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Disturbance growth on a NACA0008 wing
subjected to free stream turbulence
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The stability of an incompressible boundary layer flow over a wing in the presence of
free stream turbulence (FST) has been investigated by means of direct numerical
simulations and compared with the linearised boundary layer equations. Four different
FST conditions have been considered, which are characterised by their turbulence
intensity levels and length scales. In all cases the perturbed flow develops into elongated
disturbances of high and low streamwise velocity inside the boundary layer, where their
spacing has been found to be strongly dependent on the scales of the incoming free
stream vorticity. The breakdown of these streaks into turbulent spots from local secondary
instabilities is also observed, presenting the same development as the ones reported in flat
plate experiments. The disturbance growth, characterised by its root mean squares value,
is found to depend not only on the turbulence level, but also on the FST length scales.
Particularly, higher disturbance growth is observed for our cases with larger length scales.
This behaviour is attributed to the preferred wavenumbers that can exhibit maximum
transient growth. We study this boundary layer preference by projection of the flow
fields at the leading edge onto optimal disturbances. Our results demonstrate that optimal
disturbance growth is the main cause of growth of disturbances on the wing boundary
layer.

Key words: boundary layer receptivity, shear-flow instability, transition to turbulence

1. Introduction

The understanding of the effect that free stream turbulence (FST) has on the boundary
layer is critical to develop transition prediction and control tools. When boundary layer
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flows are subjected to moderate or high levels of FST, the transition to turbulence scenario
differs from the classical route to turbulence, bypassing the amplification and breakdown
of Tollmien–Schlichting waves. A summary of the different stages that take part in this
so-called bypass transition (Morkovin 1985) can be found, for instance, in Zaki (2013).
The characteristic presence of three-dimensional fluctuations inside a Blasius boundary
layer under FST was first reported by Klebanoff (1971), whilst smoke flow visualisations
can be found in the experiments by Kendall (1985) and Alfredsson & Matsubara (2000).
In both works, disturbances with periodic spanwise modulation of streamwise velocity are
observed.

The broadband nature of the FST makes it an intricate problem, where the disturbance
conditions inside and outside the boundary layer are noticeably different. In the free
stream, disturbances are convected and decay in amplitude while forcing the boundary
layer. On the other hand, the response of the boundary layer is characterised by
algebraically growing low-frequency streaky structures of high and low streamwise
velocity. The two physical mechanisms involved in this process are the shear-sheltering
(Hunt & Durbin 1999), responsible for filtering the incoming high frequency vorticity,
and the lift-up effect (Landahl 1980), responsible for the streaks amplification through the
vertical displacement of momentum. Moreover, the experiments by Fransson, Matsubara
& Alfredsson (2005) suggest that receptivity of the boundary layer to free stream
disturbances takes place in a region around the leading edge to then grow due to the lift-up
effect.

In viscous flows, transient growth is the competition between the initial inviscid growth
mechanism together with the viscous damping (Schmid & Henningson 2001), where
the initial disturbance that experiences maximum transient growth takes the form of
streamwise counter-rotating vortices. Under the assumption of parallel flow, it is possible
to obtain this initial optimal disturbance by optimising over the eigenmodes of the
Orr–Sommerfeld operator (see e.g. Butler & Farrell 1992; Reddy & Henningson 1993).
For non-parallel flows, as is the case for the boundary layers flows, a different method was
proposed by Andersson, Berggren & Henningson (1999) and Luchini (2000), based on
techniques commonly used in optimal-control problems. The linear-optimal streaks theory
is robust and correctly predicts many of the main features observed in the experiments,
such as the preference for steady disturbances, streaks’ spacing and their shape and growth.

Despite the optimal disturbance theory’s robustness, it is often claimed that such optimal
disturbances have not been observed in experiments and might even not be present in the
flow. Part of these claims comes from the nature of the mathematical formulation of the
theory, where the initial disturbance is already in the boundary layer and the entrance
of the free stream vortices is not considered. One way to circumvent this shortcoming
in the study of the boundary layer response to free stream disturbances is by using the
theory developed by Goldstein, Leib & Cowley (1992), and more recently used in the
work of Marensi, Ricco & Wu (2017) for compressible boundary layers, where the entry
and evolution of the disturbances can be modelled. However, it is worth noting that in the
present work formulation, the receptivity process does not require any modelling since it
is fully resolved by direct numerical simulations (DNS).

The optimal disturbances trigger streaks that grow downstream and eventually decay,
unless nonlinear interactions take part. One of these nonlinear interactions outcomes is
the emergence of secondary instabilities. Flow visualisations by Matsubara & Alfredsson
(2001) showed that unsteady streaks experience high-frequency oscillations before they
breakdown into turbulent spots. Using Floquet theory, Andersson et al. (2001) analysed the
secondary instabilities of the optimal streaks, whereas Vaughan & Zaki (2011) extended
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this investigation to unsteady streaks, but referred to them as outer instabilities given
their relative position in the boundary layer. Andersson et al. (2001) concluded that the
sinuous instability mode was the most dangerous disturbance, and later on Brandt &
Henningson (2002) presented the first simulation of the breakdown originated by this
secondary instability. Zaki & Durbin (2005) also showed how the secondary instabilities
lead to breakdown, where only two modes in the free stream were needed to simulate the
whole transition scenario. Here, a low-frequency mode was prescribed to generate streaks,
while a high-frequency mode that cannot penetrate the boundary layer was included,
causing the secondary instability of the low-frequency mode.

Several factors influence the location of laminar-to-turbulent transition, and when
dealing with FST, the effect of the turbulence intensity is one of the most investigated
parameters. However, the available data that can be found in the literature suggests that the
length scale has an essential role in the growth of disturbances in the boundary layer, and
therefore in the transition location. One of the first reports of the effect that the integral
length scale has on the boundary layer was made by Hancock & Bradshaw (1981). They
found that the length scale was an important parameter for the skin friction, presenting
an empirical correlation considering both the turbulence intensity and the integral length
scale. Subsequently, Castro (1984) presented a modified version of this correlation for low
Reynolds numbers, where they also concluded that the increase in the integral length scale
has a smaller effect on the skin friction for low Reynolds numbers.

The effect that the integral length scale has on the transition location has been reported
by a number of researchers. Generally, the main conclusion is that an increase in the
integral length scale promotes transition. The numerical works by Brandt, Schlatter &
Henningson (2004), Ovchinnikov & Piomelli (2004) and Nagarajan, Lele & Ferziger
(2007) and the experimental results from Jonáš, Mazur & Uruba (2000) are examples
of this observation. There are two common explanations for the advance in transition
provoked by the increase in length scale. First, the lower decay rate of the FST in the
free stream makes it more effective in continuously feeding the streaks. And secondly, the
higher receptivity of the boundary layer to large-scale disturbances. However, the opposite
effect when increasing the integral length scale has also been observed. In particular, the
recent work by Fransson & Shahinfar (2020) reported for the first time a twofold effect of
the FST length scale on the transition location within the same experimental set-up. They
found that for lower turbulence levels the transition position decreased with larger integral
length scale, whereas for higher turbulence levels the transition position increased with
larger integral length scales.

The work of Fransson & Shahinfar (2020) was based on an experimental campaign
consisting of 42 different FST conditions, i.e. turbulence intensity and integral length
scale, over a flat plate. With this data, they also found that the average spanwise
streaks’ spacing correlates with the FST conditions at the leading edge, and proposed an
empirical estimation function for streaks’ spacing based on the FST parameters only. This
dependence of the streaks’ spacing on the FST scales is also consistent with the earlier
findings by Westin et al. (1998) and Fransson & Alfredsson (2003). So, even though
a preferred spanwise wavenumber exist and can be computed using optimal disturbance
theory, their results suggest that the scales induced in the boundary layer are dependent on
the scales of the incoming vorticity.

In the present work, we study the response of a wing boundary layer to FST where
pressure gradients are present. Direct numerical simulations, including the leading edge
and synthesising inlet FST for two integral length scales and two turbulence intensities, are
carried out. In previous flat-plate studies, the characteristic response of the boundary layer
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to free stream vorticity resembling the optimal shape has been reported by comparing
root mean squares (r.m.s.) values at downstream locations (see e.g. Andersson et al.
1999; Brandt et al. 2004; Nagarajan et al. 2007). Here, we perform a direct comparison
between the optimal perturbations and the DNS results by projecting the flow fields at the
leading edge onto the optimal initial perturbations. This procedure allows us to isolate the
component of the arbitrary disturbances that correspond to the optimal and compare not
only their shape but also their growth downstream.

The present paper is structured as follows. In § 2 the flow configuration and the
numerical methods are described. In § 3 we present the base flow calculations and the cases
under study, which are characterised by their turbulence intensity and turbulence length
scales. In § 4 the results from DNS and optimal theory are presented. Here, an explicit
comparison between Fourier modes from DNS and optimal disturbances is performed. A
discussion regarding the agreement between optimal theory and DNS is included in § 5.
The main conclusions are summarised in § 6.

2. Flow configuration and numerical methods

2.1. DNS
In the present work, the nonlinear flow simulations are performed considering the
Navier–Stokes equations for incompressible fluids which in the non-dimensional form read

∂u
∂t

+ (u · ∇)u = −∇p + 1
Re

∇2u + f , (2.1a)

∇ · u = 0. (2.1b)

Here u = (ux, uy, uz) represents the velocity vector in the Cartesian coordinates, p the
pressure and Re the Reynolds number based on the chord length and free stream velocity.
The equations are solved using Nek5000 (Fischer et al. 2008), an open-source code based
on the spectral element method (Patera 1984). The local velocity field approximation is
based on the Lagrange polynomial defined on Gauss–Lobatto–Legendre nodes, whereas
the pressure is discretised on the staggered Gauss–Legendre nodes. This discretisation
is referred to as a IPN − IPN−2 formulation (Maday & Patera 1989). The DNS in this
investigation have been carried out considering N = 10. The equations are marched in
time using a high-order operator-splitting method, where the viscous terms are solved
implicitly using a third-order backward-differentiation scheme while the convective terms
are computed explicitly via an extrapolation method.

2.1.1. Domain and boundary conditions
The flow configuration corresponds to a wing section with NACA0008 profile at a
chord-based Reynolds number of 5.33 × 105 and zero angle of attack. Since FST is the
type of perturbation studied in this work, the computational domain is three-dimensional.
Additionally, to reduce the computational costs, only a portion of the domain around
the leading edge is considered. A non-slip condition is prescribed on the wing surface,
Dirichlet on the outer boundaries and a stress-free condition

1
Re

(n · ∇u) − pn = −pan, (2.2)

on the outflow boundaries, with n the normal unitary vector and pa a prescribed pressure.
Periodicity is assumed along the spanwise direction z. The data used to prescribe
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Figure 1. The NACA0008 wing used in this work. Pseudocolours correspond to the streamwise velocity
obtained from the Fluent solution. A schematic of the domain used for the DNS is also included with the
corresponding boundary conditions.

the Dirichlet conditions and the pressure distribution at the outflows comes from a
two-dimensional DNS computation performed in ANSYS Fluent. The computational
domain and applied boundary conditions are presented in figure 1.

In order to synthesise the FST in our three-dimensional DNS, a number of Fourier
modes are superimposed at the inflow boundary (see § 2.1.2). A sponge region is also
included at the end of the domain to avoid numerically destabilising backflow, caused by
perturbations, at the outflow. The sponge region forces the instantaneous velocity to the
base flow by adding the forcing term

f (x, t) = λ(x) [uB(x) − u(x, t)] , (2.3)

with uB representing the base flow and λ(x) a non-negative function with support in the
sponge region only.

In figure 1, the two coordinate systems used in this study are also shown. First, the
Cartesian coordinate system (x, y, z) used in the DNS computations, where x and y are
parallel and perpendicular to the chord, respectively, while z follows the span direction.
And second, the curvilinear reference system (s, n, z) following the wing surface, where
s and n are the tangent and normal directions, respectively. In the following, the velocity
vector (u, v, w)T is the one corresponding to the curvilinear system of reference.

2.1.2. FST
The introduction of disturbances to the flow field is done by prescribing isotropic,
homogeneous FST at the inlet of the domain in front of the leading edge. The FST is
generated through a superposition of Fourier modes with random phase shift (Negi 2019;
Durović et al. 2021). The spectrum is discretised using 40 concentric shells with their
radius representing the magnitude k of the wavenumber vector, and where the amplitude
of the shells follows the von Kármán spectrum

E(k) = 2
3

1.606(kL)4

[1.350 + (kL)2]17/6 Lq, (2.4)

with E the shell energy, L the turbulent length scale and q the total turbulent kinetic energy.
For each shell, 40 points are randomly chosen, corresponding to a set of three-dimensional
wavenumber vectors with the same magnitude k, and therefore giving a total of 1600

944 A44-5

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

50
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.506


J.M. Faúndez Alarcón, P. Morra, A. Hanifi and D.S. Henningson

Fourier modes for the FST generation. The velocity integral length scale from the
longitudinal autocorrelation can then be computed from

L11 = 3π

4q

∫ ∞

0

E(k)
k

dk. (2.5)

2.2. Perturbation equations
In this work, we focus on the streaky structures characterised as algebraically growing
disturbances. In this section we introduce the linearised boundary layer equations (LBLE),
which are often used to study the evolution of streaks in the boundary layer flows. Here
we follow the work by Andersson et al. (1999) and Luchini (2000) and the details of
our formulation can be seen in Appendix A. Here, the time- and spanwise periodic
perturbations are written as

q(s, n, z, t) = q̂(s, n) exp(i(βz − ωt)), (2.6)

where q = (u, v, w, p)T, (s, n, z) represent the curvilinear coordinates along the wing
surface, β the spanwise wavenumber and ω the frequency. The ansatz (2.6) is then
introduced into the LBLE yielding to the equations for a given time and spanwise
Fourier mode. By adopting an input–output formulation q̂out = Aq̂0, we find the optimal
disturbance q̂0 that maximises the kinetic energy

E(q̂) = 1
2

∫ nmax

0
q̂H q̂ dn, (2.7)

at some downstream location of interest, where the superscript H indicates the complex
conjugate transpose. The optimisation problem is finally reduced to the generalised
eigenvalue problem

A∗Aq̂0 = λq̂0, (2.8)

where A∗ represents the adjoint of the evolution operator A. The optimal disturbance is
then defined as the eigenvector q̂0 associated with the leading eigenvalue λmax.

3. Case studies

A total of four cases were simulated where two levels of turbulence intensity Tu =
{0.5, 3.0}% and two turbulent length scales L = {0.0021, 0.01}, based on the chord length,
were prescribed. The small integral length scale was selected in order to have similar
conditions to the ones used in flat-plate simulations by Morra et al. (2019) and Brandt
et al. (2004). While the use of a large length scale was selected to have conditions that
are more likely to be found in experimental set-ups (see e.g. Fransson & Shahinfar 2020).
A snapshot of one of the simulations is presented in figure 2, where it can be seen the
different disturbance behaviour inside and outside the boundary layer. Because of the use
of different length scales, two different spectral element meshes were used, both structured
and generated to be orthogonal to the wing surface. A summary of the domain and the
FST generation conditions is presented in table 1. The three-dimensional meshes consist
of 264 000 and 92 400 spectral elements for the cases with L = 0.01 and L = 0.0021,
respectively. Note that the spanwise wavenumber resolution is defined by the extent of
the span, being different for both meshes.

Prior to the three-dimensional DNS calculations, the two-dimensional base flow
computation was performed in Nek5000 for the two domains under consideration and
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y

–1.5 × 10–2 –7.5 × 10–3 7.5 × 10–3 1.5 × 10–20

x
z

Figure 2. Snapshot of the flow field for the case (Tu = 0.5 % and L = 0.01). Pseudocolours represent the
streamwise velocity perturbation. The streaks are visualised by selecting the isovolumes u = ±0.01.

Case Tu L L11 theo. L11 calc. Lx × Ly × Lz

1 0.5 % 0.0021 0.00114 0.0016 0.4 × 0.023 × 0.02
2 3.0 % 0.0021 0.00114 0.0015 0.4 × 0.023 × 0.02
3 0.5 % 0.01 0.00588 0.0057 0.4 × 0.100 × 0.07
4 3.0 % 0.01 0.00588 0.0048 0.4 × 0.100 × 0.07

Table 1. Summary of geometrical and flow parameters of cases under study.

using the Fluent results to retrieve the boundary conditions. In figure 3(a) the pressure
distribution of the base flow for both meshes is shown, whereas figure 3(b) shows the
streamwise velocity profiles at several chord locations. Here, it is also included the velocity
profiles retrieved from the surface pressure distribution from DNS and by solving the
boundary layer equations (BLEs) (see e.g. Schlichting & Gersten 2003). A good agreement
for both quantities is observed, which indicates that the boundary layer in the DNS is well
resolved and the base flow is unaltered under the mesh variation. Note that the operators
in the LBLE in Appendix A are built considering the base flow obtained from the BLEs
instead of the DNS since it does not require an interpolation nor a change of coordinates,
leading to smoother derivatives.

The normalised energy distribution of the FST generation is presented in figure 4(a)
for both turbulent length scales. Figure 4(b) shows the turbulence intensity decay, Tu =√

(u2
rms + v2

rms + w2
rms)/3, with the chord for the four cases at different wall-normal

directions, showing that a a reasonable level of homogeneity is reached. Moreover, a
power-law fitting Tu ∝ (x − x0)

−c, with c = 0.6 (Fransson et al. 2005), is also included
for validation of the turbulence intensity decay. As expected, there is a faster decay in
turbulence intensity in the cases with the small turbulent scale.

Due to the periodicity along the span z, the integral length scale L11 is computed in front
of the leading edge using the longitudinal autocorrelation for the spanwise velocity w. The
theoretical value for L11, using (2.5), and the value computed from the autocorrelation are
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Figure 3. Base flow comparison of domains used in cases 1–2 and cases 3–4 presented in table 1. (a) Pressure
coefficient. (b) Streamwise velocity profiles U/U∞ at different chord locations. The blue line corresponds to
the boundary layer solver.
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Figure 4. (a) Energy distribution of the imposed FST as a function of the total wavenumber. (b) Turbulence
intensity along the chord for the four cases at four different wall-normal locations (n/δ∗

x=0.35 = 8, 10, 12, 14).
Normal position increases from grey to black. Markers, same as in (a), represent the power law fitting.

listed in table 1. For all cases the spanwise extension of the domain is greater than six
times the integral length scale, which has been shown to be a reasonable lower limit to
resolve the scales (O’Neill et al. 2004).

4. Results

We start our investigation by analysing the response of the boundary layer to the different
FST conditions from our DNS simulation. Then, the observed differences are explained
by means of optimal disturbance theory.

4.1. Statistics in the boundary layer
Statistical results are computed by taking the average of the flow fields in time and along
the periodic direction z. Similarly to most of the findings in flat plate experiments, the
increase in length scale in the FST results in a higher disturbance growth inside the
boundary layer, and actually leading to transition for the high Tu case. This can be seen in
figure 5, where the maximum urms along the wall-normal direction is shown for the four
cases. For both turbulence intensities it is possible to observe a difference in growth when
varying the turbulence length scale. The cases with small L = 0.0021 show a peak in the
urms close to the leading edge, and decaying disturbances downstream. While the cases
with large L = 0.01 keep growing with the chord, even for the low Tu simulation.
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Figure 5. (a) Maximum wall-normal urms inside the boundary layer; lines are normalised by their
corresponding turbulence intensity. (b) Skin friction coefficient along the chord.

The friction coefficient is also displayed in figure 5 since it is good measurement to
define the onset of transition. Only the black line, corresponding to the case with large L
and high Tu, shows an increase in the friction coefficient within our computational domain,
which is in agreement with the fast growth in the urms amplitude.

The wall-normal distribution of urms at different chord locations is displayed in figure 6
for the four cases. From these velocity profiles it is also possible to observe the decay and
growth of the disturbances for the cases with small and large length scale, respectively.
In particular, the peak of the profile in figure 6(d) gets closer to the wall at downstream
locations, which is also an indication of transition to turbulence. This behaviour was also
observed by Matsubara & Alfredsson (2001).

It is worth noting that despite the difference in the disturbance growth for the two
turbulence length scales, streaky structures are triggered inside the boundary layer in all
cases. An explanation for the different evolution of the streaks will be discussed later in
this paper.

4.2. Turbulent spots
In this section, we analyse the nucleation of turbulent spots for the case corresponding
to Tu = 3 % and L = 0.01, which is our only case where they can be found within the
domain. Here, we aim to show that the same transition mechanisms present in flat plate
configurations can be found in this geometry, where leading edge and pressure gradient
effects are present.

This analysis is done by tracing back turbulent spots in the saved snapshots of the whole
flow field. The generation and evolution of the studied turbulent spots follow the same
behaviour reported by several works that can be found in the literature for flat plates (see
e.g. Matsubara & Alfredsson 2001; Brandt et al. 2004; Nagarajan et al. 2007). From the
leading edge, laminar streaks are generated in the boundary layer and grow downstream
due to the lift-up effect. Localised perturbations evolve into patches of irregular motion,
travelling downstream as a wave packet while growing in the stream and spanwise
directions. In all turbulent spots studied in this case, they were initiated from a single
low-speed streak pushed to the edge of the boundary layer. An example of the generation
and evolution of a turbulent spot is displayed in figure 7, where figure 7(a,c,e,g,i,k) show
the spanwise velocity perturbation while figure 7(b,d, f ,h,j,l) show the streamwise velocity
perturbation, in wall parallel and wall-normal views, respectively. This time sequence
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Figure 6. Wall-normal distribution of urms. Streamwise position increases from blue to red.

illustrates the main features described above and is a good representation of the evolution
of the turbulent spots found in our simulations.

The visual inspection of the flow fields during the early stages of the turbulent spots
generation shows a sinuous-like type of secondary instabilities (see Brandt & Henningson
(2002) for reference), while no signs of varicose-like instability were found. Hence, we
will focus our attention in the generation of the sinuous-like breakdown. In figure 8 are
shown snapshots at the same time instant as in figure 7(c,d), when the turbulent spot is not
fully formed yet. The wall-parallel close-up view of the streaks in figure 8(b) shows how
a low-speed streak exhibits high-frequency spanwise oscillations. As it will be discussed
in the next section, high-frequency perturbations are damped in the boundary layer and
therefore not effective in creating streaky structures, while the secondary instability being
initiated from a nonlinear interaction with high-frequency modes in the free stream. The
wall-normal close-up view in figure 8(c) shows the formation of a streamwise vortex
at only one side of the low-speed streak. It can also be observed how the shear in the
wall-normal and spanwise direction is larger close to the edge of the boundary layer.

4.3. Receptivity
The response of the boundary layer to the FST is analysed by means of a Fourier transform
along the periodic direction z and time. Due to the need for long time series, frequency
spectra are not commonly computed from DNS data. However, our integration time is long
enough to achieve convergence (see Appendix B) and sheds some light on the response of
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Figure 7. Evolution of turbulent spot generation in the boundary layer, with time increasing from (a,b) to
(k,l). (a,c,e,g,i,k) Wall parallel view of the spanwise velocity perturbation, where dark and light areas represent
negative and positive values, respectively. Light blue arrow follows the nucleation and development of the
turbulent spot, where it can be noted its size increase along the span and streamwise directions. (b,d, f,h,j,l) Wall
normal view of the streamwise velocity perturbation, where blue and red areas represent negative and positive
values, respectively. Here, it can be noted how the turbulent spot is initiated from a low-speed streak lifted
towards the edge of the boundary layer. The solid line corresponds to 3δ∗ and the vectors to the normal and
streamwise velocities. Dash–dotted lines correspond to the views of the adjacent plot.

the boundary layer to FST. Moreover, and given the finite domain size and periodicity
along the span, we have discrete wavenumbers that are defined by the span length for the
respective cases.

Figure 9 shows the spectra of the streamwise velocity perturbation, as in (2.6),
corresponding to the cases with L = 0.0021 at several chord locations and at a wall-normal
location equal to n = 1.5δ∗, with δ∗ being the local displacement thickness. Similarly,
figure 10 presents the spectra for the cases with L = 0.01. As was shown in figure 4(a),
the FST spectrum for the cases with larger length scale have a higher energy content
for lower total-wavenumbers. This difference in the FST boundary condition, together
with the fact that the spanwise wavenumber resolution is dictated by the span length,
results in a spectrum with more energetic modes at lower frequencies/wavenumbers for
the cases corresponding to L = 0.01 compared with the cases with L = 0.0021. For this
reason, the range of the contour plots in figure 10 is reduced to 60 % in both axis with
respect to figure 9 for better visualisation. The numbers in the contour plots are labels for
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Figure 8. Nucleation of a turbulent spot from a secondary instability. Snapshots correspond to the same time
instant in figure 7(c,d). (a) Wall parallel (top) and wall-normal (bottom) views. Colours show the streamwise
perturbation, solid line represents 3δ∗, and the dash–dotted line the view in the adjacent plot. (b) Close-up
wall-normal view of the streak. Vectors represent the stream and spanwise velocity perturbations. (c) Normal
wall view at x = 0.15.

specific Fourier modes that will be analysed later in this work. An important characteristic
of these Fourier modes is that they are part of the synthesised FST spectrum displayed
in figure 4(a). The cases with low turbulence intensity, Tu = 0.5 %, in figures 9 and 10
present a linear development of the incoming free stream disturbances, where the peaks
in the spectra inside the boundary layer are part of the inlet FST boundary condition,
while no other significant frequencies appear. Moreover, an extra case with Tu = 0.25 %
and L = 0.01 was run to confirm the linear receptivity of the boundary layer to low
FST intensities. The results are presented in figure 11, showing the development of the
wall-normal maximum urms along the chord for Tu = 0.5 % and Tu = 0.25 % with and
without normalisation by the turbulence intensity. When the curves are normalised by Tu
they collapse together with a maximum relative error of ≈3 %.

On the other hand, when the turbulence intensity is increased, new frequencies, that were
not present in the FST, appear inside the boundary layer due to nonlinear interactions.
However, and especially for the low wavenumbers, the principal peaks are also coming
from the FST, indicating that the linear receptivity mechanism (Brandt, Henningson &
Ponziani 2002) is still present and important for the high turbulence cases.

The results herein support the findings reported by Westin et al. (1998), and more
recently in the investigation of Fransson & Shahinfar (2020), that the scales of the FST play
an important role on the scale of the induced streaks. In particular, for our low turbulence
intensity simulations the scale of the streaks is already set in the incoming free stream
vorticity, and the differences in the growth that these Fourier modes experience will be
explained in the next section by means of optimal disturbances.

However, when the turbulence intensity increases and given the appearance of nonlinear
interactions, a definite statement is harder to make. Brandt et al. (2002) pointed out that
linear and nonlinear mechanisms could indeed cooperate and interact, and the dominance
of one or the other would depend on the amount of energy in the low-frequency part
of the spectrum. This seems to be consistent with our results for the cases with high
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Figure 9. Spectrum for cases with L = 0.0021 at different chord locations and a wall-normal distance of 1.5δ∗.
The colours correspond to the streamwise velocity perturbation. Note that both axes in the contour plots in
figure 10 are reduced to 60 % with respect to the ones presented in this figure for better visualisation. Here
(a) Tu = 0.5 % and (b) Tu = 3 %.
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Figure 10. Spectrum for cases with L = 0.01 at different chord locations and a wall-normal distance of 1.5δ∗.
The colours correspond to the streamwise velocity perturbation. Note that both axes in the contour plots are
reduced to 60 % of the ones in figure 9 for better visualisation. Here (a) Tu = 0.5 % and (b) Tu = 3 %.

turbulence intensity. Here, the case with L = 0.01, having higher energy content in low
frequencies, is the only case that undergoes transition within our domain. Moreover, as it
will be shown in the next section, in this case the Fourier modes show a higher deviation
from linear theory.

4.4. Optimal growth
We now study the optimal transient growth of disturbances by solving the LBLE
(Andersson et al. 1999; Luchini 2000) and following the method described in Appendix A.
Our main goal here is to explain the observed differences in growth when changing the
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Figure 12. Contour plots of maximum transient growth for selected frequencies. The dashed line corresponds
to the wavenumber β with maximum transient growth at the given chord location. Here (a) ω = 0, (b) ω = 10
and (c) ω = 20.

turbulence length scale. As mentioned before, the base flow is obtained from the BLEs
instead of the two-dimensional DNS simulations. The pressure distribution at the airfoil
surface is retrieved from the DNS base flow calculations and used to compute the velocity
field, as it was shown in figure 3(b). This kind of approach, instead of using the whole DNS
base flow, has been proved to give good results in previous works (see e.g. Tempelmann
et al. 2012) and also in the present investigation.

We are interested in understanding the dependency of the optimal growth on the
spanwise wavenumber β and the frequency ω. Thus, the optimisation algorithm described
in Appendix A is performed for different values of β and ω by finding the optimal
growth at several final locations xf . A summary of the results are presented in the contour
plots of figure 12, where the isolines represent the envelope of the maximum |û(β)| in
the wall-normal direction and the dashed lines the wavenumber experiencing maximum
transient growth at each x location. These contour plots were generated considering the
initial location for the optimal perturbation equal to x0 = 0.005. Different x0 may give
higher growth rates, as was shown in Levin & Henningson (2003). However, in the present
study we are mainly interested in the growth variations with respect to the frequency and
wavenumber. And despite the dependency on the initial location x0, the general trend
remains unchanged and the same conclusions can be drawn.

By comparing the contour plots for different frequencies in figure 12, it can be
noted that low-wavenumber and low-frequency waves can experience higher transient
growth. In particular, maximum transient growth within our domain is attained for steady
streaks (ω = 0), and as can be seen in the sequence of contour plots in figure 12, this
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growth decreases once the streak frequency increases. This is also consistent with the
behaviour of optimal perturbations over flat plates (Andersson et al. 1999; Luchini 2000)
and the coupling coefficient (Zaki & Durbin 2005), which describes the effectiveness
of a particular mode to penetrate the boundary layer and generate streaks. The effect
of increasing frequency in figure 12 is interesting, even though it overall reduces the
disturbance growth, its effect is larger for the low wavenumber region. For these larger
structures, the growth is significantly decreased downstream, while high wavenumbers
can still experience their high growth close to the leading edge with little variation.
Consequently, the wavenumber experiencing maximum growth at downstream locations
shifts towards higher values when the frequency is increased, as it can be noticed by
comparing the dashed lines in the contour plots of figure 12.

The preference of the boundary layer to low frequencies and wavenumbers is consistent
with the differences in growth observed in figure 5 for the urms, where our synthesised
inlet spectrum with larger turbulence length scale L contains lower wavenumbers and
frequencies. Evidence of this behaviour can also be found, for instance, in Jacobs &
Durbin (2001) and Westin et al. (1998). However, it has to be noted that the synthesised
spectrum from Jacobs & Durbin (2001) did not contain the low frequencies that
appeared downstream in their simulation, which were attributed to the result of nonlinear
interactions.

The fact that large wavenumbers can experience a significant growth close to the leading
edge almost independent of their frequency can qualitatively explain some features of our
DNS results presented in the previous section (see figure 5). There, our cases with small
L, having their energy distributed over higher frequencies and wavenumbers, showed a
significant growth close to the leading edge to then decay. A similar observation was made
by Brandt et al. (2004) for their case with smallest scales (cf. figure 4a). Their conjecture
was that the boundary layer has a high receptivity for high frequencies close to the leading
edge, but the growth cannot be sustained because of the faster decay of the FST for small
scales, and therefore is less effective in continuously forcing the disturbances inside the
boundary layer (Westin et al. 1998). However, the optimal disturbance computation does
not consider any effect from the continuous forcing while still being able to qualitatively
explain the trend for the different scales observed in our simulations. A quantitative
comparison between optimal growth and our DNS results will be discussed in the next
section to strengthen this point.

4.4.1. Comparison with DNS
In the previous section we showed a qualitative agreement between optimal growth and
our DNS results. In this section we move to a quantitative comparison by comparing the
growth of the spatiotemporal Fourier modes (ω, β) with the linear theory and the optimal
growth.

The comparison with linear theory is carried out by extracting the DNS disturbance at
some location x0 close to the leading edge, and using this profile as an initial condition
in the direct LBLE calculation for the Fourier modes of interest. In order to satisfy the
boundary condition in the free stream, the velocity profiles are damped using a step
function of the form

S(n) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, n ≥ nmax

1
/[

1 + exp
(

nmax − ndm

nmax − n
+ nmax − ndm

ndm − n

)]
, ndm < n < nmax

1, n ≤ ndm

(4.1)
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where nmax corresponds to the maximum wall-normal coordinate and ndm the wall-normal
distance from where the damping is performed. The results presented below were
generated considering ndm ≈ 90δ∗ and ndm ≈ 180δ∗ for the cases with small and large
turbulent length scale L, respectively. Note that smaller wavenumbers have to be damped
at higher distances from the wall to achieve convergence of the linear solution, which is
consistent with the fact that optimal disturbances take longer to decay to zero in the free
stream when decreasing the wavenumber.

The comparison with optimal growth is performed by extracting the DNS Fourier modes
(ω, β) close to the leading edge, but in this case the mode is projected onto the optimal
disturbance in order to obtain the energy that corresponds to the optimal and thereby used
as scaling factor. The steps for the projection for a given (ω, β) are listed below.

(i) Select an initial location x0. At this position the DNS profile is extracted and denoted
as q̂DNS in the following. This position is also used as the location of the optimal
initial disturbance.

(ii) Select a final location xf . At this position the maximum transient growth is
maximised by finding the optimal initial disturbance q̂0.

(iii) Project the DNS profile q̂DNS over the optimal perturbation q̂0. This is done by using
the inner product associated with the norm in the space of disturbance (see (2.7))
and reads

af = 〈q̂0, q̂DNS〉 = 1
2

∫
q̂H

0 q̂DNS dn. (4.2)

The subscript f is included to emphasise that the projection is performed for the
initial optimal disturbance that maximises the energy at xf .

(iv) Scale the optimal growth. Using (2.7), the optimal disturbances are computed
considering unitary initial energy E(q̂0) = 1. Hence, and to properly compare with
DNS, the square root of the energy corresponding to the projection over the optimal
is used as scaling factor

Eproj = 〈af q̂0, af q̂0〉 (4.3a)

= |af |2E(q̂0) (4.3b)

= |af |2. (4.3c)

(v) The process is repeated from step (ii) for different xf locations.

Figure 13 illustrates how this projection is performed. Figure 13(a) show the velocity
profiles at x0 for the DNS and the optimal without and with scaling. Note that the optimal
initial disturbance correspond to a single optimal response at xf . Figure 13(b,c) show the
comparison between DNS and the scaled optimal growth. The yellow lines correspond
to the DNS results, while the grey lines to the scaled optimal growth. The stars in the
|û|max plot represent not only the velocity peak, but also the location xf where the transient
growth was maximised for each grey line.

In the study of Andersson et al. (1999), it was shown how the shape of experimental
urms profiles follow the shape of the optimal response. Similarly, shape comparisons with
numerical experiments can be found, for instance, in Brandt et al. (2004) and Nagarajan
et al. (2007). In the present work, and by looking at the outputs in figure 13, it can be
noticed how the projection over the optimal not only recovers the shape of the response as
a streak, but also its amplitude. Obviously, in this case we are comparing a specific mode
instead of the total urms, but as it was shown by Luchini (2000), the shape of the optimal
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Figure 13. Example of the projection over the optimal disturbance for Fourier mode labelled as 3 in figure 9.
(a) Input from DNS and the unscaled and scaled optimal disturbance at x0. (b) Response at xf from DNS and
scaled optimal. (c) Development of the maximum streamwise perturbation with the chord.

response is very insensitive to wavenumber variations. Therefore, it is not surprising that
the urms, which is the combination of all modes, resembles the optimal shape too.

The optimisation algorithm requires a fixed final location xf where maximum growth
is sought. This is represented by the different grey lines in figure 13(c). It is not until we
perform the projection for optimal corresponding to several chord locations that we can
retrieve the development of the Fourier mode along the chord, which evidences how, at
each chord location, an arbitrary disturbance will grow according to its projection onto the
optimal.

The same procedure described above was performed for different (ω, β) pairs for our
four cases. The modes were selected according to their amplitude inside the boundary
layer in the low turbulence intensity cases. In figures 9 and 10, the Fourier modes to be
analysed with their respective numbering are shown. Note that a fixed x0 has to be specified
to perform the projection, even when receptivity is a non-local process. For this reason,
different initial positions x0 were considered in a distance of 1 %–4 % of the chord from
the leading edge. Some of these results are included in Appendix C. Varying the initial
optimal disturbance location within this range did not change significantly the optimal
growth, showing the following analysis being independent of our arbitrary choice for x0.

Figures 14 and 15 show the comparison of the Fourier modes growth from the DNS
calculations, linear theory and projection over the optimal, for the cases with small and
large turbulent scales, respectively. The low turbulence intensity cases present an excellent
agreement between DNS results and linear theory. And since we are extracting the velocity
profile close to the leading edge, this close agreement indicates that receptivity to FST
takes place in this region and subsequently evolve due to linear mechanism. When the
turbulence intensity is increased to 3 %, there is still a remarkable similarity between the
DNS and linear theory growth, particularly for the case with L = 0.0021, in figure 14, and
in the initial section of the wing for the case with L = 0.01, in figure 15. For the latter
case, a comparison with linear theory after x ≈ 0.15 is not relevant due to the presence
already of turbulent spots at those chord locations (see figure 7). Here, and for most of
these Fourier modes, linear theory overpredicts their growth, showing that energy is being
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Figure 14. Growth of different modes (ω, β) corresponding to L = 0.0021. Colour lines represent DNS data,
dashed lines projection over the optimal and solid black lines LBLE results using DNS profile as initial
condition. See figure 9 for modes numbering. Here (a) Tu = 0.5 % and (b) Tu = 3.0 %.

transferred from these modes. This poorer agreement between linear theory and DNS for
the high turbulence intensity cases is not surprising given the results shown in figures 9
and 10, where was already depicted the nonlinear response of the boundary layer to the
incoming FST.

The dashed lines in figures 14 and 15 correspond to the scaled optimal growth described
above and sketched in figure 13, but here only the values at the final optimised locations are
shown (the stars in figure 13). From these plots it can be seen that for the low turbulence
intensity cases there is a good agreement between the projection over the optimal and
the DNS results. In particular, the growth of all Fourier modes for the case with small
L in figure 14 is properly captured in terms of their evolution and amplitude along the
chord. This is true despite the distinct evolution of the modes, and even when in some
cases the only change is the frequency for a given wavenumber, as is the case for modes
{1, 2, 5, 6}, {3, 7} and {4, 8}. For the case with large L in figure 15, there is also a good
agreement for most of their modes, being also able to capture the different evolution
that the modes undergo. However, a bigger mismatch for the lowest wavenumber β ≈ 90
(modes {1, 2, 6, 7}) can also be observed, especially the over-prediction for mode 7.

In figures 14 and 15 the optimal growth for the cases with high turbulence intensity
is also reported. For these cases, there is a more pronounced difference between optimal
growth and the DNS Fourier modes, especially for the case with larger L (see figure 15).
However, these differences are expected given the already mentioned mismatch with
respect to linear theory.
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Figure 15. Growth of different modes (ω, β) corresponding to L = 0.01. Colour lines represent DNS data,
dashed lines projection over the optimal and solid black lines LBLE results using DNS profile as initial
condition. See figure 10 for modes numbering. Here (a) Tu = 0.5 % and (b) Tu = 3.0 %.

Optimal disturbances are obtained from an initial-value problem describing the
downstream evolution of an initial perturbation, without including the effect of any type
of continuous forcing of the free stream on the boundary layer. Therefore, the good
agreement between optimal theory and DNS implies that the differences in perturbation
growth observed in the DNS for different integral length scales are not due to the FST
decay rate, but to the apparent property of the boundary layer in amplifying individual
frequencies and wavenumbers. Furthermore, this amplification, for a given arbitrary initial
disturbance, will be given by its projection onto the optimal.

5. Discussion

In this section we address some of the questions that have arisen due to the close agreement
between the optimal perturbation computations and DNS for most of the Fourier modes,
and the mismatch of some of them.

5.1. Optimal growth from arbitrary perturbations
A possible explanation for the good agreement between DNS results and optimal
perturbations is that the initial perturbations at the leading edge are already very close
to the optimal. To examine this possibility we need to quantify how much of the arbitrary
DNS initial perturbations correspond to the optimal disturbances.

This is measured as the ratio between the projection coefficient af , given in (4.2), and
the energy of the DNS profile at x0. This ratio is calculated for each pair (ω, β) and for the
optimal initial disturbance that maximises the energy at a given xf :

E(ω,β)(xf ) = |af (ω, β)|√
EDNS(ω, β)

, (5.1)
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where EDNS is computed using the norm defined in (2.7) and nmax is chosen as
the wall-normal location where the optimal initial disturbance satisfies qH

0 q0|nmax ≈ 0.
This is because the FST is still present as n → ∞ and we want to account solely for the part
of the disturbance that can be projected onto the optimal. The computation of this quantity
is justified by the orthogonality of the right singular vectors of the operator A in (2.8).
Here, the energy of the singular vectors is additive, while the first right singular vector
corresponds to the optimal disturbance when the singular values are sorted in decreasing
order.

The ratio in (5.1) is then computed for every Fourier mode and projection, obtaining
values ranging within 10 %–50 % while no correlation between the agreement with DNS
and the quantity E was found. This result thus rules out the hypothesis that the Fourier
modes are already optimal, and the good correspondence between optimal and DNS seems
to be independent of how ‘similar’ they are. Moreover, it confirms that the optimal is the
main component of the disturbance that leads to transient growth, something that was
already pointed out in the early optimal disturbance investigations and in concordance with
the fast convergence of the power iterations found here and previous works (Andersson
et al. 1999; Luchini 2000; Levin & Henningson 2003). In fact, Luchini (2000) showed
that the second singular value of the evolution operator was already around three orders of
magnitude smaller than the first one.

From the considerations mentioned above, it is then not surprising that the shape of
the boundary layer response to randomly synthesised or general grid turbulence tends to
the optimal even when optimal perturbations have never been observed in experiments.
However, there is a natural follow-up question to this claim. If the growth is dictated by
the optimal, why the big mismatch for mode 7 in figure 15? In the following section, we
summarise our efforts to find the cause of this discrepancy and what we think is the most
likely reason.

5.2. The effect of the streamwise perturbation
There are a few uncertainties in our procedure that can be sources of error and account
for the small deviation of the linear and optimal theory from the DNS for the low Tu
cases. First, all our DNS simulations are nonlinear, so even though we can categorise
them as linear, this is an a posteriori result and the fact that small nonlinearities can
still be present is unavoidable. Secondly, the Fourier modes were computed by taking
the Fourier transform of a non-periodic signal in time, which will always cause spectral
leakage. However, we show in Appendix B that a good level of convergence is achieved
with the length of our signal, and the dominant frequencies are captured independent of
the windowing function. Finally, to perform the projection we are forced to select a specific
initial location, even when receptivity is a non-local phenomenon. The influence of this
arbitrary x0 choice was evaluated but its effect was found to be small, as is shown in
Appendix C. With that being said, the optimal growth of the Fourier mode labelled as 7 in
figure 15 has consistently mismatched the DNS results, independent of the chosen initial
location x0, length of the time series, windowing function, and despite the close agreement
with linear theory.

After discarding the aforementioned sources of error that could be responsible for the
clear mismatch, we can conjecture that the most likely cause for the disagreement is the
large initial streamwise velocity u that this particular Fourier mode has, as it can be seen
in figure 15 around x = 0. This large streamwise velocity makes the initial perturbation
very different from the distinctive optimal perturbation shape, which takes the form of a
counter-rotating streamwise vortex. Besides, this explanation seems to be consistent with
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the observation made in by Luchini (2000) and the vortex receptivity study by Schrader
et al. (2010).

Luchini (2000) (cf. Appendix B) addresses the question of whether disturbances with
streamwise velocity component u can be amplified or not. He concludes that if there is
a coupling between the initial streamwise velocity perturbation and initial streamwise
vorticity perturbation, then amplification of u is possible. However, he also concludes that
damped perturbations exist and they are the combination of a u profile and a suitable
streamwise vortex, which can also be seen as a rotated wall-normal vorticity. Similarly,
an optimal streamwise vortex can be rotated, by the effect of the streamwise velocity
perturbation, and still experience its optimal growth.

In our simulations, the disturbances are generated to be randomly oriented as long as
continuity is satisfied. Therefore, the good agreement between optimal and DNS for most
of the Fourier modes seems, at first glance, unlikely. According to Luchini (2000), this can
be explained by the high probability of a random perturbation to be oriented in a way that
it contains a significant fraction of the streamwise vorticity. Moreover, the leading edge is
able to convert the normal incoming vorticity into streamwise vorticity through stretching
and tilting (Goldstein et al. 1992). And as it was shown by Schrader et al. (2010), this
conversion is more effective for large wavenumbers, which are actually the Fourier modes
in our simulations where the best agreement can be found. On the other hand, the mode that
has been labelled as 7 in figure 15 corresponds to the lowest spanwise wavenumber that can
be solved in our domain. Therefore, the leading edge is not as effective in converting its
high streamwise velocity amplitude into a streamwise vortex. Although not shown here,
the modal content of the vorticity in front of the leading-edge was analysed, showing a
dominant normal component for mode 7 and in consistency with its large initial streamwise
velocity perturbation.

6. Conclusions

In the present work, we have investigated the receptivity and response of the boundary
layer over a wing profile to FST by means of DNS. In particular, four different FST
conditions have been studied, considering two different length scales under low and high
turbulence intensities. In all studied cases, the disturbances inside the boundary layer
develop into streaky structures of alternating high and low streamwise velocity, with only
one of the cases showing signs of the onset to transition within our computational domain.
The development of the disturbances inside the boundary layer was compared with linear
theory and non-modal optimal disturbances in the high Reynolds limit.

The cases with low turbulence intensity presented a linear receptivity to the incoming
FST. In particular, the amplitude of Fourier modes inside the boundary layer, for most
cases, can be predicted by the projection of the arbitrary disturbance over the optimal
ones. This indicates that the optimal transient growth is the main mechanism behind the
disturbance evolution observed in our simulations. To the best of the authors’ knowledge,
this is the first time an explicit comparison between optimal and randomly generated
disturbances is performed, strengthening the relevance of the optimal disturbance in the
study of FST-induced perturbations.

Moreover, the study of the Fourier modes growth supports the thesis that the scales of
the free stream vorticity play a fundamental role in the induced streaks. This does not
contradict the existence of preferred spanwise wavenumbers that can exhibit maximum
transient growth; they exist and can be determined by optimal disturbance theory. In fact,
the existence of preferred spanwise wavenumbers explains the observed differences in
our cases when the length scale was changed. Our results also suggest that receptivity
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to low levels of FST takes place in a region around the leading edge and the generated
perturbations then grow according to their projection over the optimal, without considering
any continuous forcing from FST. However, when the turbulence intensity increases,
nonlinear interactions become important and the growth of Fourier modes deviates from
linear theory.

Finally, the transition to turbulence was studied by tracing back the nucleation of
turbulent spots from the visual inspection of the saved flow fields. Our case where
the onset of transition was observed showed the same turbulent spot development that
has previously been reported in several flat plate experiments and simulations. Here, a
secondary instability was triggered after that a low-speed streak was lifted towards the
boundary layer edge, and only sinuous-like instabilities were observed.
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Appendix A

In our formulation, the BLEs are linearised around a two-dimensional and steady base
flow (U(s, n), V(s, n), 0). Then the LBLE can be expressed in operator form

Lq̂ = 0, (A1)

where L is a linear operator

L = A + B
∂

∂n
+ C

∂2

∂n2 + D
1
h1

∂

∂s
. (A2)

And the individual linear operators, for our formulation, take the form

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 m13 iβ 0

1
h1

∂U
∂s

− iω + β2

Re
∂U
∂n

+ m13U 0 0

∂V
∂s

− 2m13U
1
h1

∂V
∂n

− iω + β2

Re
0 0

0 0 −iω + β2

Re
iβ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (A3)

B =

⎡
⎢⎣

0 1 0 0
V 0 0 0
0 V 0 1
0 0 V 0

⎤
⎥⎦ , (A4)
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C =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0

− 1
Re

0 0 0

0 − 1
Re

0 0

0 0 − 1
Re

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (A5)

D =

⎡
⎢⎣

1 0 0 0
U 0 0 0
0 U 0 0
0 0 U 0

⎤
⎥⎦ . (A6)

The terms h1 and m13 come from the use of the curvilinear coordinates following the
airfoil profile. They are defined in terms of the curvature κ:

κ = |x′y′′ − y′x′′|
(x′2 + y′2)3/2 , (A7a)

h1 = 1 + nκ, (A7b)

m13 = κ

h1
, (A7c)

where (x, y) are the airfoil coordinates in Cartesian coordinates and primes define
derivatives with respect to s. Using the LBLE, we want to find the initial perturbation
which gives the maximum energy at a given downstream location of interest. Adopting
an input–output formulation with the LBLE being our system of interest, we study the
development of the output q̂out = q̂(sf ) for a given input q̂0 = q̂(s0):

q̂out = Aq̂0, (A8)

where A is a linear operator. Here, operator A is defined through (A1). A common measure
for the magnitude of a disturbance at some streamwise location is its kinetic energy defined
in (2.7). The optimal disturbance is then calculated by finding the input at s0, with unit
energy E0 = 1, that maximises the output energy at some final location sf . In the limit for
high Reynolds numbers, further simplifications can be made by considering inputs with
zero streamwise velocity component, and outputs with streamwise velocity component
only (see, for instance, Andersson et al. (1999) for details). This formulation allows us to
write explicitly the norms for inputs and outputs as

‖q̂0‖2 = 1
2

∫ nmax

0
(v̂0v̂0 + ŵ0ŵ0)dn, (A9a)

‖ûf ‖2 = 1
2

∫ nmax

0
ûf ûf dn, (A9b)

with the bar representing the complex conjugate for scalar fields. Following these
assumptions, the maximisation problem is reduced to find the maximum spatial transient
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growth G(sf ):

G(sf ) = max
q̂0 /= 0

||ûf ||2
||q̂0||2

= max
q̂0 /= 0

〈Aq̂0,Aq̂0
〉

〈
q̂0, q̂0

〉 . (A10)

The maximal is then given by the eigenvector corresponding to the largest eigenvalue of
the generalised eigenvalue problem

A∗Aq̂0 = λq̂0, (A11)

where A∗ represents the adjoint of operator A with respect to the chosen inner product,
while λmax corresponds to the maximum transient growth. Starting from an arbitrary initial
condition, the eigenvector corresponding to the maximum eigenvalue can be computed
through power iterations

q̂n+1
0 = A∗Aq̂n

0. (A12)

To solve the power iterations we need to derive the adjoint system. By defining the inner
product between two arbitrary functions u and v as

(u, v) =
∫ sf

s0

∫ nmax

0
uHvh1 dn ds, (A13)

and the adjoint-state vector q∗ = ( p∗, u∗, v∗, w∗)T, we can then take the inner product
between q∗ and the system (A1) to find the associated adjoint operator. The derivatives are
moved from the direct to the adjoint variables by integration by parts reading

(q∗,Lq̂) =
∫ sf

s0

∫ nmax

0
(q∗)H

(
Aq + B

∂ q̂
∂n

+ C
∂2q̂
∂n2 + D

1
h1

∂ q̂
∂s

)
h1dn ds (A14a)

=
∫ sf

s0

∫ nmax

0

(
A∗q∗ + B∗ ∂q∗

∂n
+ C∗ ∂2q∗

∂n2 + D∗ 1
h1

∂q∗

∂s

)H

q̂h1 dn ds

+
∫ sf

s0

[
(q∗)H (B − m13C) q̂ + (q∗)HC

∂ q̂
∂n

−
(

∂q∗

∂n
Cq̂

)H
]n=nmax

n=0

h1 ds

+
∫ nmax

0

[
(q∗)HDq̂

]s=sf

s=s0
dn, (A14b)

where

A∗ = AH − ∂BH

∂n
− m13BH − ∂DH

∂s
, (A15a)

B∗ = −BH + 2m13CH, (A15b)

C∗ = CH, (A15c)

D∗ = −DH. (A15d)

The single integrals in (A14b) represent the boundary terms, corresponding to four
integrals. Setting them equal to zero, and noting that the left-hand side in (A14a) is also
zero, leads to the adjoint LBLE equations

A∗q∗ + B∗ ∂q∗

∂n
+ C∗ ∂2q∗

∂n2 + D∗ 1
h1

∂q∗

∂s
= 0. (A16)

Zeroing the boundary terms also supplies the boundary conditions for the adjoint LBLE
variables. The first three boundary terms, which are associated with the integral along the
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Figure 16. Frequency spectra convergence for cases with Tu = 0.5 %. The spectra are shown at (x, n) =
(0.1, 1.5δ∗

x ) for three different length signals based on the total number of snapshots N. Here (a) L = 0.0021
and (b) L = 0.01.

streamwise direction, define the necessary boundary conditions

�u∗ = �v∗ = �w∗ = 0 at n = 0, (A17a)

�u∗ = �v∗ = �w∗ = 0 at n = nmax. (A17b)

While zeroing the fourth term supplies the initial condition

U(n)u∗(n) + p∗(n) = û(n) at s = sf , (A18a)

v∗(n) = w∗(n) = 0 at s = sf (A18b)

and the action of the adjoint

v̂(n) = U(n)v∗(n) at s = s0, (A19a)

ŵ(n) = U(n)w∗(n) at s = s0. (A19b)

Appendix B

The computation of frequency spectra from DNS data requires the use of long enough
time series in order to avoid inaccuracies associated with the frequency resolution, which
are especially detrimental for low frequencies. Another reason for the need of long time
series is the fact that the signals are not exactly periodic in time, and the use of a
long-time integration can help to avoid some of the spectral leakage associated with the
non-periodicity.

In this appendix we show some of our convergence test results for the frequency
resolution. Figure 16 shows the frequency spectra for the most energetic wavenumbers
β considering three different time series lengths. All time signals were windowed with a
Hann window to decrease the amount of spectral leakage, showing a reasonable level of
convergence in capturing the most energetic frequencies.

Windowing a signal introduces a bias in the frequency spectrum computation, which
comes from the fact that different windows have their own characteristics and are effective
in reducing different types of interference, depending on the width of the main lobe and
the peaks of the sidelobes (Nuttall 1981). To check that we are capturing the principal
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Figure 17. Frequency spectra convergence for cases with Tu = 0.5 %. The spectra are shown at (x, n) =
(0.1, 1.5δ∗

x ) considering two different windows and the total number of snapshots N. Here (a) L = 0.0021
and (b) L = 0.01.
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Figure 18. Dependence of optimal growth on the initial location x0. Colour lines correspond to DNS data while
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frequencies despite the window function, in figure 17 we present the frequency spectra
considering the total number of snapshots and windowing the signal with a Hann and
rectangular window.
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Appendix C

In this section we analyse the effect that the choice of the initial location x0 has on the
results of the projection onto the optimal. In our optimal disturbance results, one of the
assumptions is that the perturbation is initiated at some specific location x0. But in reality,
the receptivity process is non-local and takes place in a region around the leading edge.
This is an uncertainty that is not easy to work around within our procedure.

Figure 18 depicts the effect that changing the initial location x0 has when computing
optimal growth in both low turbulence intensity cases. In this figure the dashed lines
correspond to the optimal growth with initial location x0 = {0.01, 0.025, 0.04}. In
general, larger differences are observed closer to the leading edge, especially for higher
wavenumbers that experience maximum transient growth around this region. However, and
within this range of x0, these differences are not critical for our analysis and subsequent
conclusions, where any of the arbitrary initial locations would describe the evolution of
the modes. Moreover, the arbitrary selection of this parameter does not seem to be the
cause of the mismatch for the mode labelled as 7 in figure 18(b).
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