ON QUOTIENT LOOPS OF NORMAL SUBLOOPS

BY

C. SANTHAKUMARI

1. Introduction. The following result is due to Wielandt [1, Lemma 2.9]: Let A, B, K be N-submodules of some N-module, where N is a zero symmetric near-ring. Then the N-module, $\Gamma := (A+K) \cap (B+K) | (A \cap B) + K$ is commutative. Using this result Wielandt obtained density theorem for 2-primitive near-rings with identity. Betsch [1] used Wielandt's result to obtain the density theorem for 0-primitive near-rings. The purpose of this paper is to extend this result for loops.

2. **Result.** We prove the result for additive loops. For the definitions of loops, normal subloops see [2]. If G is any additive loop and H is a normal subloop of G, the quotient loop G modulo H is denoted by G/H in which addition is defined as (x+H)+(y+H)=(x+y)+H for all x+H, y+H in G/H [2, p. 61]; further, $x \in H$ iff x+H=H. Let G be any additive loop. For any $a \in G$, we shall denote the unique left and right additive inverses of a by a_1 and a_r respectively.

PROPOSITION 2.1. Let G be an additive loop and A, B, K be normal subloops of G, then the additive loop $\overline{G} = (A+K) \cap (B+K) | (A \cap B) + K$ is an additive abelian group.

Proof. Let $E = (A \cap B) + K$ and $H = (A + K) \cap (B + K)$ and let 0 be the identity of the loop G. It is enough to show that for all $x, y, z \in H$; (x+(y+z))+E = ((x+y)+z)+E and (x+y)+E = (y+x)+E. Let x, y, $z \in H$. Then, $x \in A + K$; hence x = a + p, for some $a \in A$ and $p \in K$. Since, $y, z \in H$; y, $z \in B + K$, hence, y = b + q and z = c + r, where $b, c \in B$ and $q, r \in K$. We wish to show that x + E = a + E, y + E = b + E and z + E = c + E. Since E is a normal subloop of G [2, iv, Theorem 1.2 and Theorem 1.4], (x+E)=(a+p)+E=a + (p + E). Since $p \in K$, $p \in E$ and hence p + E = E. Therefore, x + E = a + E. By a similar argument we get, y+E=b+E and z+E=c+E. Since A is a normal subloop of G and since $a \in A$, A + ((a+b)+c) = (A + (a+b)) + c =((A+a)+b)+c = (A+b)+c = A+(b+c) and A+(a+(b+c)) = (A+a)+c(b+c) = A + (b+c). Therefore, A + ((a+b)+c) = A + (a+(b+c)).Since. $(a+b)+c \in A + ((a+b)+c)$, we have $(a+b)+c \in A + (a+(b+c))$; since A is a normal subloop of G, we have,

$$((a+b)+c)+(a+(b+c))_r \in \{A+(a+(b+c))\}+(a+(b+c))_r$$

= $A+\{(a+(b+c))+(a+(b+c))_r\}=A+0=A$

517

Received by the editors March 2, 1978 and, in revised form, October 2, 1978.

By a similar argument, we get, B + ((a+b)+c) = B + (a+(b+c)) and consequently $((a+b)+c) + (a+(b+c))_r \in B$. Therefore, $((a+b)+c) + (a+(b+c))_r \in A \cap B \subseteq E$. Hence,

$$\{((a+b)+c)+(a+(b+c))_r\}+E=E=0+E=\{(a+(b+c))+(a+(b+c))_r\}+E.$$

Since G/E is a loop and since cancellation laws hold in a loop, we get, (a+(b+c))+E=((a+b)+c)+E. Therefore,

$$(x + (y + z)) + E = (a + (b + c)) + E = ((a + b) + c) + E = ((x + y) + z) + E.$$

Hence, the loop \overline{G} is associative and consequently \overline{G} is a group. Now we show that \overline{G} is abelian. Since A is a normal subloop of G and $a \in A$ we have, A + (a+b) = (A+a) + b = A + b and A + (b+a) = (b+a) + A = b + (a+A) =b+A = A + b. Therefore, A + (a+b) = A + (b+a) and hence, (a+b) + $(b+a)_r \in A$. By a similar argument we get, $(a+b) + (b+a)_r \in B$. Therefore $(a+b) + (b+a)_r \in A \cap B \subseteq E$. Hence, (a+b) + E = (b+a) + E. Therefore, (x+y) + E = (a+b) + E = (b+a) + E = (y+x) + E. Hence, \overline{G} is abelian. Hence the result.

COROLLARY 2.2. Let G be an additive loop and let no nonzero epimorphic image of any normal subloop of G be an abelian group. Then the lattice of normal subloops of G is distributive.

Proof. Let A, B, K be normal subloops of G and let $H = (A + K) \cap (B + K)$, $E = (A \cap B) + K$ and $\overline{G} = H/E$. Now, H is a normal subloop of G [2, iv, Theorems 1.2; 1.4], \overline{G} is an epimorphic image of H; but \overline{G} is an abelian group (prop. 2.1), hence we must have H = E, that is, $(A + K) \cap (B + K) = (A \cap B) + K$. Therefore, the lattice of normal subloops of G is distributive.

ACKNOWLEDGEMENT. I wish to thank the referee and Professor D. Ramakotaiah for their valuable suggestions. I would also like to thank the Council of Scientific and Industrial Research, New Delhi, India, for the financial assistance.

References

1. G. Betsch, Primitive near-rings, Math. z, 130, 351-461 (1973).

2. R. Hubert Bruck, A survey of binary systems, Springer-Verlag, New York, Inc, 1966.

DEPARTMENT OF MATHEMATICS NAGARJUNA UNIVERSITY NAGARJUNANAGAR, 522 510 ANDHRA PRADESH, INDIA.

518