ON THE *p*-LENGTH AND THE WIELANDT SERIES OF A FINITE *p*-SOLUBLE GROUP

NING SU and YANMING WANG[™]

(Received 6 September 2014; accepted 24 September 2014; first published online 9 December 2014)

Abstract

The Wielandt subgroup of a group *G*, denoted by $\omega(G)$, is the intersection of the normalisers of all subnormal subgroups of *G*. The terms of the Wielandt series of *G* are defined, inductively, by putting $\omega_0(G) = 1$ and $\omega_{i+1}(G)/\omega_i(G) = \omega(G/\omega_i(G))$. In this paper, we investigate the relations between the *p*-length of a *p*-soluble finite group and the Wielandt series of its Sylow *p*-subgroups. Some recent results are improved.

2010 *Mathematics subject classification*: primary 20D10; secondary 20D20. *Keywords and phrases*: *p*-length, *p*-nilpotent, Wielandt series, Wielandt length.

1. Introduction

All groups considered in this paper are finite. Let p be a prime and P a p-group. For convenience, we denote

$$\Omega_k(P) = \langle x \in P : x^{p^k} = 1 \rangle \text{ and } \Omega(P) = \begin{cases} \Omega_1(P) & \text{if } p \text{ is odd,} \\ \Omega_2(P) & \text{if } p = 2. \end{cases}$$

The Wielandt subgroup $\omega(G)$ of a group *G* is defined to be the intersection of the normalisers of all subnormal subgroups of *G* (see [10]). The terms of the Wielandt series of *G* are defined, inductively, by putting $\omega_0(G) = 1$ and $\omega_{i+1}(G)/\omega_i(G) = \omega(G/\omega_i(G))$. If, for some integer *n*, $\omega_n(G) = G$, then we say that *G* has a finite Wielandt length, and define the Wielandt length of *G*, denoted by wl(G), to be the minimal *n* such that $\omega_n(G) = G$.

Let *P* be a *p*-group for some prime *p*. Recall that the terms of the upper central series of *P* are defined, inductively, by putting $Z_0(P) = 1$ and $Z_{i+1}(P)/Z_i(P) = Z(P/Z_i(P))$. The nilpotent class of *P*, denoted by c(P), is defined to be the minimal *n* such that $Z_n(P) = P$. It is clear that for any nonnegative integer *i*, $Z_i(P) \le \omega_i(P)$. Hence, the Wielandt length of *P* is less than or equal to the nilpotent class of *P*.

This work was supported by the National Natural Science Foundation of China (Nos. 11401597 and 11171353) and the Young Teacher Starting-up Research program of Sun Yat-sen University. © 2014 Australian Mathematical Publishing Association Inc. 0004-9727/2014 \$16.00

THEOREM 1.1 [5]. Let p be a prime and let P be a Sylow p-subgroup of a p-soluble group G. Then $l_p(G) \le c(P)$.

More recently, González-Sánchez and Weigel [3] gave a sufficient condition for the *p*-length of a *p*-soluble group to be at most 1 for odd primes.

THEOREM 1.2 [3, Theorem E]. Let p be an odd prime and let P be a Sylow p-subgroup of a p-soluble group G. If $\Omega(P) \leq Z_{p-2}(P)$, then the p-length of G is at most 1.

In [8], we proved the following theorem.

220

THEOREM 1.3 [8, Corollary 4.1]. Let p be a prime and let P be a Sylow p-subgroup of a p-soluble group G. Then $l_p(G) \le wl(P)$.

Clearly, Theorem 1.3 has improved Theorem 1.1 by replacing ${}^{\prime}l_p(G) \le c(P)$ in Theorem 1.1 with ${}^{\prime}l_p(G) \le wl(P)$. A natural question is whether Theorem 1.2 can be improved in a similar way; more precisely, can we weaken the condition ${}^{\prime}\Omega(P) \le Z_{p-2}(P)$ in Theorem 1.2 to ${}^{\prime}\Omega(P) \le \omega_{p-2}(P)$?

In this paper, our first result will give an affirmative answer to this question. Unlike Theorem 1.2, we will also include the case p = 2. Moreover, unless p is a Fermat prime and a Sylow 2-subgroup of G is abelian, we only require $\Omega(P) \le \omega_{p-1}(P)$, instead of $\Omega(P) \le \omega_{p-2}(P)$, to prove that the p-length of G is at most 1.

THEOREM A. Let *p* be a prime and let *P* be a Sylow *p*-subgroup of a *p*-soluble group *G*. Suppose that $\Omega(P) \le \omega_n(P)$, where n = p - 2 if *p* is a Fermat prime and a Sylow 2-subgroup of *G* is not abelian, and n = p - 1 otherwise. Then the *p*-length of *G* is at most 1.

Using Theorem A, we can prove the following results as applications.

THEOREM B. Let *p* be a prime and let *P* be a Sylow *p*-subgroup of a group *G*. Suppose that $\Omega(P) \le \omega_{p-1}(P)$. Then *G* is *p*-nilpotent if $N_G(P)$ is *p*-nilpotent.

COROLLARY 1.4 [3, Theorem D]. Let p be an odd prime and let P be a Sylow p-subgroup of a group G. Suppose that $\Omega(P) \leq Z_{p-1}(P)$. Then G is p-nilpotent if $N_G(P)$ is p-nilpotent.

As another application of Theorem A, we can improve Theorem 1.3 by giving a better bound for the *p*-length of a finite *p*-soluble group G in terms of the Wielandt length of a Sylow *p*-subgroup of G:

THEOREM C. Let *p* be a prime and let *P* be a Sylow *p*-subgroup of a *p*-soluble group *G*. Then $l_p(G) \le \max\{1, wl(P) - (p-3)\}$. Moreover, unless *p* is a Fermat prime and a Sylow 2-subgroup of *G* is not abelian, then $l_p(G) \le \max\{1, wl(P) - (p-2)\}$.

2. Preliminaries

The following theorem plays a crucial role in the proof of Theorem A.

THEOREM 2.1 [5, Theorem B]. Let *H* be a *p*-soluble linear group over a field of characteristic *p*, with no normal *p*-subgroup greater than 1. If *g* is an element of order p^m in *H*, then the minimal equation of *g* is $(x - 1)^r = 0$, where $r = p^m$, unless there is an integer m_0 , not greater than *m*, such that $p^{m_0} - 1$ is a power of a prime *q* for which the Sylow *q*-subgroups of *H* are not abelian, in which case, if m_0 is the least such integer, then $p^{m-m_0}(p^{m_0} - 1) \le r \le p^m$.

We now give some properties of the Wielandt series of finite groups. The first one follows immediately from the definition.

LEMMA 2.2. Let *i* be a nonnegative integer. Let *K* be a subnormal subgroup of a group *G*. Then $\omega_{i+1}(G) \leq N_G(K\omega_i(G))$. In particular, if *G* is a nilpotent group, then $\omega_{i+1}(G) \leq N_G(H\omega_i(G))$ for any subgroup *H* of *G*.

LEMMA 2.3. Let p be a prime and P a p-group. Let M be a subgroup of P and N a normal subgroup of P. Then:

(i) $M \cap \omega(P) \leq \omega(M);$

(ii) $\omega(P)N/N \le \omega(P/N)$.

PROOF. (i) Let *x* be any element of $\omega(P) \cap M$. Let *K* be any subnormal subgroup of *M*. Clearly, *K* is also a subnormal subgroup of *P* since *P* is a *p*-group. It follows that $x \in \omega(P) \cap M \leq N_P(K) \cap M = N_M(K)$. Hence, $x \in \omega(M)$ and $M \cap \omega(P) \leq \omega(M)$.

(ii) Let *x* be any element of $\omega(P)$. Let *K*/*N* be any subnormal subgroup of *P*/*N*. Clearly, *K* is a subnormal subgroup of *P*. It follows that $x \in N_P(K)$ and thus $xN \in N_{P/N}(K/N)$. Hence, $xN \in \omega(P/N)$ and $\omega(P)N/N \le \omega(P/N)$.

LEMMA 2.4. Let p be a prime and P a p-group. Let M be a subgroup of P and N a normal subgroup of P. Then, for any nonnegative integer i, we have:

- (i) $M \cap \omega_i(P) \leq \omega_i(M);$
- (ii) $\omega_i(P)N/N \le \omega_i(P/N).$

In particular, the Wielandt length of any subgroup of P and the Wielandt length of any factor group of P are not greater than the Wielandt length of P.

PROOF. This lemma follows from Lemma 2.3 and [9, Proposition 2.4].

The following are some basic properties of the *p*-length of a *p*-soluble group.

LEMMA 2.5 [6, page 689, Hilfssatz 6.4]. Let G be a p-soluble group.

- (i) If $N \leq G$, then $l_p(G/N) \leq l_p(G)$.
- (ii) If $U \leq G$, then $l_p(U) \leq l_p(G)$.
- (iii) If N_1 and N_2 are two normal subgroups of G, then

$$l_p(G/(N_1 \cap N_2)) = \max\{l_p(G/N_1), l_p(G/N_2)\}.$$

(iv) $l_p(G/\Phi(G)) = l_p(G)$.

N. Su and Y. Wang

LEMMA 2.6. Let G be a p-soluble group with p-length at most 1 and P be a Sylow p-subgroup of G. If $N_G(P)$ is p-nilpotent, then G is p-nilpotent.

PROOF. Since $l_p(G) \le 1$, $G = N_G(P O_{p'}(G)) = N_G(P) O_{p'}(G)$. It follows that $G/O_{p'}(G) = (N_G(P) O_{p'}(G))/O_{p'}(G)$ is *p*-nilpotent and thus *G* is *p*-nilpotent.

3. Proof of theorems

PROOF OF THEOREM A. Suppose that this theorem is false and let *G* be a counterexample of minimal order. Let \mathcal{F} be the class of all *p*-soluble groups with *p*-length at most 1. From Lemma 2.5, we know that \mathcal{F} is a saturated formation. Let $G^{\mathcal{F}}$ be the \mathcal{F} -residual of *G* and let $K = G^{\mathcal{F}} \Phi(G)$. Then $G^{\mathcal{F}} \nleq \Phi(G)$ since $G \notin \mathcal{F}$ and \mathcal{F} is a saturated formation. Hence, $K > \Phi(G)$. In the following, we will derive a contradiction through several steps.

Step 1. $O_{p'}(G) = 1$.

Suppose that $O_{p'}(G) \neq 1$. Clearly, $G/O_{p'}(G)$ satisfies the hypotheses of this theorem. Hence, the minimal choice of *G* implies that the *p*-length of $G/O_{p'}(G)$ is at most 1. It then follows that the *p*-length of *G* is at most 1, which contradicts the choice of *G*.

Step 2. For any proper subgroup *H* of *G*, we have $H \in \mathcal{F}$.

Let *H* be a proper subgroup of *G* and let P_1 be a Sylow *p*-subgroup of *H*. Without loss of generality, we may assume that $P_1 \leq P$. Since $\Omega(P_1) \leq \Omega(P) \leq \omega_n(P)$, by Lemma 2.4 we have $\Omega(P_1) \leq \omega_n(P) \cap P_1 \leq \omega_n(P_1)$. Hence, *H* satisfies the hypotheses of this theorem and the minimal choice of *G* implies that $H \in \mathcal{F}$.

Step 3. $K/\Phi(G)$ is the unique minimal normal subgroup of $G/\Phi(G)$.

This follows from step 2 and [1, Theorem 1].

Step 4. $K/\Phi(G)$ is a *p*-group and $G^{\mathcal{F}} \leq \Omega(P)$.

Since *G* is *p*-soluble and $K/\Phi(G)$ is a minimal normal subgroup of $G/\Phi(G)$, $K/\Phi(G)$ is either a *p*-group or a *p'*-group. If $K/\Phi(G)$ is a *p'*-group, then $K/\Phi(G)$ is *p*-nilpotent and *K* is not a *p*-group. It follows that *K* is a *p*-nilpotent normal subgroup of *G* and $O_{p'}(K) \neq 1$, which contradicts step 1. Hence, $K/\Phi(G)$ is a *p*-group.

Since $O_{p'}(G) = 1$ by step 1, $\Phi(G)$ is a *p*-group. It follows that *K* is a *p*-group. Since $K > \Phi(G)$, *G* has a maximal subgroup *L* such that G = KL. By step 2, $L \in \mathcal{F}$. It follows that $G^{\mathcal{F}} \leq \Omega(P)$ by [1, Proposition 1].

Step 5. G has a maximal subgroup M such that $G/\Phi(G) = (K/\Phi(G)) \rtimes (M/\Phi(G))$. Moreover, $M/\Phi(G)$ is not a p'-group.

Since $K/\Phi(G)$ is a soluble minimal normal subgroup of $G/\Phi(G)$ by step 4 and $\Phi(G/\Phi(G)) = 1$, *G* has a maximal subgroup *M* such that $G/\Phi(G) = (K/\Phi(G)) \rtimes (M/\Phi(G))$. If $M/\Phi(G)$ is a *p'*-group, then $K/\Phi(G)$ is the normal Sylow *p*-subgroup of $G/\Phi(G)$. It then follows that *G* is *p*-closed, which contradicts the choice of *G*.

Step 6. $\Phi(G) = C_M(K/\Phi(G))$ and thus $M/\Phi(G) = M/C_M(K/\Phi(G))$ can be regarded as a linear group over a field of characteristic *p* through the conjugation action of $M/\Phi(G)$

on $K/\Phi(G)$. If g is an element of $M/\Phi(G)$ of order p, then the minimal equation of g is $(x - 1)^r = 0$, where r = p, unless p is a Fermat prime and a Sylow 2-subgroup of G is not abelian, in which case $p - 1 \le r \le p$.

Clearly, $\Phi(G) \leq C_M(K/\Phi(G))$. On the other hand, $(C_M(K/\Phi(G))/\Phi(G)) \leq G/\Phi(G)$ and $(C_M(K/\Phi(G))/\Phi(G)) \cap K/\Phi(G) = 1$. Therefore, $C_M(K/\Phi(G))/\Phi(G) = 1$ since $K/\Phi(G)$ is the unique minimal normal subgroup of $G/\Phi(G)$ by step 3. It follows that $C_M(K/\Phi(G)) \leq \Phi(G)$ and thus $\Phi(G) = C_M(K/\Phi(G))$.

Since *G* is *p*-soluble, $M/\Phi(G)$ is also *p*-soluble. Since $G/\Phi(G) = (K/\Phi(G)) \rtimes (M/\Phi(G))$ and $K/\Phi(G)$ is a soluble minimal normal subgroup of $G/\Phi(G)$, $M/\Phi(G)$ acts irreducibly on $K/\Phi(G)$. Clearly, $M/\Phi(G) = M/C_M(K/\Phi(G))$ acts faithfully on $K/\Phi(G)$. It then follows from [2, Ch. A, Lemma 13.6] that $O_p(K/\Phi(G)) = 1$.

Let g be an element of $M/\Phi(G)$ of order p. By Theorem 2.1, the minimal equation of g is $(x - 1)^r = 0$, where r = p, unless p - 1 is a power of a prime q for which a Sylow q-subgroup of $M/\Phi(G)$ is not abelian, in which case $p - 1 \le r \le p$. Suppose that p - 1is a power of a prime q for which a Sylow q-subgroup of $M/\Phi(G)$ is not abelian. Then p is odd and p - 1 is even. It then follows that in this case we have q = 2, p is a Fermat prime and a Sylow 2-subgroup of G is not abelian.

Step 7. We have a contradiction.

Write $\overline{K} = K/\Phi(G)$, $\overline{M} = M/\Phi(G)$ and $\overline{P} = P/\Phi(G)$. By step 4 and the hypotheses of this theorem, $G^{\mathcal{F}} \leq \Omega(P) \leq \omega_n(P)$, where n = p - 2 if p is a Fermat prime and a Sylow 2-subgroup of G is not abelian, and n = p - 1 otherwise. It then follows from Lemma 2.4 that $\overline{K} = K/\Phi(G) = (G^{\mathcal{F}}\Phi(G))/\Phi(G) \leq (\omega_n(P)\Phi(G))/\Phi(G) \leq \omega_n(P/\Phi(G)) = \omega_n(\overline{P})$. Since $\overline{M} = M/\Phi(G)$ is not a p'-group by step 5, we can pick an element g of \overline{M} of order p.

Since $\overline{K} \leq \omega_n(\overline{P})$, we have $\overline{K} \leq N_{\overline{P}}(\langle g \rangle \omega_{n-1}(\overline{P}))$ by Lemma 2.2. Hence,

$$[\overline{K}, \langle g \rangle \omega_{n-1}(\overline{P})] \le \langle g \rangle \omega_{n-1}(\overline{P}).$$
(3.1)

Let *i* be an arbitrary nonnegative integer. By Lemma 2.2, we have $\omega_{i+1}(\overline{P}) \leq N_{\overline{P}}(\langle g \rangle \omega_i(\overline{P}))$. Clearly, $\langle g \rangle \leq N_{\overline{P}}(\langle g \rangle \omega_i(\overline{P}))$. Therefore, $\langle g \rangle \omega_{i+1}(\overline{P}) \leq N_{\overline{P}}(\langle g \rangle \omega_i(\overline{P}))$ and it follows that

$$[\langle g \rangle \omega_{i+1}(P), \langle g \rangle \omega_i(P)] \le \langle g \rangle \omega_i(P). \tag{3.2}$$

From (3.1) and (3.2),

$$[\dots [[[\overline{K}, \langle g \rangle \omega_{n-1}(\overline{P})], \langle g \rangle \omega_{n-2}(\overline{P})], \langle g \rangle \omega_{n-3}(\overline{P})], \dots, \langle g \rangle \omega_{0}(\overline{P})]$$

$$\leq [\dots [[\langle g \rangle \omega_{n-1}(\overline{P}), \langle g \rangle \omega_{n-2}(\overline{P})], \langle g \rangle \omega_{n-3}(\overline{P})], \dots, \langle g \rangle \omega_{0}(\overline{P})]$$

$$\leq [\dots [\langle g \rangle \omega_{n-2}(\overline{P}), \langle g \rangle \omega_{n-3}(\overline{P})], \dots, \langle g \rangle \omega_{0}(\overline{P})]$$

$$\vdots$$

$$\leq \langle g \rangle \omega_{0}(\overline{P}) = \langle g \rangle.$$
(3.3)

On the other hand, since $\overline{K} \leq \overline{P}$,

$$[\dots [[[\overline{K}, \langle g \rangle \omega_{n-1}(\overline{P})], \langle g \rangle \omega_{n-2}(\overline{P})], \langle g \rangle \omega_{n-3}(\overline{P})], \dots, \langle g \rangle \omega_0(\overline{P})] \le \overline{K}.$$
(3.4)

Combining (3.3) and (3.4), we know that for any element $k \in \overline{K}$,

$$[\dots [[[k, \underline{g}], \underline{g}], \underline{g}], \underline{g}], \dots, \underline{g}]$$

$$\in [\dots [[[\overline{K}, \underline{\langle g \rangle}], \langle g \rangle], \langle g \rangle], \dots, \langle g \rangle]$$

$$\leq [\dots [[[\overline{K}, \langle g \rangle \omega_{n-1}(\overline{P})], \langle g \rangle \omega_{n-2}(\overline{P})], \langle g \rangle \omega_{n-3}(\overline{P})], \dots, \langle g \rangle \omega_{0}(\overline{P})]$$

$$\leq \langle g \rangle \cap \overline{K} \leq \overline{M} \cap \overline{K} = 1.$$
(3.5)

If we regard g as a linear transformation over a field of characteristic p, through the conjugation action of g on \overline{K} , then from (3.5) and [7, Ch. IX, Lemma 1.8] we have $(g-1)^n = 0$, where n = p - 2 if p is a Fermat prime and a Sylow 2-subgroup of G is not abelian, and n = p - 1 otherwise. This contradicts step 6.

PROOF OF THEOREM B. Suppose that this theorem is false and let *G* be a counterexample of minimal order. From the minimal choice of *G*, it is easy to see that $O_{p'}(G) = 1$.

We claim that *G* is *p*-soluble and thus by [4, Ch. 6, Theorem 3.2] we have $C_G(O_p(G)) \leq O_p(G)$. Indeed, since *G* is not *p*-nilpotent, by Frobenius' *p*-nilpotence theorem, *P* has a nontrivial subgroup *S* such that $N_G(S)$ is not *p*-nilpotent. On the other hand, $N_G(P)$ is *p*-nilpotent by hypothesis. Therefore, we can find a nontrivial proper subgroup *Y* of *P* such that $N_G(Y)$ is not *p*-nilpotent but, for every *p*-subgroup *T* of *G* with Y < T, $N_G(T)$ is *p*-nilpotent. Write $A = N_G(Y)$. Suppose that A < G and let P_1 be a Sylow *p*-subgroup of *A*. Without loss of generality, we may assume that $P_1 \leq P$. Since Y < P, $N_P(Y) > Y$. It follows that $Y < P_1$ and thus $N_G(P_1)$ is *p*-nilpotent. Hence, $N_A(P_1) = A \cap N_G(P_1)$ is *p*-nilpotent. By Lemma 2.4, $\Omega(P_1) \leq P_1 \cap \Omega(P) \leq P_1 \cap \omega_{p-1}(P) \leq \omega_{p-1}(P_1)$. It then follows from the minimal choice of *G* that *A* is *p*-nilpotent, which contradicts the choice of *Y*. Hence, $A = N_G(Y) = G$ and *Y* is a nontrivial normal *p*-subgroup of *G*. Now, by the choice of *Y*, we can see that for any *p*-subgroup B/Y of P/Y, $N_{G/Y}(B/Y) = (N_G(B))/Y$ is *p*-nilpotent. It follows that G/Y is *p*-nilpotent by Frobenius' *p*-nilpotence theorem and thus *G* is *p*-soluble.

Clearly, *G* is not a *p*-group. Let *q* be a prime divisor of the order of *G* such that $q \neq p$. Since *G* is *p*-soluble, *G* has a Sylow *q*-subgroup *Q* such that *PQ* is a subgroup of *G* by [4, Ch. 6, Theorem 3.5]. Let K = PQ and let $H/O_p(K)$ be a minimal normal subgroup of $K/O_p(K)$. Then $H \trianglelefteq K$ and $H/O_p(K)$ is an abelian *q*-group. Let L = PH. Then *L* is a (p, q)-group whose Sylow *q*-subgroup is abelian. If *p* is a Fermat prime, then $p \neq 2$ and thus a Sylow 2-subgroup of *L* is abelian. Clearly, *P* is a Sylow *p*-subgroup of *L* and $\Omega(P) \le \omega_{p-1}(P)$ by assumption. Therefore, by Theorem A, the *p*-length of *L* is at most 1. Since $N_L(P) = N_G(P) \cap L$ is *p*-nilpotent, *L* is *p*-nilpotent by Lemma 2.6. On the other hand, we have $O_p(G) \le O_p(L)$ since $P \le L$. It follows that $O_{p'}(L) \le C_G(O_p(L)) \le C_G(O_p(G)) \le O_p(G)$ and thus $O_{p'}(L) = 1$. But then *L* must be a *p*-group since *L* is *p*-nilpotent. This contradicts the fact that *L* is a (p, q)-group and the proof is complete.

PROOF OF THEOREM C. Suppose that this theorem is false and let G be a counterexample of minimal order. By Theorem A, we may assume that wl(P) - (p - 3) > 1 when p is a Fermat prime and a Sylow 2-subgroup of G is not abelian, and assume that wl(P) - (p - 2) > 1 when p is not a Fermat prime or a Sylow 2-subgroup of G is abelian.

We argue that the *p*-length of any proper factor group of *G* is less then the *p*-length of *G*. In particular, since $l_p(G/\Phi(G)) = l_p(G)$ and $l_p(G/O_{p'}(G)) = l_p(G)$, we have $\Phi(G) = O_{p'}(G) = 1$. Suppose that this is not true and let *L* be a nontrivial normal subgroup of *G* such that $l_p(G/L) = l_p(G)$. By Lemma 2.4, $wl(PL/L) = wl(P/(P \cap L)) \le wl(P)$. First assume that *p* is a Fermat prime and a Sylow 2-subgroup of *G* is not abelian. If a Sylow 2-subgroup of G/L is not abelian, then the minimal choice of *G* implies that $l_p(G) = l_p(G/L) \le \max\{1, wl(PL/L) - (p - 3)\} \le \max\{1, wl(P) - (p - 3)\}$, which is a contradiction. If a Sylow 2-subgroup of G/L is abelian, then the minimal choice of *G* implies that $l_p(G) = l_p(G/L) \le \max\{1, wl(P) - (p - 2)\} \le \max\{1, wl(PL/L) - (p - 3)\} \le \max\{1, wl(PL/L) - (p - 3)\} \le \max\{1, wl(PL/L) - (p - 2)\} \le \max\{1, wl(PL/L) - (p - 3)\} \le \max\{1, wl(PL/L) - (p - 2)\} \le \max\{1, wl(PL/L) - (p - 2)\} \le \max\{1, wl(PL/L) - (p - 2)\} \le \max\{1, wl(P) - (p - 2)\}$, which is a Fermat prime or a Sylow 2-subgroup of *G/L* is abelian. Then either *p* is a Fermat prime or a Sylow 2-subgroup of *G/L* is abelian and thus the minimal choice of *G* implies that $l_p(G) = l_p(G/L) \le \max\{1, wl(PL/L) - (p - 2)\} \le \max\{1, wl(P) - (p - 2)\}$, which is again a contradiction.

Let *N* be a minimal normal subgroup *G*. Then $N \leq O_p(G)$ since *G* is *p*-soluble and $O_{p'}(G) = 1$. Suppose that *G* has another minimal normal subgroup, say N_1 . Without loss of generality, we may assume that $l_p(G/N) \geq l_p(G/N_1)$. Then by Lemma 2.5 $l_p(G) = l_p(G/(N \cap N_1)) = \max\{l_p(G/N), l_p(G/N_1)\} = l_p(G/N)$, which contradicts the conclusion of the above paragraph. Hence, *N* is the unique minimal normal subgroup of *G*.

Since $\Phi(G) = 1$, $O_p(G)$ is a direct product of minimal normal subgroups of *G*. It follows that $N = O_p(G)$ and thus $C_G(N) = N$ by [4, Ch. 6, Theorem 3.2]. Also, from $\Phi(G) = 1$, we know that *G* has a maximal subgroup *M* such that G = [N]M.

Let $P_1 = M \cap P$. Then $N \cap P_1 \le N \cap M = 1$ and thus $P_1 \cong P/N$. We now prove that $\omega(P) \cap P_1 = 1$. Indeed, suppose that $\omega(P) \cap P_1 \ne 1$ and pick an element $x \in \omega(P) \cap P_1$ of order p. Let y be any element of N. Since $x \in \omega(P)$, $\langle x \rangle \langle y \rangle$ is a subgroup of P. Clearly, $\langle x \rangle \langle y \rangle$ is abelian since $|\langle x \rangle \langle y \rangle| \le |\langle x \rangle| |\langle y \rangle| = p^2$. Hence, [x, y] = 1. It follows that $x \in C_G(N) \cap P_1 \le N \cap P_1 = 1$, which is a contradiction.

Since $\omega(P) \cap P_1 = 1$, $wl(P_1) = wl((P_1\omega(P))/\omega(P))$. By Lemma 2.4, we have $wl((P_1\omega(P))/\omega(P)) \le wl((P/\omega(P))$. Hence, $wl(P_1) \le wl((P/\omega(P)) = wl(P) - 1$.

We are now ready to derive a contradiction. Since $O_{p'}(G) = 1$, we have $N = O_p(G) = O_{p',p}(G)$ and thus $l_p(G/N) = l_p(G) - 1$. First assume that p is a Fermat prime and a Sylow 2-subgroup of G is not abelian. Then $p \neq 2$ and a Sylow 2-subgroup of G/N is not abelian. From the minimal choice of G, $(l_p(G) - 1) = l_p(G/N) \le \max\{1, wl(P/N) - (p - 3)\}$. On the other hand, since $wl(P/N) = wl(P_1) \le wl(P) - 1$, and wl(P) - (p - 3) > 1 by the assumptions in the first paragraph of the proof, we have $\max\{1, wl(P/N) - (p - 3)\} \le \max\{1, wl(P) - (p - 3)\} - 1$. It then follows that $(l_p(G) - 1) \le (\max\{1, wl(P) - (p - 3)\} - 1)$ and thus $l_p(G) \le wl(P) - (p - 3)$, which

contradicts the choice of G. Similarly, we can derive a contradiction when p is not a Fermat prime or a Sylow 2-subgroup of G is abelian. The proof of this theorem is complete.

References

- A. Ballester-Bolinches and M. C. Pedraza-Aguilera, 'On minimal subgroups of finite groups', *Acta Math. Hungar.* 73(4) (1996), 335–342.
- [2] K. Doerk and T. O. Hawkes, *Finite Soluble Groups*, Vol. 4 (Walter de Gruyter, Berlin–New York, 1992).
- [3] J. González-Sánchez and T. S. Weigel, 'Finite *p*-central groups of height *k*', *Israel J. Math.* **181** (2011), 125–143.
- [4] D. Gorenstein, *Finite Groups* (Chelsea, New York, 1980).
- [5] P. Hall and G. Higman, 'On the *p*-length of *p*-soluble groups and reduction theorems for Burnside's problem', *Proc. Lond. Math. Soc.* (3) **3**(1) (1956), 1–42.
- [6] B. Huppert, *Endliche Gruppen. I*, Die Grundlehren der Mathematischen Wissenschaften, 134 (Springer, Berlin, 1967).
- [7] B. Huppert and N. Blackburn, *Finite groups. II*, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 242 (Springer, Berlin, 1982).
- [8] N. Su and Y. Wang, 'On the *p*-length and the Wielandt length of a finite *p*-soluble group', Bull. Aust. Math. Soc. 88 (2013), 453–459.
- [9] N. Su and Y. Wang, 'On the intersection of the normalizers of the *F*-residuals of subgroups of a finite group', *Algebr. Represent. Theory* 17(2) (2014), 507–518.
- H. Wielandt, 'Über den normalisator der subnormalen untergruppen', Math. Z. 69(1) (1958), 463–465.

NING SU, School of Mathematics, Sun Yat-sen University, Guangzhou 510275, PR China e-mail: suning3@mail.sysu.edu.cn

YANMING WANG, Lingnan College and Mathematics Department, Sun Yat-sen University, Guangzhou 510275, PR China e-mail: stswym@mail.sysu.edu.cn