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PROPERTIES OF THE FIXED POINT SET OF 
CONTRACTIVE MULTI-FUNCTIONS 

BY 

HELGA SCHIRMER 

1. Introduction. A well known theorem by S. Banach states that a contractive 
function/: X-> X on a complete metric space X has a fixed point, and that this 
fixed point is unique. This result has a partial extension to multi-functions : every 
contractive compact-valued multi-function on a complete metric space has a fixed 
point (see Definition 1 and Theorem 1 below). But simple examples show that this 
fixed point is no longer unique. We investigate some questions concerned with the 
properties of the fixed point set <E> of a contractive multi-function <p. Is, e.g., <ï> 
connected if 9? is connected-valued ? Is <P convex if <p is convex-valued ? The answer 
is yes if X is the real line (§2), but examples in §3 and §4 show that in general the 
answer is no. 

Let D be the Hausdorff metric generated by the metric of the space X. 
DEFINITION 1. A multi-function 9?: X-> Xis contractive if there exists a k e [0,1) 

such that for every distinct pa i rp,qe X 

D(<p(p),<p(q))<kD(p,q). 

p is a fixed point of 9 if p e <p(p). The following theorem asserts the existence of 
a fixed point for contractive multi-functions. 

THEOREM 1. Every compact-valued contractive multi-function 9?: X-> X on a 
complete metric space X has a fixed point. 

The proof is a fairly easy modification of the corresponding proof in the single-
valued case. We omit it as Theorem 1 will not be needed in the following, and as a 
very similar theorem was announced in Markin [1]. 

2. Contractive Multi-functions on the Real Line. As the only subsets on the real 
line R1 which are connected or convex are the intervals, properties of the fixed 
point set of a contractive multi-function on R1 with connected or convex images 
are easy to investigate. 

THEOREM 2. Let (p'.R^-^R1 be a contractive multi-function such that <p(x) is 
compact and connected for all x e R1. Then the fixed point set of 9 is compact and 
connected. 

Proof. As <p(x) is compact and connected, it is either a compact interval or a 
single point, i.e. 

(p(x) = [m, M]9 - 00 < m < M < 00, for all x e R1. 

Received by the editors June 12, 1969. 

169 

https://doi.org/10.4153/CMB-1970-036-4 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1970-036-4


170 HELGA SCHIRMER [June 

Then we have for any distinct pair xl9 x2 e R1 with 9>(*i) = [mt, Mil f ° r f = 1» 2, 

D{q>{x1),cP{x2)) = maxdAfa-Mil , |/w2-/Wi|), 

so that for some A: G [0, 1) both 

\M2 — Mil < A: |x2 —*i| a n d |w2 —Wil < fc |x2 — * i | . 

Therefore 
âf(x)=min9?(x) and b(x) = m a x ^ x ) 

are two contractive single-valued functions on R1, and hence have each a unique 
fixed point a0 resp. b0. A look at the graph of y in Rxx R1 shows that clearly 
a0 < b0 and that [a0, b0] is the fixed point set of 9?. 

NOTE. The word "connected" in Theorem 2 can obviously be replaced by 
"convex". 

QUESTION. If the image of the contractive function 9?: R1 -> R1 consists of exactly 
n points for all x e R1, does the fixed point set of 9? consist of n points? 

3. The fixed point set of a connected-valued function need not be connected. Define 
first a multi-function i/*: R2-+ R2 on the Euclidean plane as follows. For every 
p = (x, y) G R2 let ifj(p) be the boundary of the square with sides parallel to the axes, 
side length one, and centre at p' = (%x, \y). Then 0 is a contractive function as 

(1) DMPO, « f t » = D(p[, p'2) = iD(px, p2\ 

and its fixed point set W is the boundary of the square with centre at the origin, 
side length f and sides parallel to the axes. 

We now modify ip to a contractive multi-function 9 which is still connected-
valued, but has a nonconnected fixed point set. Let X be the closed strip of R2 

defined by 
X={(x,y)eR2\x-l <y< x+1], 

and define ?: Z -> X by (p(p) = *f>(p) n X for all pe X. Then the fixed point set O 
of cp is given by 0 = W n Zand hence has two components. Clearly cp{p) is compact 
for all p e X, and it is still connected as a square with side length one and sides 
parallel to the axes cannot intersect both y=x— 1 and y=x+1, so that at most one 
corner is cut oïïifj(p) to obtain <p(p). It remains to show that 9? : X-> Zis contractive. 
We assert that, with p' defined as above, 

(2) D(<p(Pil<p(P2))<2D(p'l9p'2) 

and hence 

&(<p(Pi)> 9O2)) ^ kD(pup2) with k = \. 

(In fact k=—T-> but the proof is longer and the result not needed.) 

If (p(pd = ̂ (Pi) for both i = l and i = 2 then (2) follows from (1). Therefore it is 
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only necessary to consider the case where for at least one p» say for p l 9 we have 
viPÙ^^iPi)- Then (see Figure 1) cp{p^ consists of the boundary of a square of 
which one corner with vertex vx is cut off by a line / parallel to a diagonal of the 
square. Let v2 be the vertex of i/>(p2) corresponding to vl9 and let v3 be the point 
such that v3v1 \\ I and v3v2 1_ /• Then clearly 

D(vu v3) < D(vl9 v2) and D(v3, v2) < D(vl9 v2). 

/ 
v}. . - / -

/ 

/ 

X 
1/ 

/ 

v3. r 
/ 

/ 

/ 

/ 

w2 

<P(Px) 

<P(P2) 

Figure 1. 

Denote by S the part of the boundary of the square with vertex v3 cut oif by /. 
Then 

Dbfai), S) = £>(*>i, v3). 

One can also check that, whether v2 is cut off by / or not, 

D(S, <p(p2)) < D(v3, v2). 
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Hence 
IKviPil 9(^2)) < Dbp(Pi)> S) + D(S, <p{p2)) 

< D(vu v3) + D(v3, v2) 

<2D(v1,v2) = 2D(p'1,p'2), 

so that (2) holds and 9? is contractive. 
Therefore 93 is an example of a contractive function with compact and connected 

images which has a nonconnected fixed point set. 
4. The fixed point set of a convex-valued function need not be convex. We define 

a multi-function 9: R2 -> R2 on the Euclidean plane R2 in the following way. For 
any p = (x, y) e R2, let cp(p) be the closed disc with radius \ and centre p' = (x\ / ) , 
where 

(3) X = 3*' 

Then cp(p) is clearly convex and compact for all/? G 7?2. To see that 9 is contractive 
note that for any pl9 p2 G JR2 

Hence, if ̂ i = (xi5 #) are such that xt > 0 for /= 1, 2, it follows from (3) that 

D\<P{PI\ <P(P2)) = to-tfHfe-^)2, 
therefore 

(4) D(<P(PI)> 9(^2)) = I | * i - * 2 | ^ kD(pl9p2) with fc = f. 

If Xi < 0 for /=1, 2, we obtain (4) similarly. If xx > 0 and x2 < 0, let/?3 = (0, j>3) 
be the point such that pxp3p2 are collinear. Then, using the cases previously dis­
cussed, 

£>(<p(Pi)> 9O2)) ^ D(v<J>i\v(j>3)) + D(<p{p3\y(p2)) 

< kD(pup3)+kD(p39p2) 

= kD(pup2). 

So (4) holds generally, and 9 is contractive. 

But the fixed point set of 9 is not convex. To see this, test the points (±1,0) and 
(0, 0). For/? = (l, 0) the distance ofp from the centre p' = (f, J) of its image is <•£. 
The same is true for ( — 1, 0), so that ( ± 1, 0) are two fixed points. But the distance 
of/? = (0, 0) from the centre // = (0, f) of its image is >\9 so that (0, 0) is not a 
fixed point. 

Hence 9? is an example of a contractive function with compact and convex 
images which has a fixed point set which is not convex. 

QUESTION: IS the fixed point set of 9 connected if 99 is a contractive multi-func­
tion with compact and convex images ? 
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Added in Proof. A proof of Theorem 1 has since been published, see [2, 
Theorem 5]. 

REFERENCES 

1. J. T. Markin, A fixed point theorem for set valued mappings, Bull. Amer. Math. Soc. 74 
(1968), 639-640. 

2. S. B. Nadler, Jr., Multi-valued contractive mappings, Pacific J. Math. 30 (1969), 475-488. 

CARLETON UNIVERSITY, 

OTTAWA, ONTARIO 

https://doi.org/10.4153/CMB-1970-036-4 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1970-036-4

