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1
The purpose of this note is to describe some algebraic conditions on a Banach

algebra which force it to be finite dimensional. We shall assume throughout
that we are dealing with Banach algebras over the field of complex numbers, C.

Our main result is Theorem 5 which states that a semi-prime Banach algebra
which coincides with its socle is necessarily finite dimensional. Most of the
known results on algebraic conditions which force a Banach algebra to be finite
dimensional depend very heavily on the supply of idempotents in the algebra.
It is therefore to be expected that these results will be related in some way to
Theorem 5. In fact, many may be deduced from our result and as an example
we prove a lemma of Kaplansky (5, Lemma 7).

2
Our first lemma is a special case of a result on stability of bases (see for

example (8, Chapter 1, Theorem 9.1)) so we give here only a sketch of the proof.

Lemma 1. Let X be a normed linear space of dimension at least n and let
xu ..., xn be any n linearly independent vectors in X. There is an e>0 such that
if the n vectors yu ..., yn satisfy \\ *;->>; || <e (/ = 1, ..., n) then yu ..., yn are
also linearly independent.

Proof. By making use of the compactness of {a e C": || a || = 1} we may
n

show that {xeXn: 3aeC"\{0} such that £ a,*; = 0} is closed. The result
i = 1

now follows.
Definition. Given a normed linear space X, we write B{X) for the normed

linear space of all bounded linear operators on X. For any operator T e B(X),
rank (T) is the dimension of the range space of T.

Lemma 2. Let X be a normed linear space. For each positive integer n0

the set Xno = {TeB(X): rank (T) g n0} is closed.

Proof. Suppose {Tk}cXno, Tk-*T in the uniform norm on B(X) and
rank(r)>n0- Choose no+l linearly independent vectors y} = TXj in
T(X) (j = 1, ..., «0 + l). By Lemma 1, there is an e>0 such that if
\\yj—Zj\\<s (J = 1, ..., «0 + l) then zu ..., zno+1 are linearly independent.

E.M.S.—20/1—A
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Since Tk-+T we have || TkXj—yj \\<e (J = 1, ..., no + l) f° r large enough k.
This contradicts rank (7^) ^ «0.

3
At this point it is convenient to give some definitions and results which will

be required in what follows.
An algebra, A is (topologically) simple if it contains no proper (closed) two-

sided ideals; it is semi-prime if the only left ideal in A which has square zero
is the zero ideal. If A contains minimal left (right) ideals, the sum of all the
minimal left (right) ideals is called the left (right) socle of A. If both socles
exist and are equal, the resulting two-sided ideal is called simply the socle of A
and is denoted by soc 04). We recall that when A is semi-prime and contains
minimal one-sided ideals soc {A) exists.

Lemma 3. A simple Banach algebra with minimal one-sided ideals is finite
dimensional.

Proof. Let A be a simple Banach algebra and let L be a minimal left ideal
of A.

If AL = {0} then {x e A: Ax = {0}} = A so that A2 = {0}. Thus every
subspace of A is a two-sided ideal and so A must be one-dimensional or {0}.

Now suppose AL # {0}. Then the left regular representation of A on L
is faithful and irreducible so that A can be regarded as a strictly dense Banach
algebra of operators on L (7, Theorem (2.4.6)). In particular, A is semi-simple
so that soc (A) is defined and A = soc (A). Thus A consists of finite rank
operators (7, p. 65). Let An = {TeA: rank (T) g «}. By Lemma 2, An is
closed in the uniform operator topology and hence is closed in the given norm

OO

on A. Now A = (J An so, by Baire's category theorem, Ano has non-empty
n — 1

interior for some integer n0. Thus there is ToeAno and s>0 such that
rank (T) ^ n0 whenever |] T- To || < s. It follows that rank (T) g 2n0 for
each TeA and hence that A is finite dimensional.

Notice that the Calkin algebra on an infinite dimensional separable Hilbert
space is an infinite dimensional simple Banach algebra which has no minimal
one-sided ideals.

Proposition 4. A topologically simple Banach algebra which has a unit and
contains minimal one-sided ideals is finite dimensional.

Proof. Let A be a topologically simple Banach algebra with unit, 1, and let
I b e a minimal left ideal of A. As in Lemma 3, we may regard A as a strictly
dense Banach algebra of operators on L. Since soc (A) is dense in A, 1 is a
limit of finite rank operators in the norm on A and hence in the uniform operator
topology. The ideal L is closed in the given norm on A and so the compact
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operators on L form a uniformly closed set. Thus 1 is a compact operator and
hence L is finite dimensional. The result follows since AcB(L).

Notice that the compact operators on an infinite dimensional Hilbert space
form an infinite dimensional topologically simple Banach algebra which contains
minimal one-sided ideals but has no unit.

Theorem 5. If A is a semi-prime Banach algebra with minimal one-sided
ideals and A = soc {A) then A is finite dimensional.

Proof. Since A is semi-prime, a left idea of A is minimal if and only if it is
irreducible as a left .4-module.

Let L be a minimal left ideal of A. The sum of the minimal left ideals of A
which are module isomorphic to L is called the homogeneous component of
soc (A) corresponding to L. The fact that A is semi-prime implies that A
(= soc (A)) is a direct sum of its homogeneous components and that these are
simple algebras (see (2), pp. 64, 65).

Distinct homogeneous components have product {0} and minimal left
ideals in A are of the form Ae for some minimal idempotent e e A. Thus if
the set of distinct homogeneous components is infinite we can construct an
infinite orthogonal sequence, {en}, of (minimal) idempotents. Let

* = t 2 - I I *. II"1 <V
n = 1

Then xe^4\soc(^4) which contradicts A = soc (A). Suppose Hlt ..., Hn are
the distinct homogeneous components of A so that A = Hx©...©//„. Each
Hk is closed since it is the annihilator of the direct sum of the rest of the H/s.
So, each Hk is a simple Banach algebra with minimal left ideals. An application
of Lemma 3 concludes the proof.

Corollary 6. If A is a Banach algebra satisfying A = soc (A) then the
(Jacobson) radical of A has finite codimension in A.

Notice that we cannot in general relax the condition A = soc {A); for
example any infinite dimensional semi-simple annihilator Banach algebra has
dense socle. However we do have the following theorem:

Theorem 7. Let Abe a semi-simple Banach algebra with unit and suppose that
A has dense socle. Then A is finite dimensional.

Proof. Alexander (1, Theorem 7.3) has shown that any semi-simple Banach
algebra which has a dense socle is a compact Banach algebra. That is, x-*axa
is a compact operator on A for each ae A. The result is thus immediate since
leA.

4
We now give the promised proof of Kaplansky's lemma. In the following,

if x is an element of an algebra B, we write Sp (B, x) for the spectrum of x
relative to B.
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Lemma (5, Lemma 7). Let A be a semi-simple Banach algebra in which each
element has a finite spectrum. Then A is finite dimensional.

Proof. First note that an orthogonal sequence of idempotents in A is
necessarily finite. For, if {en} is such a sequence and {en} is infinite, we may

00

choose a sequence {cn} of scalars such that x = £ cnen is in A and such that
n = 1

there are an infinite number of distinct cn's. Since xen = cnen, for each n,
it follows that {cn} is contained in Sp {A, x).

If the spectrum of every element of A is a singleton then A is one-dimensional
(5, Lemma 4). Otherwise A contains a proper idempotent e. The Banach
algebra eAe is semi-simple and Sp (eAe, x) = Sp (A, x) for each x e eAe. If
eAe is not one dimensional we can find an idempotent fe eAe such that
0 & f ¥: e and/, e—/are orthogonal. This, together with the fact that any
orthogonal sequence of idempotents must be finite, allows us to infer the
existence of minimal idempotents in A.

Suppose F = {/i, ...,/&} is a maximal orthogonal family of minimal idem-
potents of A. Let / = / t +.. . +fk and B = (1 -f)A{\ - / ) . Then B is semi-
simple and Sp {B, b) is finite for each be B. Since any idempotent in B is
orthogonal to F it must be that B = {0}. Hence ,4(1 - / ) and (1 -f)A have
square zero and so, since A is semi-simple, are zero. Thus / = / 1 + ...+/fc is
identity for A and A = soc {A). The result follows by Theorem 5.

Remark. If in the above lemma we suppose that A is a i?*-algebra then the
conclusion still holds if we assume only that each self-adjoint element of A
has a finite spectrum (6, Theorem 1). Theorem 5 can be used to give an
elementary proof of this fact.

Definition. Let A be any algebra.

(i) A is (von Neumann) regular if for each x e A there is ye A such that

xyx = x.

(ii) A is n-regular if for each x e A there is ye A and an integer k such that

xkyxk = xk.

(iii) A satisfies the descending chain condition (dec) on principal left ideals if
A contains no properly decreasing infinite chains of principal left ideals.

Theorem 5 can be used to prove that regular Banach algebras (3, p. 58), semi-
simple it-regular Banach algebras (4, Remark (a), p. 63) and semi-simple Banach
algebras which satisfy the dec on principal left ideals are finite dimensional.
A consequence of the last of these results is that any semi-simple Artinian
Banach algebra is finite dimensional. (A is Artinian if it satisfies the dec on
left ideals.)
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