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Abstract For a general autonomous planar polynomial differential system, it is difficult to find conditions
that are easy to verify and which guarantee global asymptotic stability, weakening the Markus–Yamabe
condition. In this paper, we provide three conditions that guarantee the global asymptotic stability
for polynomial differential systems of the form x′ = f1(x, y), y′ = f2(x, y), where f 1 has degree one,
f 2 has degree n ≥ 1 and has degree one in the variable y. As a consequence, we provide sufficient
conditions, weaker than the Markus–Yamabe conditions that guarantee the global asymptotic stability
for any generalized Liénard polynomial differential system of the form x′ = y, y′ = g1(x) + yg2(x) with
g1 and g2 polynomials of degrees n and m, respectively.
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1. Introduction and statement of the main results

Since the time of Liapunov, it has become evident that finding conditions that guarantee
global asymptotic stability of an equilibrium point in a differential system, even in two
dimensions, is a difficult problem. Liapunov’s approach is probably the most widespread
general method used, though constructing a Liapunov function usually requires ingenuity,
experience and some luck. For the two-dimensional autonomous system

x′ = f1(x, y), y′ = f2(x, y), (1)

with f = (f1, f2) : R2 → R2, we seek for a set of easily verifiable conditions on the
function f which can give global asymptotic stability. A result to this end was proven in
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Weakened markus–yamabe condition for planar polynomial differential systems 1111

1993, the so-called Markus–Yamabe conjecture in two dimensions (see [8, 10, 11]). This
result shows that the global asymptotic stability is obtained if the eigenvalues of the
Jacobian matrix Df(x, y) have negative real part for all (x, y) ∈ R2. We remark that the
Markus–Yamabe conjecture holds in the positive sense in R2 (see [8, 10, 11]), but it does
not hold in Rn with n > 2, see [1, 5].
The aim of this paper is to weaken the Markus–Yamabe condition and still obtain global

asymptotic stability for some classes of differential systems (1). The Markus–Yamabe con-
dition ensures the global asymptotic stability, provided that the differential system has a
unique equilibrium point, the trace of Df is negative (TrDf < 0) and the determinant of
Df is positive (detDf > 0) for all (x, y) ∈ R2. The trace condition guarantees that each
region of finite area shrinks under the flow, while the determinant has a priori no known
geometric interpretation. Several results (see [2, 9, 12, 13]) weaken the Markus–Yamabe
condition by replacing the determinant condition by other conditions. These new require-
ments on the equilibrium point seem unremovable because they are necessary for the
global asymptotic stability and they are easy to verify. Therefore, guided by the results
in [4] for polynomial differential systems of degrees 2 and 7 in the plane (we recall that
the degree of a polynomial map f is n if the components of f are polynomials of degree
at most n), we consider the following open problem.
Open problem. Assume that f : R2 → R2 is a polynomial map of degree n and satisfies
the following conditions:

(c1) Tr (Df) < 0 for all (x, y) ∈ R2;
(c2) The differential equation (1) has a unique equilibrium point p ∈ R2.
(c3) The equilibrium point p is locally asymptotically stable.

Which is the largest family of planar differentiable systems (1) for which the assump-
tions (c1)–(c3) imply that p is globally asymptotically stable.
In view of [4], any planar differential system (x, y)′ = f(x, y) with f being a polynomial

map of degree two satisfying conditions (c1)–(c3) imply globally asymptotical stability.
On the other hand, in view of [3], there are polynomial differential systems (x, y)′ =
f(x, y) of degree seven (i.e. f has degree seven) for which conditions (c1)–(c3) do not
imply globally asymptotical stability. In this paper, we will consider the polynomial
differential systems

x′ = a1,0x+ a0,1y, y′ =
n∑

j=1

bj,0x
j + y

m∑
i=0

bi,1x
i, (2)

with m,n ≥ 1.
The following is our main result.

Theorem 1. Every planar polynomial differential system (2) satisfying conditions
(c1)–(c3) is globally asymptotically stable.

As a corollary, we obtain the following result.
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Corollary 2. Any generalized Liénard polynomial differential system

x′ = y, y′ =
n∑

j=1

bj,0x
j + y

m∑
i=0

bi,1x
i,

with n,m integers satisfying conditions (c1)–(c3) is globally asymptotically stable.

Theorem 1 is proven in § 2. By taking a1,0 and a0,1 = 1, Corollary 2 follows.

2. Proof of Theorem 1

The case n = 1 is trivial, and the case n = 2 was proved in [4]. So in this paper, we
consider the case n ≥ 3.
The proof of Theorem 1 is divided into different cases. We first need Theorem 3

(see below) that provides the local phase portraits of semi-hyperbolic equilibrium points
for planar polynomial differential equations. See for instance [7, Theorem 2.19] for a proof
of Theorem 1.

Theorem 3. Let (0, 0) be an isolated equilibrium point of the planar polynomial
differential system

x′ = F (x, y), y′ = y +G(x, y),

with F and G being polynomials without constant and linear terms in the variables
x and y. Let y = g(x) be the solution of y′ = y + G(x, y) = 0 and assume that
F (x, g(x)) = amxm + · · · , where m ≥ 2 and am 6= 0. Then,

(i) If m is odd and am > 0, then (0, 0) is an unstable node.
(ii) If m is odd and am < 0, then (0, 0) is a saddle.
(iii) If m is even, then (0, 0) is a saddle node.

2.1. Case 1: a0,1 = 0

In this case, system (2) becomes

x′ = a1,0x = f1(x, y), y′ =
n∑

j=1

bj,0x
j + y

m∑
i=0

bi,1x
i = f2(x, y). (3)

The divergence of this system is

div = TrDf = a1,0 +
m∑
i=0

bi,1x
i.

Imposing the condition (c1), i.e., TrDf < 0 for all (x, y) ∈ R2, we must have that m
is even and

a1,0 + b0,1 < 0, a1,0 +
m∑
i=0

bi,1x
i = bm,1

m/2∏
i=1

(
(x− αi)

2 + β2
i

)
, bm,1 < 0,
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with αi, βi ∈ R and βi 6= 0. So, system (3) becomes

x′ = a1,0x, y′ = (b0,1 − a1,0)y +
n∑

j=1

bj,0x
j + ybm,1

m/2∏
i=1

(
(x− αi)

2 + β2
i

)
. (4)

Note that if b0,1 − a1,0 + bm,1

∏m/2
i=1 (α

2
i + β2

i ) = 0, then the line x = 0 is filled by

equilibria and so this is not possible. So b0,1 − a1,0 + bm,1

∏m/2
i=1 (α

2
i + β2

i ) 6= 0 and (0, 0)
is the unique equilibrium point of system (4) yielding that condition (c2) is satisfied.
On the other hand, the matrix Df(0, 0) has eigenvalues a1,0 and b0,1 − a1,0 +

bm,1

∏m/2
i=1 (α

2
i + β2

i ). Imposing condition (c3) and taking into account that b0,1 − a1,0 +

bm,1

∏m/2
i=1 (α

2
i +β2

i ) 6= 0, we must have a1,0 < 0 and b0,1−a1,0+ bm,1

∏m/2
i=1 (α

2
i +β2

i ) < 0,
in which case the origin is a stable node.
Now, we shall prove that the origin is globally asymptotically stable. Any solution

of Equation (4) with initial condition (x0, y0) is given by (x(y), y(t)) with x(t) = x0 e
a1,0t

and y(t) can be computed, thanks to the variation of constant method, that is, setting

a(t) = b0,1 − a1,0 + bm,1

m/2∏
i=1

(
(x0 e

a1,0t − αi)
2 + β2

i

)
,

we get,

y(t) = y0 e
∫ t
t0

a(s) ds
+

n∑
i=0

bi,0x
i
0

∫ t

t0

ea1,0iτe
∫ t
τ a(s) ds dτ, t ≥ t0.

Since a1,0 < 0 and x0e
a1,0t → 0 when t → +∞, there exists T > 0 such that for t ≥ T ,

we get

a(t) <
1

2

b0,1 − a1,0 + bm,1

m/2∏
j=0

(α2
j + β2

j )

 =: a∗ < 0.

Then, for t, τ ≥ T , we have 0 ≤ e
∫ t
τ a(s) ds ≤ ea

∗(t−τ) and ea1,0iτe
∫ t
τ a(s) ds ≤

ea1,0iτ+a∗(t−τ). Therefore, for t, t0 ≥ T and t ≥ t0,

0 ≤ |y(t)| ≤ |y0|ea
∗(t−t0) +

n∑
i=0

|bi,0xi
0|

|a1,0i− a∗|

(
ea1,0it − ea1,0it0+a∗(t−t0)

)
if a∗ 6= ia1,0 for any i = 0, 1, . . . , n, and

0 ≤|y(t)| ≤ |y0|ea
∗(t−t0) + |bi∗,0xi∗

0 |(t− t0)e
a∗t

+
n∑

i=0,i6=i∗

|bi,0xi
0|

|a1,0i− a∗|

(
ea1,0it − ea1,0it0+a∗(t−t0)

)
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if there exists i∗ ∈ {0, 1, . . . , n} such that a∗ = i∗a1,0.
In both cases using that a1,0 < 0 and a∗ < 0, we get that any solution (x(t), y(t))

with initial condition (x0, y0) at time t0 tends to the origin as t → +∞ and so the
origin is globally asymptotically stable. The proof of the theorem is proved in this
case.

2.2. Case 2: a0,1 6= 0

In this case, introducing the change of variables:

X = x, Y = a1,0x+ a0,1y,

Equation (2) writes

X ′ = Y, Y ′ = a1,0Y + a0,1

n∑
i=1

bi,0X
i + (Y − a1,0X)

m∑
i=0

bi,1X
i,

which also writes

x′ = y, y′ = a1,0y +

p∑
i=1

b̃i,0x
i + y

m∑
i=0

bi,1x
i, (5)

where in order to avoid cumbersome notation, we have renamed the variables (X, Y )
again as (x, y) and the new parameters b̃i,0 = a0,1bi,0 − a1,0bi−1,1 for i = 1, . . . , p,
where

p =

n, if n ≥ m+ 1 or a1,0 = 0,

m+ 1, if n ≤ m+ 1 and a1,0 6= 0.

Taking into account that

TrDf = a1,0 +
m∑
i=0

bi,1x
i

and imposing condition (c1), i.e. TrDf < 0 for all (x, y) ∈ R2, we must have that m is
even and

a1,0 + b0,1 < 0, a1,0 +
m∑
i=0

bi,1x
i = bm,1

m/2∏
i=1

(
(x− αi)

2 + β2
i

)
, bm,1 < 0,
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with αi, βi ∈ R and βi 6= 0. Hence, system (5) becomes

x′ = y,

y′ =

p∑
i=1

b̃i,0x
i + ybm,1

m/2∏
i=1

(
(x− αi)

2 + β2
i

)
= Ay +

p∑
i=1

b̃i,0x
i + y

bm,1

m/2∏
i=1

(
(x− αi)

2 + β2
i

)
−A

 ,

(6)

where A = bm,1

∏m/2
i=1 (α

2
i +β2

i ) and bm,1

∏m/2
i=1

(
(x−αi)

2+β2
i

)
−A has no constant terms.

Case 2.1: p even

Note that if b̃10 6= 0, then Equation (6) has always an equilibrium point besides the
origin, taking into account that

y′|y=0 = x

p−1∑
i=0

b̃i+1,0x
i,

with b̃1,0b̃p,0 6= 0 and p − 1 being odd (equation
∑p−1

i=0 b̃i+1,0x
i = 0 has always a real

solution different from x = 0). Therefore, in order that condition (c2) is fulfilled, we must
have b̃1,0 = 0. In this case, system (6) becomes

x′ = y, y′ = Ay +

p∑
i=2

b̃i,0x
i + y

bm,1

m/2∏
i=1

(
(x− αi)

2 + β2
i

)
−A

 . (7)

In this case, the origin is semi-hyperbolic, and in order to apply Theorem 3, we must
write Equation (7) in canonical Jordan form. For doing this, we apply the change of
variables X = x− Y/A, Y = y, and system (7) becomes

X ′ = − 1

A

 p∑
i=2

b̃i,0

(
X +

Y

A

)i

+ Y bm,1

m/2∏
i=1

((
X +

Y

A
− αi

)2

+ β2
i

) ,

Y ′ = AY +

p∑
i=2

b̃i,0

(
X +

Y

A

)i

+ Y

bm,1

m/2∏
i=1

((
X +

Y

A
− αi

)2

+ β2
i

)
−A

 .
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Now, after rescaling by the time variable ds = A dt, and using Newton’s binomial formula,
we obtain the system in canonical normal form:

X ′ = −
p∑

i=2

b̃i,0
A2

i∑
j=0

(
i

j

)
XjY i−j

Ai−j
− Y

bm,1

A2

m/2∏
i=1

((
X +

Y

A
− αi

)2

+ β2
i

)
− 1

A

 ,

Y ′ = Y +

p∑
i=2

b̃i,0
A

i∑
j=0

(
i

j

)
XjY i−j

Ai−j
+

Y

A

bm,1

m/2∏
i=1

((
X +

Y

A
− αi

)2

+ β2
i

)
−A

 ,

(8)

where now the prime means derivative in the new time s (note that since A < 0, the
original system in time t changes the direction of the orbits). Applying Theorem 3, we
get that

Y = −b̃2,0X
2/A+ · · · and then F (X,Y ) = −b̃2,0X

2/A2 + · · · ,

implying that the origin (0, 0) is a saddle-node, which is not possible. So in order that
condition (c3) is fulfilled, we must have b̃2,0 = 0, but then system (7) would be of the form

x′ = y, y′ = Ay + x3

p−3∑
i=0

b̃i+3,0x
i + y

bm,1

m/2∏
i=1

(
(x− αi)

2 + β2
i

)
−A

 ,

and the equation
∑p−3

i=0 b̃i+3,0x
i = 0 has a real solution different from x = 0 unless

b̃3,0 = 0, but then again applying Theorem 3, we get that

Y = −b̃4,0X
4/A+ · · · , and then F (X,Y ) = −b̃4,0X

4/A2 + · · · ,

implying that the origin (0, 0) is a saddle-node, which is not possible. Proceeding induc-
tively, we conclude that b̃i,0 = 0 for i ≥ 1, and in this case, taking into account that p is
even, we get that the origin is a saddle-node and condition (c3) is not satisfied. In short,
in this case, no system satisfies conditions (c1)–(c3) and there is nothing to prove.

Case 2.2: p odd

Note that if b̃10 6= 0, the matrix Df(0, 0) has eigenvalues:

λ± =
1

2

(
A±

√
A2 + 4b̃1,0

)
,

and imposing condition (c3), we must have b̃1,0 < 0, and since A < 0, the origin is a

stable node if A2 + 4b̃1,0 ≥ 0 and a stable focus if A2 + 4b̃1,0 < 0.

If b̃1,0 = 0, then we get system (7) and the origin is semi-hyperbolic. Proceeding as for

Case 2.1, we get that if b̃2,0 6= 0, then the origin is a saddle-node, which is not possible.
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So, b̃2,0 = 0. Now applying Theorem 3 to system (8), we get that Y = −b̃3,0X
3/A+ · · ·

and then F (X,Y ) = −b̃3,0X
3/A2 + · · · , implying that, if b̃3,0 6= 0, for the origin to be

a node, we must have b̃3,0 < 0. If b̃3,0 = 0, then in order that condition (c3) is fulfilled,

we must have b̃4,0 = 0 and so on. In short, in order that condition (c3) if fulfilled for

system (7), there must exists an odd integer i∗ ∈ {1, . . . , n} for which b̃i∗,0 < 0 and
system (7) writes

x′ = y, y′ = Ay + xi∗
p−i∗∑
i=0

b̃i+i∗,0x
i + y

bm,1

m/2∏
i=1

(
(x− αi)

2 + β2
i

)
−A

 .

Note that p−i∗ is even and that equation
∑p−i∗

i=0 b̃i+i∗,0x
i = 0 cannot have a real solution

(otherwise condition (c2) is not satisfied). Taking this into account, we can write

p−i∗∑
i=0

b̃i+i∗,0x
i = b̃p,0

(p−i∗)/2∏
k=1

(x2 − 2α̃kx+ (α̃2
k + β̃2

k)), for some α̃k, β̃k ∈ R with β̃k 6= 0.

In this case, the origin of system (6) is the unique equilibrium point of system (6) and
taking b̃i∗,0 < 0 and A < 0, all conditions (c1)–(c3) are satisfied. Note that

b̃i∗,0 = b̃p,0

(p−i∗)/2∏
k=1

(α2
k + β2

k),

and since b̃i∗,0 < 0, this implies that b̃p,0 < 0.
We recall that p is odd, m is even and bp,0 < 0. A study (see [6]) of such system in

a neighbourhood of the origin on the Poincaré sphere forms the backbone of the proof.
In this case system, (6) is a generalized Liénard differential system with p odd, m even,
p > m+ 1 and b̃p,0 < 0. We can indeed make the rescaling

x = αX, y = βY, t = γs, α =

(
b2m,1

b̃p,0

)1/(p−1−2m)

, γ = − 1

bm,1αm
, β =

α

γ
,

and system (6) becomes

X ′ = Y, Y ′ = AY+Xi∗
p−i∗−1∑

i=0

b̂i+i∗,0X
i−Xp+Y

b̂m,1

m/2∏
i=1

(
(X − α̂i)

2 + β̂2
i

)
−A

 ,

(9)

where b̂2i,1, b̂m,1, α̂i and β̂i are the new parameters, and the coefficient of Y Xm is −1.
Note that now system (9) is a generalized Liénard differential system with p odd, m

even, and the coefficient of Xp equal to −1. Using the differential system (3) of [6] with
ε = 1, m odd and n even (in the notation of [6]), we get that the infinity of system (9)
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must be one of the following five infinities described in the phase portraits of Figure 5(3),
Figure 6(1), Figure 7(3), Figure 8(6) and Figure 9(3).
From these previous figures, we get that either the infinity is a repeller (there are

orbits which come from infinity, but there are no orbits going to infinity) in Figure 5(3),
Figure 6(1) and Figure 7(3) or there are no orbits going or coming from infinity in
Figure 8(6) and Figure 9(3).
Note that since the divergence of the system is negative (condition (c1)), thanks to

Poincaré-Bendixson Theorem (see for instance [7, Theorem 7.10]), no periodic orbit exist
and conditions (c1)–(c3) together with the behaviour at infinity previously described
imply that the origin is globally asymptotically stable. This concludes the proof of
Theorem 1.
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