-space, we obtain a compact set K � � such that ! is not
isolated in K: We then introduce the Banach space Y :¼ CðKÞ; and consider the
precapacity EY : Fð�Þ ! SðYÞ given by

EYðF Þ :¼ f f 2 CðKÞ : supp f � F g for all F 2 Fð�Þ:

Also, let � : X ! Y be given by �f :¼ ðTf Þ jK for all f 2 Að�Þ: Since T is local,
Lemma 1 ensures that condition ðcÞ of Theorem 2 is fulfilled. Moreover, condition
ðbÞ is obvious, and condition ðaÞ follows from the normality of Að�Þ: Indeed, given
an arbitrary open cover fU;V g of �; the sets � nU and � n V are closed and dis-
joint, so that there exists some f 2 Að�Þ with f � 0 on � nU and f � 1 on � n V:
Because supp ð fgÞ � U and supp ðð1 � f ÞgÞ � V for all g 2 Að�Þ; it follows that
Að�Þ ¼ EXðUÞ þ EXðVÞ; as desired. Hence we conclude from Theorem 2 that �ð�Þ is
finite.

We next observe that 	
 � T is continuous for each 
 2 K n �ð�Þ: Indeed, we
obtain, by the definition of �ð�Þ; an open neighborhood U of 
 in � such that
ð	
 � T Þ j EXðUÞ is continuous, and then choose an open set V � � such that
U [ V ¼ � and 
 =2V: Then, by normality, Að�Þ ¼ EXðUÞ þ EXðVÞ; and, by locality,
	
 � T ¼ 0 on EXðVÞ: Hence another application of the open mapping theorem con-
firms the continuity of 	
 � T on Að�Þ:

Since ! is not isolated in K; and �ð�Þ is finite, there exists a net ð
�Þ�2J in
K n �ð�Þ that converges to !: Because ð	
� � T Þð f Þ

�� �� 
 sup ðTf ÞðKÞ
�� �� < 1 for all

� 2 J and f 2 Að�Þ; an application of the uniform boundedness theorem leads to a
neighborhoodW of zero in Að�Þ such that ðTf Þð
�Þ

�� �� 
 1, for all � 2 J and all f 2 W:
Since the functions in Bð�Þ are continuous, we conclude that

ðTf Þð!Þ
�� �� 
 1 for all f 2 W:

This establishes the continuity of 	! � T; and hence completes the proof. &

The preceding theorem complements automatic continuity results for operators
of local type from [2], [3], [4], and [18]. Theorem 3 shows, in particular, that, for
every open subset � of Rn and every m 2 N0 [ f1g; all local operators from the
Fréchet algebra Cmð�Þ into Cð�Þ are necessarily continuous. The same holds for
local operators on the Banach algebra Cbð�Þ of all bounded continuous functions
on a metrizable space �: It also follows that, for every compact Hausdorff space �;
all local operators on the Banach algebra Cð�Þ are continuous.

This is in remarkable contrast to the case of disjointness preserving operators.
Indeed, Jarosz [12] has shown that, for every infinite compact Hausdorff space �;
there exists a discontinuous disjointness preserving operator on Cð�Þ: In fact, if the
continuum hypothesis is assumed, then it is even possible to construct discontinuous
algebra homomorphisms from such Banach algebras [8].
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On the other hand, it will be seen in the next result that all disjointness preser-
ving operators on a large class of Fréchet algebras are continuous outside some
finite singularity set. This will follow again from Theorem 2, since, perhaps some-
what surprisingly, every disjointness preserving operator may be viewed, in the sense
of condition ðcÞ of Theorem 2, as a generalized local operator for a suitable pair of
precapacities.

Theorem 4. Let � be a normal Hausdorff space, and let Að�Þ be a normal sub-
algebra of Cð�Þ that is endowed with the topology of a complete metrizable topological
algebra. Moreover, suppose that T : Að�Þ ! B is a linear mapping from Að�Þ into a
complex Banach algebra B such that the following two conditions are fulfilled:

(a) ðTf ÞðTgÞ ¼ 0 for all f; g 2 Að�Þ with fg ¼ 0;
(b) if u 2 B satisfies uTf ¼ 0, for all f 2 Að�Þ with compact support, then u ¼ 0:
Then the set �ðT Þ of all ! 2 � for which T j f f 2 Að�Þ : supp f � Ug is dis-

continuous, for every open neighborhood U of !, consists only of finitely many points,
and

T j f f 2 Að�Þ : supp f � F g

is continuous, for every closed set F � � for which F \ �ðT Þ ¼ ;: In particular, if
�ðT Þ is empty, then T is automatically continuous.

Proof. From part ðiiÞ of the proof of Theorem 3 we know that the definition

EXðF Þ :¼ f f 2 Að�Þ : supp f � F g for all F 2 Fð�Þ

yields a precapacity EX : Fð�Þ ! SðXÞ; where again X :¼ Að�Þ: Moreover, as shown
in part ðivÞ of that proof, this precapacity satisfies condition ðaÞ of Theorem 2. Also
let

EBðF Þ :¼ u 2 B : uTf ¼ 0 for all f 2 Að�Þ with compact support in � n F
� �

;

for all F 2 Fð�Þ: Then EB : Fð�Þ ! SðBÞ is a precapacity for which TEXðF Þ � EBðF Þ

for every F 2 Fð�Þ; since T is disjointness preserving. Hence the assertion will follow
from Theorem 2, once we have shown that\

EBðF�Þ � EBð
\

F�Þ

for an arbitrary collection of closed sets F� � �:
To this end, let u 2

T
EBðF�Þ; and consider a function f 2 Að�Þ with compact

support contained in � n
T
F�: By compactness, there exist finitely many �1; . . . ; �r

such that

� ¼ � n supp fð Þ [ � n F�1
� �

[ � � � [ � n F�r
� �

:

As in the proof of [20, Theorem 2.13], it follows easily from the normality of the
algebra Að�Þ that there are functions g0; g1; . . . ; gr 2 Að�Þ such that
g0 þ g1 þ � � � þ gr � 1 on �; supp g0 � � n supp f; and supp gk � � n F�k for
k ¼ 1; . . . ; r: We conclude that
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uTf ¼ uTð fg0Þ þ uTð fg1Þ þ � � � þ uTð fgrÞ ¼ 0;

since fg0 ¼ 0 and, for k ¼ 1; . . . ; r; the support of fgk is compact and contained in
� n F�k : Thus u 2 EBð

T
F�Þ: &

Without condition ðbÞ, Theorem 4 is bound to fail in general, since condition ðaÞ

could be vacuously satisfied by endowing an arbitrary Banach space B with the zero
multiplication.

On the other hand, if one requires only that, for every non-zero u 2 B; there is
some f 2 Að�Þ; not necessarily with compact support, such that uTf 6¼ 0; then it is
still possible to deduce an automatic continuity result for the disjointness preserving
operator T: Even in this case, [4, Theorem 4.3] ensures that T has a finite singularity
set �ðT Þ; but here T j f f 2 Að�Þ : supp f � Kg will be continuous only for each
compact set K � � with K \ �ðT Þ ¼ ;: This conclusion is remarkably weaker than
the one provided by Theorem 4. In fact, the following result, in the spirit of Jarosz
[12], illustrates that there are discontinuous disjointness preserving operators with
empty singularity set.

Proposition 5. There exists a discontinuous disjointness preserving linear func-
tional T : CbðRÞ ! C such that T1 ¼ 1 and Tf ¼ 0, for all f 2 CbðRÞ with compact
support.

Proof. Let 
N be the Stone–Čech compactification of N; viewed as the spectrum
of the Banach algebra ‘1 of all bounded sequences of complex numbers and, for
each a 2 ‘1; let baa 2 Cð
NÞ denote the corresponding Gelfand transform. We fix an
element x 2 
N n N; and introduce the linear subspace V :¼ a 2 ‘1 : x =2 suppbaa� �

of
‘1: Since N is dense in 
N; it is clear that V does not contain the sequences e and u
given by en :¼ 1 and un :¼ 1=n, for all n 2 N: Hence, by Zorn’s lemma, there exists a
linear functional ’ on ‘1 such that ’ � 0 on V; while ’ðeÞ ¼ 1 and ’ðuÞ 6¼ 0: Let
S : CbðRÞ ! ‘1 be given by

Sf :¼ fðnÞð Þn2N for all f 2 CbðRÞ;

and define T :¼ ’ � S: Then T : CbðRÞ ! C is a linear mapping for which
T1 ¼ ’ðeÞ ¼ 1: Since, for each a 2 ‘1; the closure of the set fn 2 N : an 6¼ 0g in 
N is
equal to suppbaa; we have Sf 2 V and therefore Tf ¼ 0, for all f 2 CbðRÞ with compact
support. Moreover, since the function h 2 CbðRÞ given by hðtÞ :¼ minf1; 1= tj jg, for
all t 2 R is the uniform limit of a sequence of functions in CbðRÞ with compact sup-
port, we conclude from TðhÞ ¼ ’ðuÞ 6¼ 0 that T is discontinuous.

Finally, to see that T is disjointness preserving, let f; g 2 CbðRÞ be functions with
fg ¼ 0: Then F :¼ fn 2 N : fðnÞ 6¼ 0g and G :¼ fn 2 N : gðnÞ 6¼ 0g are disjoint. Let
a 2 ‘1 be given by an :¼ 3, for all n 2 F, and an :¼ 0 otherwise. Since the sets
u 2 
N : baaðuÞ

�� �� 	 2
� �

and u 2 
N : baaðuÞ�� �� 
 1
� �

are disjoint and closed in 
N; it fol-
lows that F and G have disjoint closures in 
N: This ensures that x cannot belong to
both F and G: If x =2F; then we infer from supp bSfSf ¼ F that Sf 2 V; and therefore
Tf ¼ ’ðSf Þ ¼ 0; while, similarly, Tg ¼ 0 if x =2G: Thus ðTf ÞðTgÞ ¼ 0; as desired. &

It is interesting to note that Theorem 4 may be applied to the disjointness pre-
serving mapping considered in Proposition 5, once CbðRÞ is identified with the
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Banach algebra Cð
RÞ: Hence it follows that this mapping has a non-empty finite
singularity set in the Stone–Čech compactification of R:

As in Theorem 4, let Að�Þ be a normal subalgebra of Cð�Þ, for some normal
Hausdorff space �; and let B be a complex vector space. In the following, we are
interested in linear mappings T : Að�Þ ! B that vanish outside some compact sub-
set K of �; in the sense that Tf ¼ 0, for all f 2 Að�Þ for which supp f \ K ¼ ;: If this
condition holds, and if one assumes that B is a commutative Banach algebra that is
generated by the range of T; then condition ðbÞ of Theorem 4 means precisely that B
is without order, in the sense that u ¼ 0 is the only element u 2 B that satisfies uv ¼ 0,
for all v 2 B: This condition is known from the theory of multipliers, and holds, for
instance, when B is semi-simple or has an approximate identity. Note that, by ele-
mentary Gelfand theory, every semi-simple commutative Banach algebra is con-
tinuously embedded in the Banach algebra C0ð�Þ, for some locally compact
Hausdorff space �:

Evidently, every continuous linear mapping from the Fréchet algebra Cmð�Þ

into the Banach algebra C0ð�Þ vanishes outside some compact subset of �: More-
over, Theorem 4 leads to the following characterization.

Corollary 6. Let m 2 N0 [ f1g be given, let � � Rn be an open set, and let �
be a locally compact Hausdorff space. Then, for every disjointness preserving linear
mapping T : Cmð�Þ ! C0ð�Þ; the following assertions are equivalent:

(a) T vanishes outside some compact subset of �;
(b) the singularity set �ðT Þ is finite, and T j f f 2 Cmð�Þ : supp f � F g is con-

tinuous for every closed set F � Rn for which F \ �ðT Þ ¼ ;.

Proof. To show ðaÞ ) ðbÞ, let K be a compact subset of � such that T vanishes
in � n K; and choose, by the normality of Cmð�Þ; a function g 2 Cmð�Þ with com-
pact support such that g � 1 on some open neighborhood of K: Then clearly
Tf ¼ Tð fgÞ, for all f 2 Cmð�Þ: Moreover, if �� :¼ f� 2 � : ðTf Þð�Þ 6¼ 0, for some
f 2 Cmð�Þg; then �� is open, and the definition T�f :¼ ðTf Þ j�� yields a disjointness
preserving operator T� : Cmð�Þ ! C0ð��Þ: Since, for each � 2 ��; there exists some
function f 2 Cmð�Þ with compact support for which ðT�f Þð�Þ 6¼ 0; Theorem 4 applies
to T�; and ensures that condition ðbÞ holds.

To prove ðbÞ ) ðaÞ, we recall that the topology of the Fréchet algebra Cmð�Þ is
generated by the submultiplicative semi-norms �m;K given by

�m;Kð f Þ :¼
X
�j j
m

1

�!
sup ðD�f Þð!Þ

�� �� : ! 2 K
� �

for all f 2 Cmð�Þ;

where, as usual, �! :¼ �1! � � ��n! for all � ¼ ð�1; . . . ; �nÞ 2 Nn
0; and K runs over all

compact subsets of �: We choose a compact neighborhood L of �ðT Þ in �; and
define F to be the complement of the interior of L: By the continuity condition, there
exist a constant c > 0 and a compact subset K of � such that

Tf


 



1

 c �m;Kð f Þ for all f 2 Cmð�Þ with supp f � F;

where �k k1 stands for the supremum norm on C0ð�Þ: It is then immediate that T
vanishes outside the compact set K [ L: &
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To conclude this section, we note that Theorem 2 may also be used to obtain
similar automatic continuity results for disjointness preserving operators on the
Banach algebra C0ð�Þ for an arbitrary locally compact Hausdorff space �; although
these algebras are normal only when � is compact. For pertinent results in this
direction, see [9], [10], [11].

Moreover, some of the preceding results extend to a more general setting, since
Theorem 2 remains valid when the range space Y is the dual of a Fréchet space,
endowed with the strong topology. This leads to certain automatic continuity results
for local operators between spaces of distributions.

For instance, as already noted in [2] and [19], it can be shown that, for every
open subset � of Rn and every local linear mapping T : Dð�Þ ! D 0ð�Þ from the
space of test functions into the space of distributions on �; there exists a countable
subset � of � without any cluster point in � such that T j Dð� n �Þ is continuous.

In remarkable contrast to the result of Theorem 3, in the latter case, the singu-
larity set � need not be empty. In fact, given an arbitrary countable subset � in �
without cluster points in �; it is possible to construct a local linear mapping
T : Dð�Þ ! D 0ð�Þ such that T vanishes on Dð� n �Þ; whereas T j DðUÞ is dis-
continuous, for every open subset U of � for which U \ � 6¼ ;:

Even worse, there are examples of local linear operators on the space E
0
ð�Þ of

all distributions with compact support that are discontinuous on E
0
ðUÞ, for every

non-empty open subset U of �: Similar phenomena occur in the theory of ultra-
distributions; for details, we refer to [3].

3. Representation. Throughout this section, we consider an integer m 	 0; an
open set � � Rn; and a locally compact Hausdorff space �: To obtain a suitable
representation of disjointness preserving linear mappings from Cmð�Þ into C0ð�Þ or
Cð�Þ; we first collect some preliminaries on support points, a standard tool in the
theory of disjointness preserving operators. Our approach to support points is
modelled after [7].

Let T : Cmð�Þ ! Cð�Þ be a disjointness preserving linear mapping that vanishes
outside some compact subset of �; let � 2 � be given, and let 	� denote the corre-
sponding evaluation functional on Cð�Þ: A point ! 2 � is called a support point for
the composition 	� � T if, for every open neighborhood U of !; there exists a func-
tion f 2 Cmð�Þ such that supp f � U and ðTf Þð�Þ 6¼ 0:

It is easily seen that there exists at most one support point for 	� � T: Indeed, if
!1 and !2 are two distinct support points, then we obtain disjoint open neighbor-
hoods U1 and U2 of !1 and !2; respectively, and functions f1; f2 2 Cmð�Þ with
supp fj � Uj and ðTfjÞð�Þ 6¼ 0 for j ¼ 1; 2: But then f1 f2 ¼ 0; whereas ðTf1ÞðTf2Þ 6¼ 0;
which contradicts the condition that T is disjointness preserving.

On the other hand, if one assumes that 	� � T has no support point, then for
each ! 2 � there is an open neighborhood U! of ! such that ðTf Þð�Þ ¼ 0, for all
f 2 Cmð�Þ with supp f � U!: Now, let K � � be a compact set outside of which T
vanishes, and choose finitely many points!1; . . . ; !r 2 K such thatK � U!1

[ � � � [U!r :
Then there exist g1; . . . ; gr 2 Cmð�Þ such that g1 þ � � � þ gr � 1 on some open neigh-
borhoodW of K and supp gj � Uj, for j ¼ 1; . . . ; r: For arbitrary f 2 Cmð�Þ; we obtain
that f � fg1 þ � � � þ fgr onW; and therefore Tð f Þ ¼ Tð fg1 þ � � � þ fgrÞ; by the choice of
K: Moreover, from supp ð fgjÞ � Uj we infer that Tð fgjÞð�Þ ¼ 0 for j ¼ 1; . . . ; r and
therefore ðTf Þð�Þ ¼ 0, for all f 2 Cmð�Þ; which means that 	� � T ¼ 0:

ALGEBRAS OF DIFFERENTIABLE FUNCTIONS 303

https://doi.org/10.1017/S0017089501020134 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089501020134


Consequently, if we introduce the set

�� :¼ � 2 � : ðTf Þð�Þ 6¼ 0 for some f 2 Cmð�Þ
� �

;

then, for every � 2 ��; there exists exactly one support point ! for 	� � T: Let

’ : �� ! �

denote the mapping that assigns to every � 2 �� the corresponding support point
! 2 �:

To establish the continuity of ’; we first note that the range of ’ is contained in
the compact set K: Hence it suffices to show that, for every net ð��Þ�2J in �� and every
pair of points � 2 �� and ! 2 �; the condition that �� ! � and ’ð��Þ ! ! ensures
that ’ð�Þ ¼ !: If we assume that ’ð�Þ 6¼ !; then we obtain disjoint open neighbor-
hoods U of ’ð�Þ and V of !: By the definition of ’; there is a function f 2 Cmð�Þ for
which supp f � U and ðTf Þð�Þ 6¼ 0: Since the function Tf is continuous on �; the
convergence �� ! � and ’ð��Þ ! ! implies that there exists some � 2 J for which
ðTf Þð��Þ 6¼ 0 and ’ð��Þ 2 V: Again by the definition of ’; we obtain a function
g 2 Cmð�Þ for which supp g � V and ðTgÞð��Þ 6¼ 0: But this is impossible, since
fg ¼ 0 and T is disjointness preserving. Thus ’ð�Þ ¼ !; which shows that ’ is
continuous.

It is interesting to note that every disjointness preserving operator on Cmð�Þ

behaves, modulo its support function, like a local operator, in the sense that

’ðcozTf Þ � supp f for all f 2 Cmð�Þ:

To see this, let � 2 cozTf be given, and assume that ’ð�Þ =2 supp f: Since � n supp f is
an open neighborhood of the support point ’ð�Þ; there exists a function g 2 Cmð�Þ

for which supp f \ supp g ¼ ; and ðTgÞð�Þ 6¼ 0: Thus fg ¼ 0 and ðTf Þð�ÞðTgÞð�Þ 6¼ 0:
But this is impossible, since T preserves disjointness.

If T : Cmð�Þ ! Cð�Þ is a disjointness preserving linear mapping that vanishes
outside some compact subset of �; then it follows that the operator T is local pre-
cisely when its support function is the identity mapping on ��: Indeed, by the result
of the preceding paragraph and Lemma 1, the latter condition implies that T is local.
For the converse, suppose that ’ð!Þ 6¼ !, for some ! 2 �; and choose disjoint open
neighborhoods U and V of ’ð!Þ and !; respectively. Then there exist functions
f 2 Cmð�Þ and g 2 Cð�Þ for which supp f � U and ðTf Þð!Þ 6¼ 0; while supp g � V
and gð!Þ ¼ 1: Thus fg ¼ 0 and ðTf Þg 6¼ 0; so that T cannot be local.

In addition to the preceding properties of the support function, our representa-
tion of disjointness preserving operators requires the following result on differenti-
able functions.

Lemma 7. Let ! 2 �; and let f 2 Cmð�Þ be a function for which ðD�f Þð!Þ ¼ 0, for
all � 2 Nn

0 with �j j 
 m: Then there exists a sequence ðgkÞk2N of functions in Cmð�Þ

such that each gk is identically equal to one on some open neighborhood of !; while
gkf ! 0 as k ! 1; in the topology of Cmð�Þ:

Proof. For each k 2 N; let Vk :¼ f� 2 � : � � !k k < 1=kg; where �k k denotes
the Euclidean norm on Rn: By a classical result on differentiable functions, [13,
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Lemma 1.5.1] or [15, Lemma I.4.2], there exists a sequence of functions gk 2 Cmð�Þ

for which gk � 1 on some open neighborhood of !; supp gk � Vk; and
D�gk



 


1


 c k �j j for all k 2 N and � 2 Nn
0 with �j j 
 m; where c > 0 is a constant

that depends only on m and n; but not on k:
Moreover, given an arbitrary function f 2 Cmð�Þ that satisfies ðD�f Þð!Þ ¼ 0, for

all � 2 Nn
0 with �j j 
 m; a well-known application of the mean value theorem

ensures that fð�Þ
�� ��= � � !k km! 0 as � ! ! in �:

For each � 2 Nn
0 with �j j 
 m; this implies that ðD�f Þð�Þ

�� ��= � � !k km� �j j! 0 as
� ! ! in �: Consequently, for every " > 0; there exists some 	ð"Þ > 0 such that

ðD�f Þð�Þ
�� �� 
 " � � !k km� �j j;

for all � 2 Nn
0 with �j j 
 m and all � 2 � with � � !k k < 	ð"Þ:

Now, let � 2 Nn
0 with �j j 
 m be given, and consider an arbitrary integer k 2 N

for which 1=k < 	ð"Þ: For each point � 2 � with � � !k k > 1=k; it follows from
supp gk � Vk that D�ðgkf Þð Þð�Þ ¼ 0: On the other hand, if � � !k k 
 1=k; then the
multivariate version of the Leibniz rule and the preceding estimates entail that

D�ðgk f Þð Þð�Þ
�� �� 


X


�

�




� �
D��
gk
� �

ð�Þ
�� �� D
f

� �
ð�Þ

�� �� 

X


�

�




� �
c " k �j j�m;

where the summations are taken over all 
 2 Nn
0 for which 
j 
 �j for j ¼ 1; . . . ; n:

Thus D�ðgkf Þ ! 0 as k ! 1; uniformly on �: The assertion follows. &

Now we are in a position to establish the canonical representation of disjoint-
ness preserving operators from Cmð�Þ into C0ð�Þ or Cð�Þ: We begin with the case of
the range space C0ð�Þ: The other case will then be reduced to this one.

Theorem 8. Given an arbitrary collection of functions h� 2 C0ð�Þ, for all � 2 Nn
0

with �j j 
 m, and a continuous mapping ’ : � ! � for which the closure of the range
is a compact subset of �; the definition

ðTf Þð�Þ :¼
X
�j j
m

h�ð�Þ D�fð Þð’ð�ÞÞ for all f 2 Cmð�Þ and � 2 �

yields a disjointness preserving continuous linear operator T : Cmð�Þ ! C0ð�Þ whose
support function coincides with ’ on ��:

Conversely, if T : Cmð�Þ ! C0ð�Þ denotes an arbitrary disjointness preserving
continuous linear operator, then there exist functions h� 2 C0ð��Þ, for all � 2 Nn

0 with
�j j 
 m and a continuous mapping ’ : �� ! � whose range is contained in a compact
subset of � such that

ðTf Þð�Þ ¼
X
�j j
m

h�ð�Þ D�fð Þð’ð�ÞÞ for all f 2 Cmð�Þ and � 2 ��:

This representation of T is unique.

Proof. ðiÞ To establish the first half of the theorem, we note that the conditions
on the functions h� and ’ ensure that T indeed maps into C0ð�Þ: Moreover, for a
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suitable constant c > 0 we obtain the estimate Tf


 



1

 c �m;Kð f Þ for all f 2 Cmð�Þ;

where K is any compact subset of � that contains the range of ’: In particular, it
follows that T is continuous and vanishes outside K:

To show that T preserves disjointness, we observe that, for arbitrary
f; g 2 Cmð�Þ with fg ¼ 0; it follows that f vanishes in a neighborhood of any point
! 2 � for which gð!Þ 6¼ 0: This entails that ðD�f Þg ¼ 0 for every � 2 Nn

0 with
�j j 
 m. Hence, by the same argument, ðD�f ÞðD
gÞ ¼ 0, for all �; 
 2 Nn

0 with
�j j; 


�� �� 
 m; and therefore ðTf ÞðTgÞ ¼ 0:
To see that ’ j�� is the support mapping of T; let a point � 2 �� be given, and

let U be an open neighborhood of ’ð�Þ: Then there exist functions g; e 2 Cmð�Þ such
that ðTgÞð�Þ 6¼ 0; supp e � U; and e � 1 on some open neighborhood of ’ð�Þ: Evi-
dently, the function f :¼ ge 2 Cmð�Þ satisfies supp f � supp e � U: Moreover, since f
and g agree on an open neighborhood of ’ð�Þ; the inclusion ’ðcozTð f� gÞÞ �

supp ð f� gÞ then guarantees that ðTf Þð�Þ ¼ ðTgÞð�Þ 6¼ 0; as desired.
ðiiÞ Let T : Cmð�Þ ! C0ð�Þ be a disjointness preserving continuous linear

operator, and let � 2 �� be given. Since, by continuity, T vanishes outside some
compact subset of �; we may consider the corresponding support point ’ð�Þ 2 �:

We first claim that ðTf Þð�Þ ¼ 0, for every f 2 Cmð�Þ with the property that
D�fð Þð’ð�ÞÞ ¼ 0, for all � 2 Nn

0 with �j j 
 m: To see this, we apply Lemma 7 to
obtain a sequence of functions gk 2 Cmð�Þ such that gk f ! 0 in Cmð�Þ and gk � 1
on some open neighborhood Uk of ’ð�Þ: By the continuity of T; it follows that
Tðgk f Þ ! 0 as k ! 1; uniformly on �: On the other hand, for each k 2 N; we
know that ’ð�Þ =2 supp ð f� gk f Þ: Because ’ðcozTð f� gk f ÞÞ � supp ð f� gk f Þ; we
conclude that � =2 cozTð f� gk f Þ; and therefore ðTf Þð�Þ ¼ ðTðgk f ÞÞð�Þ: This shows
that ðTf Þð�Þ ¼ 0:

Now, for an arbitrary function f 2 Cmð�Þ; we may apply the result of the pre-
ceding paragraph to the function f� p; where p denotes the mth Taylor polynomial
for f about ’ð�Þ given by

pð!Þ :¼
X
�j j
m

D�fð Þð’ð�ÞÞ

�!
! � ’ð�Þð Þ

� for all ! 2 �;

with the convention that x� :¼ x�11 � � � x�nn for all x ¼ ðx1; . . . ; xnÞ 2 Rn and
� ¼ ð�1; . . . ; �nÞ 2 Nn

0: Hence, if Z denotes the identity function on �; then we
obtain

ðTf Þð�Þ ¼ ðTpÞð�Þ ¼
X
�j j
m

D�fð Þð’ð�ÞÞ

�!
T Z� ’ð�Þð Þ

�
ð Þð�Þ:

This establishes the representation

ðTf Þð�Þ ¼
X
�j j
m

h�ð�Þ D�fð Þð’ð�ÞÞ for all f 2 Cmð�Þ and � 2 ��

with the choice

h�ð�Þ :¼
1

�!
T Z� ’ð�Þð Þ

�
ð Þð�Þ ¼

X


�

ð�’ð�ÞÞ
a�



! ð� � 
Þ!
T Z

� �

ð�Þ
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for all � 2 �� and � 2 Nn
0 with �j j 
 m; where the last identity follows from the

multivariate version of the binomial theorem. Since the support mapping ’ is con-
tinuous and bounded, and since T maps into C0ð�Þ; it is immediate that each of the
functions h� belongs to C0ð��Þ:

To prove the last assertion of the theorem, we note that ’ coincides with the
support mapping of T; while the uniqueness of the functions h� follows by a simple
inductive argument involving the functions TðZ�Þ for � 2 Nn

0 with �j j 
 m: &

Theorem 9. A disjointness preserving continuous linear operator T : Cmð�Þ !

Cð�Þ has a unique representation of the form

ðTf Þð�Þ ¼
X
�j j
m

h�ð�Þ D�fð Þð’ð�ÞÞ for all f 2 Cmð�Þ and � 2 ��;

with continuous functions ’ : �� ! � and h� : �� ! C, for all � 2 Nn
0 with �j j 
 m:

Conversely, for every choice of continuous functions ’ : � ! � and h� : � ! C

for � 2 Nn
0 with �j j 
 m; the preceding formula, evaluated for all f 2 Cmð�Þ and � 2 �;

defines a disjointness preserving continuous linear operator T : Cmð�Þ ! Cð�Þ:

Proof. Given a disjointness preserving continuous linear operator
T : Cmð�Þ ! Cð�Þ and a compact subset K of �; we observe that the definition

TK f :¼ ðTf Þ jK for all f 2 Cmð�Þ

yields a disjointness preserving continuous linear operator TK : Cmð�Þ ! CðK Þ:
Hence, by Theorem 8, we have a unique representation of the form

ðTK f Þð�Þ ¼
X
�j j
m

h�;Kð�Þ D�fð Þð’Kð�ÞÞ for all f 2 Cmð�Þ and � 2 K�;

with continuous functions ’K : K� ! � and h�;K 2 C0ðK�Þ, for all � 2 Nn
0 with

�j j 
 m: By uniqueness, for every pair of compact sets K;L � �; we obtain both
’K � ’L and h�;K � h�;L on K� \ L�, for all � 2 Nn

0 with �j j 
 m: Moreover, it is
immediate that �� is equal to the union of the sets K� as K runs over all compact
subsets of �: Since � is locally compact, we thus obtain continuous functions
’ : �� ! � and h� : �� ! C such that ’ � ’K and h� � h�;K on K, for every com-
pact set K � � and all � 2 Nn

0 with �j j 
 m: It follows that T has a representation of
the desired form. The remaining assertions are clear from Theorem 8. &

The following result due to Peetre [19] is a simple consequence of Theorems 3
and 9. Our approach is more elementary, since it avoids the theory of distributions.

Corollary 10. The local linear operators from Cmð�Þ into Cð�Þ are precisely the
linear partial differential operators on Cmð�Þ with continuous coefficients.

We conclude with a brief discussion of disjointness preserving operators on
certain Banach algebras of differentiable functions of the type Cmð½0; 1 Þ:

Given a bounded open subset � of Rn; let Cmð�Þ consist of the functions
f 2 Cmð�Þ which, together with all their partial derivatives up to the order m, have
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continuous extensions to the closure �; also denoted by D�f, for all � 2 Nn
0 with

�j j 
 m: Endowed with pointwise operations and the norm �m;�; the space C
mð�Þ is

a Banach algebra.
To ensure reasonable Taylor expansions for all functions in Cmð�Þ even at the

boundary points of �; some condition on � is needed. Following Whitney [21], we
say that � is locally regular if, for every point ! 2 �; there exist an open neighbor-
hood U of ! in Rn and a constant c > 0 such that any two points u; v 2 � \U can be
joined by a rectifiable curve in � \U of length not exceeding c u� vk k: Simple
examples are provided by the convex bounded open sets.

If � is open, bounded, and locally regular, then every f 2 Cmð�Þ has a Taylor
expansion of order m at every point ! 2 �; in the sense that

� � !k k�m fð�Þ �
X
�j j
m

D�fð Þð!Þ

�!
ð� � !Þ

�

�����
����� ! 0 as � ! ! in �;

see [21, Lemma 3], and also [13, Proposition 5.5.4] for a short approach. Hence a
glance at the proof of Lemma 7 reveals that this lemma remains valid for arbitrary
points ! 2 � and functions f 2 Cmð�Þ provided that � is locally regular. One may
therefore proceed exactly as in the proof of Theorem 8 to obtain the following
result.

Theorem 11. Let � � Rn be open, bounded, and locally regular. Then every dis-
jointness preserving continuous linear operator T : Cmð�Þ ! C0ð�Þ has a unique
representation of the form

ðTf Þð�Þ ¼
X
�j j
m

h�ð�Þ D�fð Þð’ð�ÞÞ for all f 2 Cmð�Þ and � 2 ��;

where ’ : �� ! � is continuous and h� 2 C0ð��Þ for all � 2 Nn
0 with �j j 
 m:

Conversely, given a continuous function ’ : � ! � and h� 2 C0ð�Þ, for all � 2 Nn
0

with �j j 
 m; the preceding formula defines a disjointness preserving continuous linear
operator T : Cmð�Þ ! C0ð�Þ:
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férentiels’’, Math. Scand. 8 (1960), 116–120.
20. W. Rudin, Real and complex analysis (McGraw-Hill, New York, 1967).
21. H. Whitney, Functions differentiable on the boundaries of regions, Ann. of Math. 35

(1934), 482–485.

ALGEBRAS OF DIFFERENTIABLE FUNCTIONS 309

https://doi.org/10.1017/S0017089501020134 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089501020134

