Canad. Math. Bull. Vol. 19 (3), 1976

A NOTE ON ABSOLUTELY PURE MODULES

ву EDGAR ENOCHS

Fieldhouse observed that any finitely presented left R-module P is projective with respect to pure exact sequences, i.e.

$$O \to M' \to M \xrightarrow{\epsilon} M'' \to O$$

can always be completed to a commutative diagram when the sequence is pure exact. A left *R*-module *A* is absolutely pure if it is a pure submodule of every module which contains it. Hence $\operatorname{Ext}_{R}^{1}(P, A) = 0$ if *P* is finitely presented and *A* is absolutely pure.

The object of this note is to show that finitely presented modules P are characterized among the finitely generated modules by the property that $\operatorname{Ext}_{R}^{1}(P, A) = 0$ for all absolutely pure modules A. If $0 \to S \to F \to P \to 0$ is exact where F is free on a finite number of generators then $\operatorname{Ext}_{R}^{1}(P, A) = 0$ if and only if

$$\begin{array}{c} S \to F \\ \downarrow \\ A \end{array}$$

can always be completed to a commutative diagram. P is finitely presented if and only if S is finitely generated. Hence it suffices to prove that if the diagram can always be completed to a commutative diagram then S must be finitely generated. This turns out to be true even if we drop the hypothesis that F be free and only require that it be finitely generated.

PROPOSITION. If $S \subset M$ is a submodule of a finitely generated module M, then if for every absolutely pure module A and any linear map $S \rightarrow A$

$$\begin{array}{c} S \to M \\ \downarrow \\ A^{L} \end{array}$$

can be completed to a commutative diagram, S is finitely generated.

Proof. Suppose S is not finitely generated. Let $X \subseteq S$ be a set of generators of least possible cardinality. Well order X so that X has no largest element and so that every section has cardinality smaller than the cardinality of X. For each

361

 $x \in X$ consider the module. $\sum_{y \leq x} Ry / \sum_{y \leq x} Ry$. Imbed this module in an injective module I_x . Extend the obvious linear map $\sum_{y \leq x} Ry \to I_x$ to a linear map $S \to I_x$. Let $G \subset \prod I_x$ consist of all families $(i_x)x \in X$ such that for some $z \in X$, $i_x = 0$ if $x \geq z$. Then G is the union of a collection of direct summands of $\prod_{x \in X} I_x$ which is filtering to the right; and hence G is a pure submodule. Since $\prod I_x$ is injective, G is absolutely pure. Also the image of S is contained in G.

By hypothesis the linear map $S \to G$ can be extended to a linear map $M \leftarrow G$. *M* is finitely generated and *G* is the union of the submodules $\prod_{y \le x} I_y$ for $x \in X$ so that the image of *M* would be contained in one of the submodules. But if the image of *S* were in $\prod_{y \le x} I_y$, *S* would be generated by the section of *X* determined by *x*. This contradicts the choice of *X* and the order imposed on it.

References

1. B. H. Maddox, Absolutely Pure Modules, Proc. Amer. Math. Soc. 18 (1967) 155-158.

2. C. Megibben, Absolutely Pure Modules, Proc. Amer. Math. Soc. 26 (1970) 561-566.

UNIVERSITY OF KENTUCKY LEXINGTON, KENTUCKY 40506 U.S.A.