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A wide range of environmental, energy, medical and biological processes rely on
dispersive transport through complex media. Yet, because of the stagnant and opaque
nature of the microscopic system, the role of disordered flow and structure in the dispersive
transport of solutes remains poorly understood. Here, we use a circular porous microfluidic
system to investigate the radial dispersion in porous media driven by non-Newtonian fluids
with strong advection rate (or at high Péclet number) and low-to-moderate Reynolds
numbers. We observe for the first time the presence of diffusion ‘blind zones’ in
the microstructure for high solution injection velocities. More specifically, an in-depth
analysis uncovers that the circumferential flow frame, coformed by obstacles and vortices
especially the ‘twin-vortex’ with same rotation direction, is responsible for the diffusion
‘blind zones’ and transport heterogeneity. The vortices are induced by the coupling of
microfluidics and porous structures, and correlated to inertial flow-induced instabilities.
The trade-off between diffusion efficiency and quality/completeness with respect to the
high Péclet number (or high inlet velocity) serves to enhance our comprehension of
intricate fluid dynamics and affords a set of principles to aid a diverse range of practical
implementations.
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1. Introduction

Dispersive transport driven by flow in porous media is ubiquitously present in natural and
human-made substances (Saffman 1959a; Meigel et al. 2022). It profoundly influences
a plethora of industrial applications including energy storage (Xu et al. 2017; Wu et al.
2020), chemical catalysis (Perego & Millini 2013; Chiu, Moore & Quaife 2020) and
electrodes design (Maggiolo et al. 2020), as well as biomedical research in aerosol
disinfection (Joung & Buie 2015; Hall et al. 2016), drug delivery (Edwards et al. 1997;
Horcajada et al. 2010), vascular dynamics (Corson 2010; Katifori, Szöllősi & Magnasco
2010) and bacterial colonies (de Anna et al. 2021). These natural phenomena, as well as
industrial/medical applications, are closely related to the flow-driven transport through
porous media at various scales (Saffman 1959b; Meigel et al. 2022).

However, considering the large diversity of porous media morphology, solvent flow
characteristics and microscopic transport environments, investigations pertaining to
dispersive transport dynamics under certain specific conditions are still lacking. The
typical solvent flow velocity for microflow situations in porous structures falls into the
range from 1 µm s−1 to 1 cm s−1 (Squires & Quake 2005; Xiong, Baychev & Jivkov
2016; Wu et al. 2019). However, in some specific practical scenarios, such as drug injection
(Edwards et al. 1997; Nicholson & Hrabětová 2017), fluid impact-erosion (Bizmark et al.
2020; Chiu et al. 2020), chemical catalysis/reaction (Maggiolo et al. 2020) and air filtration
(Sim & Chrysikopoulos 2000; Chu et al. 2001), the flow rate of the fluid as it enters
the porous medium are quite substantial. This means that the advective effect is much
stronger than the diffusive effect, and the Péclet number is very high, especially for some
transport media consisting of liquids with high Schmidt numbers (Maggiolo et al. 2020).
In addition to the vortices generated in the dead-end pore (Bordoloi, Scheidweiler & Dentz
2022), larger scales of solvent flow velocity will lead to higher Reynolds numbers Re and
subsequently induce more vortices at suitable locations in the porous structure. This study
further analyses the effect of vortices on the dispersive transport behaviour, especially the
generation of diffusion ‘blind zones’, to be discussed in a later section.

The diffusion ‘blind zone’ introduced later in our present work is a form of anomalous
diffusion (Young 1988; Berkowitz & Scher 1995; Bordoloi et al. 2022). Natural porous
systems, such as soil (Erktan, Or & Scheu 2020), intestines (Hapfelmeier et al. 2010)
and polymer filters (Phillip et al. 2011), contain disordered structures and the release and
dispersion of the relevant targets/solutions in the above systems is critical for relevant
environmental and medical purposes, including soil remediation, filtration and drug
delivery. However, variations in pore structure lead to velocity inhomogeneity, which, in
turn, leads to anomalous transport (Datta et al. 2013; de Anna et al. 2017; Dentz, Icardi &
Hidalgo 2018), mixing (de Anna et al. 2014; Heyman et al. 2020), filtration (Nishiyama,
Yokoyama & Takeuchi 2012; Miele, de Anna & Dentz 2019) and microbial dispersion
(Scheidweiler et al. 2020; de Anna et al. 2021). On the other hand, the morphological
diversity introduced by the disordered pore structure (Alhashmi, Blunt & Bijeljic 2016;
Xiong et al. 2016; Wu et al. 2019) causes a rich flow organisation characterised by spatial
and temporal complexity, which are key for groundwater contamination and remediation
(Kahler & Kabala 2019), improving hydrocarbon recovery (Kar et al. 2015), formation of
tightly packed pore networks through river sediment transport (Lei et al. 2022), water
filtration systems (Kosvintsev et al. 2002) and extracellular transport in brain tissue
(Nicholson & Hrabětová 2017).

Dispersion processes in the complex morphology of above-mentioned systems may be
subject to anomalous dispersion, and the prolonged presence of diffusion ‘blind zones’
(until molecular diffusion annihilates it, as will be described later) explored herein
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Blind zones in radiating dispersion

will inevitably affect the dispersion processes under consideration (Wirner, Scholz &
Bechinger 2014; Battat et al. 2019). For instance, in some medical applications, such
as air disinfection through air filters and virus eradication inside biological tissues, the
completeness of the diffusion is highly important because only a small area of diffusion
blind zone could lead to serious consequences (even if the overall diffusion rate/level is
already very considerable). More specifically, incomplete disinfection of certain areas will
lead to potential later regrowth of bacterial/viral. Diffusive transport in porous materials
is also often seen in catalytic processes such as electrochemistry and batteries, where the
diffusion blind zone inevitably affects the efficiency and quality of the catalysis (Maggiolo
et al. 2020).

The diffusion blind zone (leading to anomalous diffusion) accompanying the
dead-end-pore of porous media has already been discussed in past works of Bordoloi et al.
(2022) and Young (1988). In this case, present work further investigates this behaviour of
anomalous dispersion, and provides a micro-perspective understanding of the role played
by the local flow structures on anomalous transport (diffusion ‘blind zones’). Moreover,
we expect transport behaviour in porous media to be influenced by solvent characteristics.
While most of the literature has focused on transport studies driven by Newtonian fluids,
the study of non-Newtonian fluids is highly valuable due to their widespread presence,
such as in industrial polymers and body fluids (or blood) in living organisms (Inoue
& Nakayama 1998; Pearson & Tardy 2002; Sochi 2010). Therefore, our work selects a
non-Newtonian fluid as the solvent. In view of the above discussion, this study will discuss
the dispersive transport of the target solute carried by the non-Newtonian solvent in porous
media at high Péclet numbers.

This work is arranged as follows: the numerical methodologies adopted in the present
study are introduced in § 2. Validation of present numerical models is also presented
in this section. In § 3, we conduct a thorough investigation of our configuration from
the macroquantitative to the microphysical perspective. Special attention is paid to the
generation of diffusion ‘blind zones’ and accompanying vortex structures. In addition,
the dispersive transport behaviour is compared between non-Newtonian solvents and
Newtonian solvents. Finally, the conclusions of this work are presented in § 4.

2. Methodology

2.1. Dispersive transport model
The Knudsen number, defined as the ratio of molecular mean free path L to average
pore opening distance λ, determines the appropriateness of the continuity assumption.
Continuum models based on Navier–Stokes equations and Euler equations are generally
valid while Knudsen number is smaller than 0.01 (Yu 2004; Darabi et al. 2012). In the
present work, L and λ are approximately equal to 0.13 nm and 1.25 mm, respectively,
yielding a corresponding Knudsen number range in which Navier–Stokes equations can
be applied (Narsilio et al. 2009; Kamrava, Sahimi & Tahmasebi 2021). Specifically, the
continuity and momentum transport equations controlling the incompressible solvent flow
are

∂U
∂t

+ U · ∇U = − 1
ρ0

∇P + ν∇2U, (2.1)

and

∇ · U = 0. (2.2)
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In (2.1) and (2.2), P is the pressure, t is the time, ρ0 and ν represent the density and
kinematic viscosity of the solvent fluid, respectively, and U is the flow velocity of the
solvent fluid. With respect to the solute diffusion, the concentration field C is governed by
the convection–diffusion equation:

∂C
∂t

+ ∇ · (UC) − ∇ · (Ds∇C) = 0, (2.3)

where C is the solute concentration, Ds (=ν/Sc) is the solute diffusivity coefficient and
and Sc is Schmidt number.

The present custom model is implemented into the open-source computational fluid
dynamics software OpenFOAM/v2006 (2019). The control equations are discretised using
the finite-volume method. To this purpose, a second-order-accurate implicit Euler scheme
is employed to discretise the diffusion term, whereas second-order-accurate Gaussian
integration schemes are used for the discretisation of the convection terms. The large
time step transient PIMPLE algorithm, which combines the semi-implicit method for
pressure-linked equations (SIMPLE) and the pressure-implicit with splitting of operators
(PISO) algorithm, is used to solve the control equations together in a segregated manner.
All of these algorithms are iterative solvers, but PISO and PIMPLE are used for transient
problems, whereas SIMPLE is used for steady-state problems. The pressure–velocity
coupling provided by the PIMPLE algorithm results in better stability and higher accuracy
(Penttinen, Yasari & Nilsson 2011). The time step size is adjusted to control the maximum
Courant–Friedrichs–Lewy (CFL) number, CFLmax, which is specified to be 0.6 at each
time step in the PIMPLE algorithm. The maximum CFL number is defined as CFLmax ≡
|U |�t/�xmin, where �xmin is the size of the smallest grid cell in the computational
domain and |U | is the magnitude of the fluid velocity U .

2.2. Herschel–Bulkley model
The Herschel–Bulkley model (Holdsworth 1993; Huang & García 1998; Mullineux
2008) is one common dynamic relation used to describe how certain fluids with
non-Newtonian features behave. It could be applied, for instance, to model the behaviour
of juice concentrates (Lee, Bobroff & Mccarthy 2002), the flow of yogurt during
production (Mullineux & Simmons 2007) and the properties of body fluids such as
blood (Sankar & Hemalatha 2007; Abbas, Shabbir & Ali 2017; Suresh & Rajan 2019).
The Herschel–Bulkley model combines the effects of Bingham plastic and power-law
behaviour in a fluid. For low strain rates, the material is modelled as a very viscous fluid
with viscosity ν0. Beyond a threshold in strain-rate corresponding to threshold stress τ0,
the viscosity is described by a power law. The model is

ν = min(ν0, τ0/γ̇ + kγ̇ n−1), (2.4)

where γ̇ and k, n are strain rate and power-law coefficient. In the present work, ν0, τ0,
k and n are 4.50 × 10−6 m2 s−1, 1.75 × 10−5 m2 s−2, 8.97 × 10−6 m2 s−1 and 0.8601,
representative of blood characteristics (Suresh & Rajan 2019).

2.3. Model validation
To validate the predictive accuracy of the presently investigated hybrid dispersive transport
model and its implementation, we simulate the solution passing through a porous
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Solution injection direction

Front widthCave/C0 = 0.75 Cave/C0 = 0.25

C/C0

R

L

Pe→: Péclet numbers corresponding to the

average flow velocity parallel to the solution

injection direction

R: Radius of circular obstacles;

L: Lattice spacing

L/R = 2.7, Pe→ = 30

L

0 0.2 0.4 0.6 0.8 1.0

Figure 1. Comparative validation between present results with measurement data regarding the dispersive
transport through the rectangular porous chip. Schematic of the microfluidics set-up. The device consists of a
two-dimensional porous medium constructed inside a microfluidic chip. Staggered pore structures are applied.
The enlarged view depicts the pore characteristics of the microstructure, and detailed information is also noted
in the upper-left panel. The definition of the front width of solute dispersion: the distance (normalised by
R) between the locations of relative averaged solute concentrations of 25 % and 75 %. The average solute
concentration here is defined as the average concentration profile at the slice perpendicular to the solution
injection direction.

rectangular chip and compare the results between the present work with the numerical
and experimental works of Meigel et al. (2022).

Meigel et al. (2022) investigated the effect of porous micro-structural disorder on the
transport efficiency of solute. The specific case with a disorder of 0 % (namely, the
identical circular obstacles inside are arranged in a highly regular sequence) is chosen
here. The concentration field in the model slices near the solute front in this work is shown
in figure 1. The ratio of the lattice spacing L (or the distance between the centres of two
circular obstacles) to the radius R of the obstacles is 2.7. In keeping with the works of
Meigel et al., we keep the value of parallel Péclet number Pe→ within the porous chip at
30. Here Pe→ = U→λ/Ds, in which U→ represents the average flow velocity parallel to
the solution injection direction in the rectangle chip and λ is the average pore opening,
equal to ‘L − 2R’ herein for convenience. As a criterion for this comparative validation,
the solute front width (normalised by R) is defined as the distance between the slices with
Cave/C0 of 25 % and 75 %, where Cave/C0 is the relative averaged solute concentration.
The average solute concentration Cave here refers to the average concentration profile
(on a certain slice in the porous chip) perpendicular to the solution injection direction.
Table 1 compares the normalised solute front width obtained by the present model with
those (including both numerical and experimental data) reported by Meigel et al. (2022),
and excellent conformance can be observed. This demonstrates that our current hybrid
methodology enables good accuracy for providing the high-fidelity data sets needed for
the analysis of the dispersive transport in porous microchips.

3. Results

3.1. Problem definition
While previous studies have mostly used the rectilinear channel in the macroscopic view,
the present work designs and studies a circular porous chip as shown in figure 2(a).
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Present work Other simulation (Meigel et al. 2022) Measurement (Meigel et al. 2022)

33.4 33.2 33.5

Table 1. Comparison between present results with the other numerical and experimental data (Meigel et al.
2022) for the normalised solute front width shown in figure 1. Good consistency can be observed.

This allows for the study of a more practical scenario in which the solution (composed
of solvent and solute) is first injected at a concentrated location and then diffuses in
the porous medium. This study is conducted via numerical calculation focusing on
a two-dimensional model of porous media using a custom-developed solver, which is
introduced and validated with previous experimental and numerical data in § 2. The
model reduced to two dimensions allows us to precisely visualise the process of radiating
diffusion and distinctly observe the effects of heterogeneity (de Anna et al. 2013; Meigel
et al. 2022). The microchip (diameter 40 mm) being investigated contains a random
distribution of obstacles with various cross sections (figure 2a), with an average distance λ
between pore walls (‘pore openings’) close to 1.25 mm (chosen due to good representation
of many common biological and geological structures; Jacob 1975). The porosity of the
entire chip is 90.14 %. The variety in the shape of the obstacles helps trigger complex
flow phenomena that drive essential mechanisms in applications such as groundwater
contamination and remediation (Kahler & Kabala 2019), soil environment study (Kar et al.
2015), water filtration (Kosvintsev et al. 2002) and extracellular transport in human tissues
(Nicholson & Hrabětová 2017). In addition, the morphological diversity introduced by
disordered pore structures can lead to velocity heterogeneity, which can, in turn, result in
abnormal transport, mixing, filtration and diffusion (Xiong et al. 2016; Wu et al. 2019).

A Neumann boundary condition is imposed on the velocity at the outflow (ring outlet)
boundary, and a Dirichlet boundary condition is prescribed for the injected solution with
the inlet velocity U0 being uniformly distributed perpendicular to the ring inlet (diameter:
1.6 mm) of the chip (figure 2a). The solvent inside the porous chip starts at rest and
initially does not contain any target solute, meaning the initial condition (at t = 0) for
the velocity field is U(x, y, t = 0) = (0, 0) and the gauge pressure field (with respect to
the atmospheric pressure) is P(x, y, t = 0) = 0. The designed range of U0 spans from
0.02 m s−1 to 1 m s−1, in which the highest value corresponds to a hypothetical scenario
where 10 cm3 of solution contained within a syringe is pushed out from a 2-mm-diameter
pinhole within a 1 s time window. The flow velocities involved here lead to large Péclet
numbers Pe (=|U |λ/Ds) (Maggiolo et al. 2020; Bordoloi et al. 2022), where Ds (=ν/Sc)
is the solute diffusivity coefficient, and |U | is the absolute magnitude of the velocity U . In
the case of small variations of viscosity, which applies to the present work, the kinematic
viscosity theoretically maintains a linear relationship, rather than direct proportionality,
with mass diffusivity. Hence, it should be noted that the Schmidt number Sc is a parameter
that varies slightly depending on practical scenarios/environments. Nevertheless, Sc is
assumed to be constant for convenience and set up as 800 in this study (which is
representative of the Schmidt number for the transport of substances in liquids such as
water or biofluids; Gualtieri et al. 2017; Rapp 2022). In future studies, scenarios that
consider Schmidt number variations could be investigated to gain deeper insight into the
applicable physical situations. ν is the kinematic viscosity of the solvent herein, which is
determined with the Herschel–Bulkley non-Newtonian model (Zhu, Kim & De Kee 2005)
(again, representative of the general biofluids such as blood; Suresh & Rajan 2019).
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Inner ring input

40 mm

Outer ring output

1.6 mm

Uniform input velocity U0

normal to the ring boundary

U0 = 0.02 m s–1 U0 = 0.10 m s–1 U0 = 0.60 m s–1 U0 = 1.00 m s–1

1.6 mm

U0 = 0.02 m s–1 U0 = 1.00 m s–1

1.6 mm

λ

1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0

(a)

(b)

(c) (d )

|U
|/U

0

Figure 2. Pore-scale visualisation reveals that an increased rate of injected solution corresponds to the
amplification of flow disorder. (a) Schematic of the two-dimensional microfluidics set-up. The chip consists of a
disordered arrangement of obstacles with varied shapes, serving as an analogue for porous media. The injection
velocity of the solution (consisting of both solvent and target solute) ranges from 0.02 m s−1 to 1.00 m s−1.
The initial field inside the circular chip consists of only the solvent and not the solute. (b) Comprehensive views
of ‘mature’ velocity fields in the microfluidics chip. A mature velocity field means the global equilibrium of
the solvent flow field is achieved. The increase in injection rate mainly leads to three microfluidic variations
from the perspective of the velocity field: (i) the aggravation of the flow field heterogeneity; (ii) the apparent
formation of high-velocity channels and (iii) a local change in the selection of solution paths. (c,d) Expanded
view of velocity and vorticity fields in the immediate vicinity of the micro-obstacles. In addition to sporadic
structure-induced vortices at low injection rates (cf. left panel), abundant Hopf bifurcation-induced vortices
occur at high injection rates (cf. right panel).

The initial concentration C0 of the target solute in the injected solution is set to 1000
during the calculation. We focus on the relative concentration Cr (=C/C0) later on in
this paper. As inspired by the work of de Anna et al. (2021), the various shapes of
the obstacles (cf. with figure 2a) and heterogeneous pore openings used in the current
configuration could generate potential microdynamical problems/phenomena that may not
be easily triggered by uniformly distributed structures but which could possibly appear in
(and may be critical to) practical applications. In addition, it is anticipated that the unique
microstructural features as well as corresponding kinetic properties caused by the obstacle
shapes will affect the solvent diffusion process. For this purpose, the general mechanisms
and control parameters that dictate dispersive transport dynamics and allow for efficient
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Mesh Cells number Cr

1 701 391 0.9954
2 847 069 0.9916
3 1 014 718 0.9872
4 1 260 139 0.9873

Table 2. Normalised average solute concentration Cr (=C/C0) obtained at different mesh qualities for
injection rate of U0 = 1.00 m s−1.

transport in porous media will also be explored with respect to the obstacle’s shapes.
Furthering the validation case in the § 2.3, a mesh dependency study is conducted here to
validate the accuracy of the mesh strategy we utilise in the following cases of interest. The
normalised average solute concentration Cr at different mesh qualities are calculated at
U0 = 1.00 m s−1 and summarised in table 2. It can be seen that the relative differences of
the key parameter Cr between mesh 1 to mesh 2 are considerable, but differences decrease
to a value smaller than 0.01 % as the mesh is refined to mesh 3 (fine) and mesh 4 (very
fine). Consequently, mesh 3 is adopted in the present work to achieve the best balance of
calculation time and accuracy.

3.2. Discussion
Figure 2(b) displays the contour of the relative magnitude of velocity |U |/U0 of the
solution flow in the circular chip of interest for injection velocities U0 equal to 0.02, 0.10,
0.60 and 1.00 m s−1. Both the Péclet number and the Reynolds number are correlated to
the viscosity of the fluid, so we first choose velocity as the fluid counterpart herein out of
concern that variation in the viscosity of a non-Newtonian fluid would affect the judgment
of the velocity scale within the porous structure. We choose representative cases and show
the associated Reynolds/Péclet number contour later. Overall, the solution will flow along
the pores to the exterior. In a rectangular channel with porous media, the solution flow
will seek out high-velocity channels and develop low-velocity micropockets (Maggiolo
et al. 2020; de Anna et al. 2021; Dentz et al. 2022), and the flow rate of the solvent does
not decay. Figure 2(b) shows that the solution in a circular porous chip will also find
the high-velocity channel with the least flow resistance/drag. However, the flow velocity
generally decreases as the radius increases. In addition, as U0 increases, the preference of
the solution to pursue the fast channel becomes more pronounced (cf. two right panels in
figure 2b). In the presently designed chip, the fluid is prone to flowing along two parallel
channels in a vertical (or y) direction. In addition, the black boxes in the two right panels of
figure 2(b) emphasise the differing flow tributary trajectory at the two velocities. Based on
this observation, increasing the inlet velocity U0 can possibly inflict a change in the path
choice of some flow tributaries in the porous chip, whereas the flow mainstream maintains
the same trajectory.

Figure 3(a) displays the contour of Reynolds number Re (=|U |S/ν) at the injection
rate U0 of 0.06, 0.10, 0.60 and 1.00 m s−1. It is noted that the kinematic viscosity ν

is not constant and changes with the variation of strain rate in this chip. The average
characteristic length S of obstacles within our chip is 0.5 mm and the kinematic viscosity
ν varies in the range of 3–4.5 × 10−6 m2 s−1 (demonstrated later). Values of Pe near
high-speed channels reach 10 000 and 100 000 for U0 = 0.06 m s−1 and 0.6 m s−1,
respectively (introduced later, specifically in figure 8). The solute diffusivity coefficient
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U0 = 0.06 m s–1 U0 = 0.10 m s–1 U0 = 0.60 m s–1 U0 = 1.00 m s–1

1

2
2

2

2

1
1

1

1

1

1

0 4 8 12 16 0 40 80 120 160
Re

Re

Re

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160

(a)

(b)

Figure 3. Comprehensive view of the Reynolds number Re contour in the microfluidics chip when the global
equilibrium of the solvent flow field is achieved. The two left panels (with U0 = 0.06 and 0.10 m s−1) and
two right panels (with U0 = 0.60 and 1.00 m s−1) correspond to the left and right bottom colour bars,
respectively. Red numbers ‘1’ and ‘2’ denoted on circular obstacles represent flow-passing obstacles are and
are not accompanied by Hopf bifurcation instabilities, respectively.

Ds lies between 3.75–5.63 × 10−9 m2 s−1. For the size/scale of the present pore structure,
the characteristic time scales for diffusion and advection behaviours are 0.001 s and 100 s,
respectively. Even for the largest injection velocity of 1 m s−1 studied in this paper, Re
lies in the range of 100–166. Moreover, the actual solute velocity inside the porous chip
is smaller than the injection velocity, which results in lower local Re, thus establishing
a laminar flow situation for this study. The competition and cooperation between inertial
forces and interfacial drag forces dominate the microdynamics within porous media, and
this issue is of particular interest at high injection rates (Kuwahara & Nakayama 1998;
Wong & Saeid 2009). According to the assessment of Hassanizadeh & Gray (1987),
interfacial drag forces play a more significant role than inertial forces in determining the
flow dynamics when Re lies on the order of 10. This applies to the configurations shown
in the two left panels in figure 3(a). As Re rises to the order of 100 (namely, the two right
panels in figure 3a), although the flow remains laminar, the inertial forces have become as
important as the drag forces, and the two forces drive the flow characteristics together.

In addition, the solvent flow anisotropy (especially occurring at the beginning of the
injection) is observed in both the contour of the Reynolds number (cf. figure 3a) and
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velocity field (cf. figure 2). Although flow anisotropy also occurs to some extent in the
case of uniform arrays with identical obstacles in porous media, the porous structure in
this study leads to a more severe intrinsic flow anisotropy due to the diversity of obstacles
shapes, which affects the fluid ‘selection’ of high-velocity channels during the early stages
of solvent flow development. This aligns with the original intention of the configuration in
this work, i.e. the diverse and complex pore structure is more generalisable/representative
and allows for interesting dispersive transport phenomena to be revealed, such as the
diffusion ‘blind zones’ found in this work (to be introduced later).

To microscopically observe the kinetic characteristics of the solution when encountering
obstacles, the flow field near the inlet ring for U0 of 0.02 and 1.00 m s−1 is depicted in
figure 2(c,d), respectively. The line integral convolution (LIC) vector field visualisation
methodology (Petkov 2005) is employed to display the characteristics of the solution flow
between obstacles, which is especially useful for identifying the recirculating regions.
With respect to the flow field at U0 = 0.02 m s−1, the microdistribution of the vortex
implies present pore structures have analogous characteristics to porous media that
internally combine dead-end pores and transmitting pores (Bordoloi et al. 2022). Within
the dead-end pores (marked with the yellow boxes inside figure 2c), this kind of smaller,
structure-induced vortex appears and leads to the anomalous dispersion in porous media.
The dead-end pores causing those vortex structures via viscosity effects only account for
a very small proportion of all media at a low flow rate. The generation of vortices inside
dead-end pores here is similar to the scenario of a lid-driven cavity flow, which could
generate vortices even at very low Reynolds numbers (i.e. Re � 1) (Bordoloi et al. 2022).
In drastic contrast, figure 2(d) shows the appearance of an abundance of vortices due to the
stronger instability caused by a higher solution injection velocity. Wake dynamics of flow
past bluff bodies will exhibit Hopf bifurcation and vortex shedding as the local Reynolds
number Re exceeds the critical Re for a specific obstacle shape (as indicated in figure 3a)
(Jackson 1987; Dušek, Gal & Fraunié 1994; Noack & Eckelmann 1994). The critical Re
varies for different bluff body shapes (for instance, equal to about 47 for both the circular
cylinder (Cheng et al. 2022) and square cylinder (Mashhadi, Sohankar & Alam 2021)).
More specifically, for flow past an obstacle, the geometrical shape, as well as the profile
curvature, will have a decisive influence on the flow dynamics stability (Park & Yang
2016), thus leading to differences in the value of the critical Reynolds number and the
formation of vortex structures. The vortices with high energy levels interspersed around
the high-velocity channels inevitably have an effect on the diffusion of the carried target
solute, which will be elaborated upon later.

As mentioned previously, as the Reynolds number increases to about 100 (e.g. the two
right panels in figure 3a), the inertial forces play a dominant role such that the vortices,
whether induced by dead-end pores or Hopf bifurcation instabilities, will be driven
by inertial forces. To further demonstrate the connection between the critical Reynolds
number and vortices induced by Hopf bifurcation, we focus on circular obstacles and
display the LIC vortex structures along with the Reynolds number contour surrounding
obstacles at subcritical and supercritical Reynolds numbers in figure 3(b). The colour bar
in figure 3(b) indicates corresponding colour for each Reynolds number range. We mark
the identical circular obstacles in figure 3(b) with red numbers ‘1’ and ‘2’, where ‘1’
means that flow past the obstacle is accompanied by Hopf bifurcation instabilities at this
location, and ‘2’ means that Hopf bifurcation does not appear here. It could be observed
that all circular obstacles with vortex structures in the downstream direction (with respect
to the solvent inflow) are accompanied by a local flow with Reynolds number greater than
50, whereas for circular obstacles surrounded by flow with a Reynolds number less than 40,
no vortex structure appears. This phenomenon is consistent with the well-known physical
986 A16-10
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Figure 4. Pressure contour in the vicinity of the area marked by the black box (to demonstrate the veering of
the high-velocity channel path). The green vertical arrow represents the direction of the mainstream solvent.
The purple arrow indicates the route bifurcation we are concerned with, in which the dotted and solid lines
represent the potential and actual options for high-velocity channel routes, respectively.

behaviour introduced above, that is, vortex shedding will occur when the Reynolds number
rises to about 47 for flow past the circular cylinder. However, it is worth noting that critical
Reynolds number of 47 for the circular cylinder only holds for an open environment
without blockage effects. The blockage effect (Zheng 2019; Chaitanya & Chatterjee 2022)
caused by the complex pore structure herein will modify the vortex pattern and also slightly
change the corresponding critical Reynolds number. Meanwhile, the time variation of the
fluid and vortex pattern is also minuscule due to the squeezing and blockage effect of the
surrounding obstacles.

Furthermore, a variation in the injection velocity alters the choice of the high-velocity
channel by the solvent flow (marked with the black dotted box inside figure 2b), which is
closely correlated with the effect exerted by the pore topology on dynamics bifurcation.
To further explore this, we enlarge the views surrounding the marked area indicated
above and display its pressure contour in figure 4, in which the left and right panels
correspond to scenarios at U0 = 0.60 and 1.00 m s−1, respectively. The green vertical
arrow represents the direction of the mainstream solvent and the purple arrow indicates
the route bifurcation we are concerned with. The dotted and solid lines represent the
potential and actual options for high-velocity channel routes, respectively. Compared with
the case of U0 = 0.60 m s−1, one distinct phenomenon at U0 = 1.00 m s−1 is that a
sizeable area of negative pressure appears to the upper right of the purple arrows’ vicinity.
It is this negative-pressure region that causes the solvent path for U0 = 1.00 m s−1 to veer
towards the upper right. More specifically, the increase in the velocity of the mainstream
solvent (marked by the green arrow) at U0 = 1.00 m s−1 causes solutes to be carried
away from the nearby region (due to the presence of fluid viscosity), thereby creating the
negative-pressure region. This localised phenomenon coincides with the observation and
analysis of Liu et al. (2019).

Unlike the rectangular channel for which the fluid velocity does not decay, the velocity
in a fan/circular chip would decay as a the solvent moves to the far field. The reason for this
velocity decay comes from the fact that the velocity starts to diverge tangentially from the
purely radial direction of U0. At the same time, the tangential flow facilitates the diffusion
of the solute in porous media. To further explore this, we divide the flow velocity U within
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Figure 5. The solution injection rate has a differential effect on the heterogeneity of the radial and tangential
velocities. (a) Definition of radial velocities Ur and tangential velocities Ut and schematic of the ring
distribution. Every ring has an identical distance in the radial direction. (b,c) Standard deviation of the spatial
distribution for the time-averaged values of Ur and Ut within each ring at different injection rates. The definition
of ring number refers to the annotations in (a). (d,e) Time-averaged contour of normalised radial and tangential
velocities Ur/U0 and Ut/U0 at injection rates of 0.06, 0.10, 0.60 and 1.00 m s−1.

the chip into radial velocity Ur and tangential velocity Ut (cf. figure 5a), and then we show
the contour of the normalised time-averaged values mean(Ur/U0) and mean(Ut/U0) in
figure 5(d,e), which are taken as the flow field reaches stability.

Overall, the contour of mean(Ur/U0) is similar to that of |U |/U0 in figure 2, except
that there is a difference in energy level. Since the variability of mean(Ur) in different
orientations represents a difference in the ability/speed of the solvent to transport solute
to the far-field in various directions, these differences in mean(Ur) of the solvent flow will
result in a faster spread in some directions and slower spread in others. In addition, the
speed at which the solvent flow moves will inevitably affect the delivery rate of the carried
solute. Hence, this heterogeneity of the radial velocity Ur is not conducive to the uniform
diffusion of the transported substance/solute inside the chip. To clearly illustrate this issue,
the entire porous chip area is divided into five concentric and equally spaced rings, and the
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Blind zones in radiating dispersion

standard deviation of the spatial distribution of mean(Ur) within each ring is displayed in
figure 5(b). The results show that the heterogeneity of mean(Ur) within each ring becomes
amplified with increasing inlet velocity, leading to disorder in the radial movement of
solvent. The heterogeneity also gradually decreases with increasing ring number (or the
progression of the solution fluids towards the far field). In contrast, the complexity of
tangential velocity Ut aids a swift diffusion of the transported substances/solute into the
corners of the pore. Specifically, the mean(Ut/U0) contour at U0 = 0.1 m s−1 in figure 5(e)
exhibits a statistically uniform flow distribution: more specifically, the clockwise and
counterclockwise tangential velocities display intertwined distributions with no clear
spatial preference in the pore openings. Moreover, the normalised tangential velocity
increases with increasing inlet solution velocity, thus inducing richer flow organisation
with spatial and temporal complexities. This can also be demonstrated by the comparison
of the mean(Ut/U0) contour at U0 = 0.1 m s−1 and 1 m s−1 in figure 5(e). The
standard deviation for mean(Ut) in figure 5(c) shows that the inlet velocity U0 affects
the heterogeneity of the tangential velocity more than the radial velocity. In other words,
an increase in inlet velocity would accelerate the diffusion of transported solute. This
assertion will be further supported by the subsequent analysis of transport diffusion.

In the present study where the advective effect is much stronger than the diffusive effect
(Péclet number Pe � 1, as will be asserted later), for a particular inlet velocity of U0,
the solute transport remains quite far from the diffusion equilibrium at the time when the
solvent field has already reached a final flow equilibrium. The definition of solvent flow
equilibrium is the point when all the forces on the obstacles achieve (periodic) balance
after the injected solvent has reached the outer edge (namely, outer ring output in figure 2a)
of the chip in question. The diffusion equilibrium means that solute dispersive transport
has completed in the present chip, and the solute concentration contour would no longer
change with time. For example, the solvent flow field has already achieved equilibrium
while the diffusion of the solute has only just begun at 0.05 s (in figure 6c). The average
value as well as the standard deviation of the solute concentration within the whole porous
chip as a function of physical time is depicted in figures 6(a) and 6(b), respectively.
From a macro-perspective, the average solute concentration as well as the accompanying
homogeneity can reach the diffusion equilibrium faster if the inlet flow rate increases.
However, a thorough examination of the concentration values around the time when the
system reaches the equilibrium state (cf. the subplots in figure 6a,b) reveals a surprising
phenomenon: for the investigated inlet velocity U0 ranges, the final solute concentration
is smaller in cases with larger U0 (0.80 m s−1 and 1.00 m s−1) than those with smaller
U0 (0.40 m s−1 and 0.60 m s−1). More specifically, the solute concentration is smallest
at 1.00 m s−1 and largest at 0.04–0.06 m s−1 (not shown in figure 6(a) due to x-axis
coordinate constraints, but mentioned in the leftmost panel of figure 6c). Meanwhile,
at larger U0, anomalous diffusion (caused by the diffusion ‘blind zone’ described in
this paper) appears at some specific locations before dispersive transport reaches the
equilibrium state. To further explore this phenomenon, the concentration contour of the
solute at different stages (physical times) of the dispersion process for U0 = 0.06, 0.60
and 1.00 m s−1 are shown in figures 6(c)–6(e). The configuration for U0 = 0.06 m s−1 is
used here as a comparison case that is representative of the weak advective effect (due to
low injection rate).

The dispersive transport in these three cases develops until the concentration no
longer changes. To begin with, the contour in the orange dashed box shows the solute
concentration when the solvent flow field just reaches a steady state (which occurs at a
different time for each of the U0 cases). It is clear that the solvent with the higher inlet
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Figure 6. The process of dispersive transport and the variation of solute concentration over long timescales.
(a,b) The average value as well as the standard deviation of the solute concentration within the whole porous
chip as a function of physical time. High injection rate leads to increased solute diffusion efficiency, but
insufficient completion of solute diffusion at the final state. (c–e) Contour of the solute concentration at
different physical time points for injection rates of 0.06, 0.60 and 1.00 m s−1. The three diagrams in the
orange dashed boxes are the solute concentration fields when the solvent flow field just reaches a steady state.
The red ellipses denote the diffusion ‘blind zones’, which can be observed with the high injection rate.

velocity will transport the solute to the far field faster in the initial stage. In this time frame,
the dispersive transport of the solute develops more rapidly and the concentration reaches
the quasi-equilibrium state more quickly. The second panel in figure 6(c–e) shows that the
dispersive transport for U0 = 0.60 and 1.00 m s−1 have both almost achieved equilibrium
at 0.6 s, in contrast to the situation for the 0.06 m s−1 case where dispersive transport is
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Blind zones in radiating dispersion

still in the early stage at the same time (0.6 s). However, as the diffusion process continues
further, some diffusion ‘blind zones’ (marked by red elliptical regions) of the solute can
be observed in the porous chip for the higher U0 cases, i.e. the solute concentrations
in these regions remain at a low value over time. This phenomenon of diffusion ‘blind
zones’ is exacerbated as the velocity increases. As a result, the final solute concentrations
at U0 = 0.60 and 1.00 m s−1 are 0.9948 and 0.9872, respectively, in the last panel of
figure 6(d,e), markedly smaller than that at U0 = 0.06 m s−1 in figure 6(c). As mentioned
previously, in certain medical applications such as drug injection, air sterilisation and
virus removal, the presence of diffusion ‘blind zones’ are undesirable and could lead to
incomplete treatment or processing of the target area, which would then lead to subsequent
bacterial/viral regrowth. A similar situation could also occur in the chemical industry such
as with catalytic and battery engineering.

To further analyse the microscopic physical mechanism of the diffusion ‘blind zones’,
the solute contour marked by the two yellow boxes in the last panel of figure 6(e) is
enlarged and shown in figure 7(a)–7(d). The comparison of the LIC overlapping plots
between vorticity and solute concentration points to definite interrelationships between
diffusion ‘blind zones’ and vortices. However, not all vortices lead to the appearance
of diffusion ‘blind zones’. More specifically, vortical areas near the trajectories of
high-velocity channels still exhibit complete diffusion (namely, no diffusion ‘blind zones’
with lower solute concentration) even with high levels of vortex energy. However, in the
region of low-velocity micropockets, the presence of vortices in the solvent flow field serve
as a fairly reliable predictor of ‘blind zones’ for solute diffusion, even if the corresponding
vortex energy is not so remarkable. Furthermore, another insight is that the vortices near
where the large-sized diffusion ‘blind zones’ are located usually occur in pairs (with a
moderate separation distance due to the obstacle), which are termed ‘twin-vortex’ here for
ease of reference. Moreover, careful examination reveals that there is an obstacle corner
that appears between the ‘twin-vortex’ for diffusion ‘blind zones’, as marked by the red
double arrows. In contrast, two vortices in close proximity to each other do not involve
‘blind zones’ (discernible by yellow double arrows). It should be mentioned that in figure 6
the final solute concentration at 0.4 m s−1 is indeed smaller than that at 0.6 m s−1, showing
non-monotonic behaviour. In terms of general trends, higher injection rates result in more
diffusion blind zones. However, this does not imply that the final diffusion concentration
must be absolutely inversely proportional to the injection velocity. In addition to the
injection velocity, the microdynamic conditions for the formation of blind zones also
involve other factors such as blockage effect, vortex fusion and molecular motion. In this
case, there are a few individual cases that do not obey a completely monotonic trend.
Nevertheless, the overall judgment that the larger the injection velocity, the more the
diffusion ‘blind zones’ generated, is valid/reasonable.

To further investigate the diffusion disorders stemming from the morphological
diversity introduced by disordered pore structures, we peek into the pore-scale dynamics
surrounding two significant ‘blind zones’ (marked by the red-boxed lines in figure 7c,d)
and enlarge them in figure 7(e, f ). The length and direction of the small arrows in
figure 7(e, f ) represent the magnitude and direction of the solvent velocity, respectively.
The direction of those arrows indicates that at the edge of the diffusion ‘blind zone’
(marked with blue dotted ellipses), the solvent forms a circumferential flow frame
(clockwise and counterclockwise in figures 7(e) and 7( f ), respectively) around the
obstacle. Due to the presence of the obstacles, the solvent flow field forms the ‘twin-vortex’
(or two small vortices) on two sides of the obstacle (both rotating in the same direction as
the corresponding circumferential frame).

986 A16-15

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

30
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.306


Z. Cheng, F.-S. Lien, J.H. Zhang and G.X. Gu

3000

1.0

0.8

0.6

0.4

0.2

0

1.0

0.8

0.6

0.4

0.2

0

2000

1000

–1000

–2000

–3000

0

V
o
rt

ic
it

y
 (
z)

M
ea

n
(U

/U
0
)

C
/C

0

(a) (b)

(c) (d)

(e) ( f )

Figure 7. Dispersion dynamics and vorticity snapshots in the porous microstructure surrounding diffusion
‘blind zones’. (a,b) Vorticity contour in the yellow dashed box (annotated in figure 6e). Structure-induced
vortex and Hopf bifurcation-induced vortex are observed. (c,d) Solute concentration in the yellow dashed box.
The light-coloured areas are the diffusion ‘blind zones’. ‘Twin-vortex’ (with an obstacle corner or a velocity
channel between them) is marked by the red double-arrows. Two vortices (non-‘Twin-vortex’) in tight proximity
are discernible by the yellow double arrows. (e, f ) Expanded view of dispersion dynamics in the immediate
vicinity of the ‘Twin-vortex’. The direction and colouration of the arrows are correlated to the direction and
magnitude of the solution flow velocity, respectively.

We extracted the pressure at the location of the diffusion ‘blind zone’ (not shown
herein), and found the level/value to not be noticeably different from that of the
neighbouring region, and thus pressure appears not to be the main cause of the ‘blind
zone’. We further consider the formation process of vortex structures. For vortices formed
in the vicinity of high-velocity channels, this microstructure is formed instantaneously as
the solution is transported to the corresponding location, and the solute is simultaneously
entrained into the vortex structure so that the diffusion ‘blind zone’ cannot be formed.
However, the equilibrium of the solvent flow field is reached generally much sooner than
equilibrium of solute diffusion within the porous chip. Thus, for low-velocity pockets far
away from the high-velocity channel, vortex structures are formed long before the solute
spreads to this region.

In some specific situations, two vortices rotating in the same direction together with
the immediately neighbouring obstacles form the total circumferential flow frame (located
in the blue dashed ellipses in figure 7e, f ). It is important to note here that an obstacle
(such as a sharp corner) needs to exist between the corotating ‘twin-vortices’, otherwise,
vortex fusion will occur. This total circumferential flow frame is self-enclosed and will
not entrain solutes into their junctions once formed. Consequently, when solutes later
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diffuse into these pre-formed, self-enclosed circumferential microstructures generated by
the combination of the ‘twin-vortices’ as well as the obstacles, they are hindered from
penetrating into their interiors, thus creating diffusion ‘blind zones’. This suggestion
is consistent with the analysis of Young (1988) which presented that closed streamline
regions produce a hold-up and arrest of the tracer’s dispersion because the dispersion
is achieved solely by molecular diffusivity. In this case, it should be noted that if the
time scale is sufficiently long, complete diffusion could also be reached eventually. Future
experiments could be conducted to explain the mechanism behind this behaviour, and the
work and analysis presented in this paper in the meantime provide a worthwhile argument.

It is important to note that diffusion ‘blind zones’ appear only in the situation of
continuous solution injection. Upon cessation of injection, the energy of these micro vortex
structures is rapidly annihilated due to the dissipative effect of the solvent fluid itself,
and the accompanying diffusion ‘blind zones’ disappears. Based on the solute diffusion
contour shown in the scenario without ‘blind zones’ in figure 6(c) and the statistics in
figure 6(a), it is expected that the disappearance of the diffusion ‘blind zones’ would
be completed in about 0.2 s. Further calculations to accurately report this can also be
valuable for future studies. It is also worth mentioning that the severe diffusion ‘blind
zones’ accompanying intense vortex structures (caused by Hopf bifurcations) at high
injection rates is analysed previously, whereas microvortex structures in the vicinity of
some dead-end pores can also lead to slight diffusion ‘blind zones’, which is observed
here and in Young (1988).

Figure 8(a) shows the Pe contour of the flow at U0 = 0.60 m s−1, where Pe in
the high-velocity channels is between approximately 1 × 105 and 1.8 × 105. This is
comparable to the value of Pe in another experiment which studied structure-induced
vortices with a strong advective environment in the porous media (Squires & Quake 2005).
The vortices identified in that experiment are present in some dead-end pores. However,
the porous microstructure in this paper exhibits a more extensive vortex dispersion due
to the relatively large pore openings and causes the appearance of diffusion ‘blind
zones’. Figure 8(b) indicates that the decrease in solvent viscosity occurs mainly near
the high-velocity channels, but the expanded views in figure 8(c) demonstrate that there
is a correlation between the low-value areas of solvent viscosity and the high-value
region of the vorticity, not velocity. The above analysis demonstrates that the variation
in diffusion rate brought about by the viscosity change occurs mainly in the vicinity
of the high-velocity channel. However, the previous discussion has indicated that solute
dispersion in the vicinity of the high-velocity channel is instantaneous along with the
solvent movement trajectory and there is no delay (cf. figure 6 and corresponding analysis).
In contrast, in the low-velocity micropockets prevalent in the porous chip, the variation in
viscosity and the diffusion coefficient are not particularly pronounced. Consequently, it
would be expected that in the case of a high Péclet number, the non-Newtonian nature of
the solvent would not have much effect on the transport dispersion of the solute overall,
whereas the situation would be different at a low Péclet number.

To further validate the above argument, we select the above (non-Newtonian) scenario
with U0 = 1 m s−1 and set up one comparative case applying Newtonian rheology. The
kinematic viscosity is fixed at 4.0 × 10−6 m2 s−1 and all other parameters are kept
consistent with the non-Newtonian configuration. Figures 9(a)–9(c) show the contours
of LIC, solvent magnitude velocity and solute concentration, respectively, when solute
dispersion reaches equilibrium. The colour bars used for the velocity and concentration
field are consistent with those in figures 2 and 6. Figure 9(a) shows that the solvent flow
field with Newtonian rheology also generates a large number of vortices. A comparative
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Figure 8. Viscosity variation of non-Newtonian solvent owing to flow disorder at the injection rate of
U0 = 0.60 m s−1. (a) The spatial map of flow Péclet number (Pe), which is similar to the pattern of velocity.
(b) Viscosity map, showing low-ν preferential flow paths together with high-ν micropockets. (c) Expanded
view of dispersion dynamics in the immediate vicinity of the ring inlet. The velocity, vorticity and viscosity
are displayed in the three panels, respectively.

(a) (b) (c)

Figure 9. Contours of (a) LIC vector, (b) solvent magnitude velocity and (c) solute concentration, respectively,
when solute dispersion reaches equilibrium in the comparative work (U0 = 1.00 m s−1) with Newtonian solvent
rheology.

look at figures 9(b) and 2(b) further demonstrates that the overall solvent velocity field
is not significantly different between the Newtonian and non-Newtonian cases. More
specifically, the route selection of the high-velocity channel also remains essentially the
same. In addition, diffusion ‘blind zones’ occur at essentially the same locations, such as
the region marked by the red dotted box in figure 9(c).

It is mentioned that the region identified by this red-dotted box is consistent with that in
figure 7(e). We enlarge this region and show the solvent viscosity contour (superimposed
by streamlines) and solute concentration contour (superimposed by LIC and streamlines)
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Figure 10. (a) Solvent viscosity in the Newtonian case, (b) solute concentration in the Newtonian case (using
the same colour bar as figure 7e) and (c) Solvent viscosity in non-Newtonian case in the region (marked by
the red dotted-box in figure 9c) surrounding diffusion ‘blind zones’ for the comparative scenarios at U0 =
1.00 m s−1. Panel (d) exhibits the time variation of the average solvent concentration C/C0 within the chip for
both non-Newtonian and Newtonian cases.

for the Newtonian case in figure 10(a,b). As a comparison, the solvent viscosity of the
non-Newtonian case at U0 = 1.0 m s−1 is shown in figure 10(c). It can be observed
that non-Newtonian rheology does not have a considerable impact on the solvent flow
even in the microscopic view. In more detail, the arrows and scales of the streamlines
indicate that there is no significant change in the flow direction within pore openings.
Furthermore, the solvent with Newtonian rheology also forms a circumferential flow frame
surrounding the crescent-shaped obstacle, same as that with non-Newtonian rheology.
This is also corroborated by the information provided in figure 10(b). The circumferential
flow frame in the Newtonian case also includes the corotating ‘twin-vortices’ as well as
the immediately neighbouring obstacle, which is thereby accompanied by the formation
of a diffusion ‘blind zone’. The variation of the average solvent concentration C/C0
within the chip over time is also shown in figure 10(d). This overall statistics variation
of solute concentration again demonstrates a tiny discrepancy between the Newtonian and
non-Newtonian scenarios. In summary, although there are subtle differences between the
Newtonian and non-Newtonian cases regarding local velocity and concentration fields,
both macro- and micro-analyses support the argument, i.e. the non-Newtonian character
of the solvent at high Péclet number has a minor effect on the diffusion of the carried
solute in the present configuration.

986 A16-19

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

30
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.306


Z. Cheng, F.-S. Lien, J.H. Zhang and G.X. Gu

4. Conclusion

Investigating the radial dispersive transport driven by the non-Newtonian solvent in porous
substances, we discover for the first time the trade-off between diffusion efficiency and
quality at a high Péclet number, i.e. a lower inlet velocity makes dispersive transport
eventually achieve the homogeneous state, albeit less efficiently, whereas the high
inlet velocity would cause diffusion ‘blind zones’ in the microstructure, leading to
heterogeneity in the solute profiles. Overall, the increase in solution injection velocity
exacerbates the heterogeneity of the flow field within the porous chip and also leads to
structure-induced vortices at different scales. The appearance of diffusion ‘blind zones’
herein is closely correlated to two patterns of microvortex structures, i.e. vortices owing to
Hopf bifurcation at high injection rates and vortices in dead-end pores generated from the
viscosity effect. For the former pattern, under the specific microscopic flow dynamics
and structural morphological diversity, these vortices form a microfluidic system (or
‘twin-vortex’) and further lead to the self-contained circumferential flow structure with
binding of adjacent obstacles prior to the arrival of the solute, which thereby results
in diffusion ‘blind zones’. It is noted that the diffusion ‘blind zones’ will slowly and
eventually dissipate owing to the molecular diffusivity if the time scale is lengthy enough.
In addition, the heterogeneity of radial velocity suppresses solute homogeneous diffusion,
but the heterogeneity of tangential velocity contributes to its homogeneous diffusion
instead. In porous media with high Péclet numbers, the non-Newtonian nature of the
solvent in present configuration has little effect on the dispersive transport of the solute.
Future work could further consider the effect of the shapes, smoothness and curvature of
obstacles within the porous chip on the generation of vortex structure as well as diffusion
‘blind zones’.
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