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Abstract

We describe a generalization of the Hardy theorem on the motion group. We prove that for some weight
functions v, w growing very rapidly and a measurable function / , the finiteness of the Lp-norm of vf
and the L'-norm of wf implies/ = 0 (almost everywhere).
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1. Introduction

The classical uncertainty principle asserts that a function and its Fourier transform
cannot both be concentrated on intervals of small measure. In the case of the Eu-
clidean space, various forms of the uncertainty principle are known. For example,
it is known that if / e L2(R") and the supports of/ and its Fourier transform /
are bounded then / = 0 (almost everywhere). Benedicks generalized this result
to the case when both / e LP(R") and / vanish outside sets of finite Lebesgue
measure [1, Proposition 8]. For another example, the Hardy theorem [3, pp. 155-
158] yields that if a measurable function/ on R satisfies | / | < Cexp(—ax2) and
1/1 < Cexp(—by2) and ab > 1/4 then / = 0 (almost everywhere). Here we take
f (y) = (l/y/2n) f^iof(x)exp(-J—lxy)dx as the definition of the Fourier transform
of/. More generally, Cowling and Price [2] obtained the following V version of the
Hardy theorem: Suppose that 1 < p, q < oo and one of them is finite. If a measurable
function/ on R satisfies ||exp(ax2)/||LC(R) < oo and ||exp(&y2)/||z.«(R) < oo and
ab > 1/4 then/ = 0 (almosteverywhere).
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Recently, Sitaram and Sundari [7] and Sundari [8] obtained generalizations of the
Hardy theorem to some types of Lie groups. In [4], by applying similar arguments
to [7], we also got the Hardy theorem for the Cartan motion group. In this note, we
shall prove an Lp version of the Hardy theorem for the motion group, which is similar
to that of Cowling and Price. In accordance with [5], by the motion group is meant
the semidirect product K K V of a real vector space V and a connected compact Lie
group K acting orthogonally on V. In [6], Kumahara defined the Fourier transform
on the motion group by using the representations induced from the characters of V
and gave the characterization of the image of the Schwartz space under the Fourier
transform. By the way, Lp functions on the motion group can be regarded as tempered
distributions in the same fashion as in the case of the Euclidean space. These facts
allow us to compute the Fourier transforms of V functions in such a way as tempered
distributions. With the help of these and similar arguments to [4], we can get an Lp

version of the Hardy theorem for the motion group.

2. Notation and preliminaries

The standard symbols 2, R and C shall be used for the integers, the real numbers
and the complex numbers. If U is a vector space" over R, Uc, U* and U* denote its
complexification, its real dual and its complex dual, respectively. For v e Uc, SHu, 3u
and v denote its real part, its imaginary part and its complex conjugate, respectively.
For a Lie group L, L denotes the set of equivalence classes of irreducible unitary
representations of L. As usual, we use lower case German letters to denote the
corresponding Lie algebras and upper case German letters to denote their universal
enveloping algebras.

If J f is a complex separable Hilbert space, B(Jf) denotes the Banach space
comprised of all bounded operators on Jf? with operator norm || • H .̂ For T e
B(Jf) and 1 < p < oo, we indicate its Schatten p-norm by ||r| |p, that is, | |7| |p =
(tr( T* T)p/2) P, T* being the adjoint operator of T. For a complex separable Hilbert
space ji? and a a -finite measure space (X, /z), we denote by Lp(X,B(Jf?)) the
Banach space comprised of all B(J^)-valued Lp functions on X. Here the Z/-norm
II^IILP(X,B(^)) of F G Lp(X, B(Jf?)) is given by the following:

(2.1) l|F||L,(X,B(jn) = (j \\F(xWpd^(x)\ " , (1 <p < oo),

= ess sup

As is well-known, L2(X, B(J$?)) becomes a Hilbert space with inner product

(2.2) (F, G)Ll(X,B(jrn = ( tr (G(x)*F(x)) dn{x), (F, G e
Jx
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Let V be a finite-dimensional vector space over IR with inner product (•, •) and
its corresponding norm | • |. We use the same symbols (•, •) and | • | for the bilinear
form and the norm on V* induced by those on V. If £ € V*, we define X^ e V by
%(X) = (Xf, X) for all X e V. Let K be a connected compact Lie group acting
orthogonally on V. We denote by (•, •) and || • || the canonical inner product and the
corresponding norm on L2(K), respectively. In the situation described above, we call
the semidirect product G = K x V the motion group. For any g e G, we write
g = (k(g), X(g)), where k(g) e K and X(g) e V. If it 6 K and X e V, we simply
write k for (k, 0) and X for (e, X), e being the unit element in K. With these notations,
we have

(2.3) k(g~x) = k(g)-\ Xig'1) = -kig'

i) = k(gl)k(g2), X(glg2) = k(gl)X(g2)

for g,gl, g2 e G. If g e G and f e V*, we define g£ e V* by g$(X) = i-(k(g)-lX)
for all X eV.

Let n = dim V, let {^!,. . . , Xn} be an orthonormal basis for V and let |£i , . . . , £ „ }
be its dual basis for V*. Using these bases, we identify V and V* with K" and look
upon AT as a connected subgroup of SO(n). For a = (a{, ...,an) e Z"o, we define
differential operators D£ on V and £>" on V* by

where \a | = £,"=i0(;-
Finally, let c/)t be the Haar measure on T̂ normalized as fK dk — 1. We normalize

Euclidean measures on V and V* by multiplying (27r)~"/2 and denote them by dX
and d£, respectively. Then dg = rf£rfX is a Haar measure on G. For r e K, we
denote by cf(r) and Xr its degree and its character, respectively and put £r = d(r)xx.

3. The Fourier transform on G

In this note, according to [4-6], we shall define the Fourier transform on the motion
group G = K « V by using the representations induced from the characters of V
instead of using the irreducible unitary representations for G. Let | € V*. Define the
action n^ of G on L2(K) by

(3.1) (n,:(g)<p)(k) = e^k-'Xig))<p(k(g)-lk), (<p € L\K)).

Then (n^, L2(K)) is a (reducible) unitary representation for G. It is to be noted that
any irreducible unitary representation for G is contained in JTJ for some £ 6 V* as an
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irreducible component. For/ e Ll(G), we define its Fourier transform by

(3.2)

If / € C™(G), the set of all smooth functions on G with compact support, the
following inversion formula holds (compare with [6]).

(3.3)
v

In the following, for all r € K, we fix a representative of r and by abuse of notation,
write T for it again. Since 7i^\K is the left regular representation of K on L2(K), it
follows from the Peter-Weyl theorem that

(3.4) ne\K = ]Td(r)T, L2(K) = £ V? <8> Vr.
T<=K

Here Vr denotes the representation space of T. If T <g> v € V* <g> Vt, we set
1u) g C°°(K). Letge G and define

(3.5) cr(g) = \X(g)\, 4>!(g) = 4 e^W*^dk.
J

Let r,, r2 € K and put ^ = Homc(Vr2, Vr,). We denote by (•, •)? and || • \\y the
canonical inner product and the corresponding norm on ~f respectively, that is, for
S, T 6 y, (S, T)y = tr(T*S) and | |7 | |^ = (T, T)r. For T e f . w e set

,l,g) = f
JK

(3.6) E(T

Then it is known, [4, Lemma 3.1], that the function £ i-> E{T,%,g) can be extended
to a holomorphic function on Vc*. We list here the essential properties of the functions
a, <Z> and E: For a € 2%, £ € Vc*, it, *,, Jt2 6 ^ and g e G,

(3.7)

*e(*ig*2) = ^ ( g ) ,

), E(T, $, g)* =

vx) - (E(T*T2, %, g)v2, V i ) T l .

Here (•, -)n is an abbreviation of {•, •) Vr and when there is no possibility of confusion,
we shall use similar abbreviations.
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We shall now summarize some known facts concerning the Schwartz spaces
on G and 3?(V*) on V*. Let L and R be the left and right regular representation of
K on L2{K) and use the same symbols their differentials. As usual, we look upon
any element A as a right invariant differential operator on K. Then ^ operates on
L2(K) in the sense of distribution. Let ^(G) be the set of all smooth functions / on
G satisfying the following condition: For any a € Z"o, r 6 IR>o and y, y' € .£,

(3.8) sup(l +a(g)2y\Da
xL(y)R(y')f(g)\ < oo.

As is well-known, the system of seminorms given by the left-hand side of (3.8) makes
V(G) into a Frechet space. Let 2f{ V*) be the set of all B(L2(AT))-valued smooth
functions F on V* satisfying the following conditions:

(i) For any a e 2%, r e R>0 and y, y' € £, D°F(%) leaves C°°(K) stable and it
is satisfied

(3.9) sup(l + \S\2)rlyDIFG)y'l < oo;

(ii) for any k € K and £ e V*,

(3.10) «WF(?) = F(kt-)R(k).

The system of seminorms given by the left-hand side of (3.9) also makes 2f{ V*) into
a Frechet space. With these notation, the following proposition holds.

PROPOSITION 3.1 ([6, Theorem 3]). The Fourier transform is a topological isomor-
phism of ^(G) onto 2f(V*). The inverse Fourier transform is given by the formula
in (3.3).

Let "^"(G) and 2f'( V*) denote the sets of all continuous linear functional on "^(G)
and 2f{ V*), respectively. Following [5], we define the Fourier transform on ^'(G)
by the transposed inverse of the Fourier transform on if (G) and denote it also by &'.

COROLLARY 3.2 ([5, Proposition 4]). The Fourier transform is a topological iso-
morphism of%"(G) onto 2"(V*).

Let T e W(G) and i b i 2 6 K. We define rr,,r2 € T{G) by Tri,l2[0] = 7[fr, * 4> *
| r J for <j> € ^(G). Since £r,,r26* &, * 4> * £r2 converges absolutely to <p in #(G) [9,
Theorem 4.2.2.1], the following proposition is valid.

PROPOSITION 3.3. Retain the above notation. Then we have for T e ^"(G) that

and the above series converges absolutely to T in the weak topology of *#"
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In what follows we simply write jSf(V*) = L"(V*, B(L2(K))). We first remark
that i?(G) c L"(G) and 2T(V*) c i f (V*) for all 1 < p < oo. And for F e
J8f( V) and ?>,, ^ e L2(tf), we have

and whence

(3.12) IKFt t^ .^ l ly tv ) < \\F\\xnv)\\<pA\\<P2\\.

For / e Lp(G) and F e if"(V*), we define 7} e «"(G) and TF e T(V*) by
setting

(3.13) Tf[<f>]= ff(g)4>(g)dg, (<p
Jo

TF[<P]= I ti(F(l;)<i>($))d^
Jv

The following is an easy consequence of Corollary 3.2.

COROLLARY 3.4. Retain the above notation. Let f € L\G) and suppose f €
JS?'(V*). Then f{g) = i^~lf){g) {almost everywhere).

PROOF. Noting f (g)<b(£)ni{g)~x € Ll(G x V*,B(L2(K))), we have for any
<t> e £?T(V*)thai

(3.14) 3?Tf[4>] = Tf[3r-l<P] = J f(g)(j ti (<P(l)n^g)-1) d^j dg

= f tr

where /(,g) = f (g ' ) . By the same computation as above, we also obtain that
^•- ' 7> = T(&-iFy. Accordingly we have from Corollary 3.2 that

(3.15) 7> = f-\?Tf) = &-x Tf = T(^l/r,

and this proves the assertion. •
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4. The main theorem

Let 1 < p < oo andp' denote its conjugate exponent, that is, \/p + l/p' = 1. Let
a > 0 and le t / be a measurable function on G such that l ^ " ' * ' / ^ ) ! ^ ^ ) (= C/>
say < oo). Then/ e L\G) follows from the Holder inequality. Let ru r2 e K and
put y = Homc( VI2, Vri). For a e ~l\ and 7 € ^ , it follows from (3.7) and the
Holder inequality that

f ( f • \1/p'

JG y \JG /

< Cf\\T\\y I /"(I +<r(g)Ylal f e-ap'a(g)1-"'mk~'X(g))dkdg\

Or r \ xlv'

(1 + |A | Y I e "*" " dkdX I
v Jx /

/ /" /" , , , , \1/p'
/~i UT'll I I I / I i I V | 2 \ p | a | s,—ap \X — p 3c (A X) J v J/^ 1

5 t-/1| / ||y I I I u + |A | ; e aA an i
\JKJV /a \ !//>'

(1 + |X|2)"'la|
e-^'|X| - ^ ( X ) r f Z j < oo.

Thus £>« / ? / (g)E(T, f, j ) rfg = / G 7 (g)D^E(T, §, g) dg and, since E(7\ $, g) is
holomorphic on Vc*, so is fGf (g)E(T,%, g) dg. By using similar arguments to the
proof of Lemma 2.1 in [7], we can prove the following lemma.

LEMMA 4.1. Let 1 < p < oo. Let h be an entire function on C such that

\h(z)\<C[[ea^ , mx)\\u»') < C
7 = 1

for some a > 0 and C > 0. Then h(z) is a constant function on C. Moreover, if
p < oo then h(z) = 0.

PROOF. By dilating z i-> (+Jn/a)z, we may assume a = n. In case n = 1 and
p = oo, the assertion is an easy consequence of the Phragmen-Lindelof theorem
and the Liouville theorem. In case n > 1 and p = oo, the assertion is obtained by
the same arguments as the proof of Lemma 2.1 in [7]. In case n = 1 and p < oo,
the assertion was given by Cowling and Price [2]. Thus it remains only to prove the
assertion for the case when n > 1 and p < oo. The Fubini theorem yields that for
almost all (t2, ...,tn) € W~l, the function x H * h(x, t2,..., tn) be longs to LP(W).
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Noting

(4.2)

for z\ € C and applying the same discussion as in [2] to the function z\ •->•
h(z\, t2,..., tn), we obtain h{zu t2,...,tn) = 0 for all z\ e C. The continuity of
h implies h{z\, x2,... ,xn) = 0 on C x K""1 and the theorem of identity implies
h(z) = 0 on O . •

We shall first show the following proposition.

PROPOSITION 4.2. Let 1 < p, q < oo. Let f be a measurable function on G such

that

for C > 0, a > Oandb > 0. Ifab > \/Athenf = 0 {almost everywhere). Moreover,
ifq<oo and ab> 1/4 then / = 0 {almost everywhere).

PROOF. We first assume ab > 1/4. Let ru ?2~ e £ and put V = HomcCV^, VZi).
Let Ti e VT* and u, € VT, (i = 1,2) be such that their norms are equal to 1. We have
from (4.1) that

(4.3) v2,v

f{g)E{T*T2,l,g)dg

Up'

0 \1/p'
dX) ,

where Cf = | |eaor<*)2/(^)|LP(G)- Taking into account \X^\ = |3£|, we see that

a ^ UP'
—ap'\X\2—p'(

e ^

= Cfe ^ \ I e

\Jv

a \UP

UP'

Up'
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Since the integral appeared in the last expression in (4.4) has to be bounded, we can
find a constant C\ > 0 such that

(4.5) |{A*)*W <Pr,^)\ < Q e ^ = C,

for all £ = (§i , . . . , £„) e V*. Let /i(£) be a holomorphic function on V* defined by

(4.6) *(£)

Then (4.5) is written as

(4.7)

On the other hand, it follows from the assumption of/ and (3.12) that for £ e V*,

(4.8) l ^

In case aft > 1/4, the Holder inequality implies

(4.9) ||A(f )| | t , (v) < I«~(*"I/*I)l*|2||^(v.)I

and hence we can find a constant C2 > 0 such that if ab > 1/4 then

(4.10) ll*(£)||i,(v> < C2.

Applying Lemma 4.1 together with (4.7) and (4.10), we can find a constant C3 such
that /i(£) = C3 and moreover if q < oo then C3 = 0. Assume now that q = oo and
aft > 1/4. We have from the definition of h(£) that if | = (f, £„) 6 V* then

(4.11)

In case q = ex), the assumption of/ is expressed as

n

(4.12) K/topii*,,. ?rl9Bl)| < Ce-*l?|2 = C \ \ «"**/ (almost everywhere),

and the continuity of the left-hand side in (4.12) shows that (4.12) holds for all % € V*.
Accordingly we obtain

(4.13) I C a l J ] ^ - 1 ^ < C,
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and, since b — 1 /(4a) > 0, this is impossible unless C3 = 0.
Summarizing these, we see that if ab > 1/4 and q < oo, or if ab > 1/4 and

q = oo then

(4.14) /

Interchanging / and / and applying the same discussion as above, we have from
(3.14) and (4.14) that

(4.15) ^7>[*] = fy,-!*] = [ tr ((n"te)*($)) </£ = 0,

for all $ € 3T(V*). From Corollary 3.2, we have Tf[<p] = 0 for all $ e ^(G) and
hence / = 0 (almost everywhere). •

If p = q — oo, Proposition 4.2 takes on the following form.

COROLLARY 4.3 ([4, Theorem 4.1]). Let f be a measurable function on G such
that

\f(g)\ < Ce-aa(g)2 (almosteverywhere),

11/(1)lloo < Ce~m2 (almosteverywhere),

for C > 0, a > 0 and b > 0. If ab > 1/4 then / = 0 (almost everywhere).

Let p,q,a,b and / be as in Proposition 4.2. In case p < oo, q = oo and
afe = 1/4, Proposition 4.2 dose not yield / = 0 (almost everywhere). However in
this case, with the help of Proposition 3.3 and Corollary 3.4, we can prove / = 0
(almost everywhere). We first consider the case when / is of trace class.

LEMMA 4.4. Let 1 < p < oo and let f be a measurable function on G such that

\\eaa(8)2f(8)\\LP(C) < C U / O U < Ce-W\

for C > 0, a > 0 and b > 0. Iff is of trace class and ab = 1/4 then f = 0 (almost
everywhere).

PROOF. Under these assumptions, in view of (4.11), we can write / (£ ) = e~*lt|2 T
for some T e B(L2(K)) of trace class. For each <p e L2(K), k e K and g e G, we
have

(4.16) I e-m\itH(g)-lT(p)(k)dH= I
Jv Jv
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= e-^^r'x(^/4b(T(p)

= e-aa(g)\T<p)(k(g)k),

and thus by the Fubini theorem,

(4.17) I f e - b m \ ^ l ^
Jv JK

= I [
JK J

[
K Jv

= f e-aa^\Tcp){k(<g)k)^k)dk.
JK

Take [cpj : j e 2>0} to be an orthonormal basis for L2(K). Since e~b^ Tn^(g)~l e
.£" (V) , we have

(4.18)
Jv j^S

-(*>2 / (T<pj
JK

Therefore, we obtain from Corollary 3.3 that/ (g) = <ra<7<«>2 tr (L(k(g))~l T) (almost
everywhere). From the assumption of/ in Proposition 4.2, we have

(4.19) \\eaaw2f(8)\\mG) = \*{L(k(g))-lT)\U{G) < C,

and, since p < oo, this is impossible unless 7 = 0. Thus we conclude / = 0 (almost
everywhere). •

Combining Proposition 3.3, Proposition 4.2 and Lemma 4.4, we finally have the
following theorem.

THEOREM 4.5 (Lp version of the Hardy theorem). Suppose 1 < p, q < oo and one
ofp, q is finite. Let f be a measurable function on G such that

for C > 0, a > 0 and b > 0. Ifab > 1/4 then / = 0 (almost everywhere).

PROOF. We use f to denote the contragradient representation of r € K. It remains
only to prove the assertion for the case when p < oo, q = oo and / is not always of
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trace class. However, replacing / by £ri * / * £T2 if necessary, we can get the desired
result. Suppose that p < oo, q = oo and / is not of trace class. We can easily
check that £r, * / * fl2 (xx, r2 e K) satisfies the same assumptions as in Lemma 4.4.
Thus taking into account 7}iT|it2 = 7̂ . tf^. , we deduce from Proposition 3.3 and
Lemma 4.4 that / = 0 (almost everywhere). •

In case K = [e] and V = IR", the motion group G = K K V coincides with K"
and the Fourier transform given by the formula in (3.2) coincides with the Euclidean
Fourier transform on R".

COROLLARY 4.6. Suppose that 1 < p, q < oo and one ofp, q is finite. Let f be a
measurable function on W such that

for C > 0, a > 0 and b > 0. Ifab > 1/4 then / = 0 (almost everywhere).
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