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PROPERTIES OF THE FIXED POINT SET OF
CONTRACTIVE MULTI-FUNCTIONS

BY
HELGA SCHIRMER

1. Introduction. A well known theorem by S. Banach states that a contractive
function f: X— X on a complete metric space X has a fixed point, and that this
fixed point is unique. This result has a partial extension to multi-functions: every
contractive compact-valued multi-function on a complete metric space has a fixed
point (see Definition 1 and Theorem 1 below). But simple examples show that this
fixed point is no longer unique. We investigate some questions concerned with the
properties of the fixed point set @ of a contractive multi-function ¢. Is, e.g., ®
connected if ¢ is connected-valued ? Is @ convex if ¢ is convex-valued ? The answer
is yes if X is the real line (§2), but examples in §3 and §4 show that in general the
answer is no.

Let D be the Hausdorff metric generated by the metric of the space X.

DerINITION 1. A multi-function ¢: X — X is contractive if there exists a k € [0, 1)
such that for every distinct pair p, g€ X

D(g(p), (@) < kD(p, ).

p is a fixed point of ¢ if p € p(p). The following theorem asserts the existence of
a fixed point for contractive multi-functions.

THEOREM 1. Every compact-valued contractive multi-function ¢: X— X on a
complete metric space X has a fixed point.

The proof is a fairly easy modification of the corresponding proof in the single-
valued case. We omit it as Theorem 1 will not be needed in the following, and as a
very similar theorem was announced in Markin [1].

2. Contractive Multi-functions on the Real Line. As the only subsets on the real
line R* which are connected or convex are the intervals, properties of the fixed
point set of a contractive multi-function on R® with connected or convex images
are easy to investigate.

THEOREM 2. Let ¢: R*— R be a contractive multi-function such that ¢(x) is
compact and connected for all x € R*. Then the fixed point set of ¢ is compact and
connected.

Proof. As ¢(x) is compact and connected, it is either a compact interval or a
single point, i.e.

p(x) =[m, M], —oo <m< M < o, forall xe R
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Then we have for any distinct pair x,, x, € R! with o(x;)=[m;, M}] for i=1, 2,
D(p(x1), (x2)) = max (|My— M|, [my—my|),

so that for some k € [0, 1) both

|[My— M| < k|xo—x;| and |my—my| < k|x3—x4].

Therefore
a(x)=min p(x) and b(x) = max ¢(x)

are two contractive single-valued functions on R, and hence have each a unique
fixed point a, resp. by. A look at the graph of ¢ in R!x R! shows that clearly
ay, < b, and that [ay, b] is the fixed point set of ¢.

Note. The word “connected” in Theorem 2 can obviously be replaced by
“convex”’.

QuesTioN. If the image of the contractive function ¢: R — R consists of exactly
n points for all x € R, does the fixed point set of ¢ consist of n points?

3. The fixed point set of a connected-valued function need not be connected. Define
first a multi-function : R — R? on the Euclidean plane as follows. For every
p=(x, y) € R? let Y(p) be the boundary of the square with sides parallel to the axes,
side length one, and centre at p’=(%x, 1y). Then ¢ is a contractive function as

M D(§(p1), Y(p2)) = D(p1, p2) = +D(p1, P2),

and its fixed point set ¥ is the boundary of the square with centre at the origin,
side length % and sides parallel to the axes.

We now modify ¢ to a contractive multi-function ¢ which is still connected-
valued, but has a nonconnected fixed point set. Let X be the closed strip of R?
defined by

X={x)eR|x-1<y<x+1},

and define ¢: X — X by ¢(p)=4(p) N X for all p € X. Then the fixed point set ®
of g is given by ®=¥ N X and hence has two components. Clearly ¢(p) is compact
for all p € X, and it is still connected as a square with side length one and sides
parallel to the axes cannot intersect both y=x—1 and y=x+1, so that at most one
corner is cut off /() to obtain ¢(p). It remains to show that ¢: X — Xis contractive.
We assert that, with p’ defined as above,

)] D(¢(pa), (p2)) < 2D(p3, p3)

and hence
D('P(pl)a ‘P(Pz)) < kD(Pl, pz) with &k = %

(In fact k=\/72, but the proof is longer and the result not needed.)
If @(p;)=4(p;) for both i=1 and i=2 then (2) follows from (1). Therefore it is
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only necessary to consider the case where for at least one p;, say for p;, we have
®(p1)#¢(p1). Then (see Figure 1) ¢(p,) consists of the boundary of a square of
which one corner with vertex v, is cut off by a line / parallel to a diagonal of the
square. Let v, be the vertex of y(p,) corresponding to v;, and let v; be the point
such that vgv, | /and vgv, | I Then clearly

D(vy, v3) < D(v1,v:) and D(vs, vg) < D(vy, va).

/

1/ #(p1)

.
. \
.

/ L Ug

#(p2)

Figure 1.

Denote by S the part of the boundary of the square with vertex vg cut off by /.
Then
D((P(pl)a S) = D(Ula 1)3)-

One can also check that, whether v, is cut off by / or not,

D(S’ (P(PZ)) < D(U3, 02)'
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Hence
D(‘P(pl)’ (P(p2)) < D((P(pl)a S) + D(S9 ?’(Pz))

< D(vy, v3) + D(vs, v5)
< 2D(v, v5) = 2D(py, p2),

so that (2) holds and ¢ is contractive.

Therefore ¢ is an example of a contractive function with compact and connected
images which has a nonconnected fixed point set.

4. The fixed point set of a convex-valued function need not be convex. We define
a multi-function ¢: R?— R? on the Euclidean plane R? in the following way. For
any p=(x, y) € R? let ¢(p) be the closed disc with radius 4 and centre p’'=(x', '),
where

)

x' = %x,
V' =3-%|x.

Then ¢(p) is clearly convex and compact for all p € R2 To see that ¢ is contractive
note that for any p,, p, € R?

D(¢(py), ¢(p2)) = D(p1, p2)-
Hence, if p;=(x;, »;) are such that x; > 0 for i=1, 2, it follows from (3) that

D¥(p(py), p(p2)) = §(x1—X2)* +3(x, — X2)?,
therefore

@ D(g(p,), #(p2)) = & |x1—X;| < kD(p1, ps) with k = 3.

If x, < 0 for i=1, 2, we obtain (4) similarly. If x; > 0 and x, < 0, let p;=(0, y3)
be the point such that p, psp, are collinear. Then, using the cases previously dis-
cussed,

D(p(p1), ¢(p2)) < D((p1); 9(Ps)) + D(p(ps), ¢(p2))
< kD(py, ps)+kD(ps, ps)
= kD(p;, p2).

So (4) holds generally, and ¢ is contractive.

But the fixed point set of ¢ is not convex. To see this, test the points (+ 1, 0) and
(0, 0). For p=(1, 0) the distance of p from the centre p’ =(%, 1) of its image is <1.
The same is true for (—1, 0), so that (+ 1, 0) are two fixed points. But the distance
of p=(0, 0) from the centre p’=(0, $) of its image is >%, so that (0, 0) is not a
fixed point.

Hence ¢ is an example of a contractive function with compact and convex
images which has a fixed point set which is not convex.

QUEsTION: Is the fixed point set of ¢ connected if ¢ is a contractive multi-func-
tion with compact and convex images?
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Added in Proof. A proof of Theorem 1 has since been published, see [2,
Theorem 5].
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