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Abstract. In this paper, we consider the question about length distortions under
quasiconformal mappings with respect to quadratic differential metrics. More precisely,
let X and Y be closed Riemann surfaces with genus at least 2, and f : X → Y being
a K-quasiconformal mapping. Given two quadratic differential metrics |q1| and |q2|
with unit areas on X and Y respectively, whether there exists a constant C depending
only on K such that 1

C lq1 (γ ) ≤ lq2 (f (γ )) ≤ Clq1 (γ ) holds for any simple closed curve
γ ⊂ X. Here lqi (α) denotes the infimum of the lengths of curves in the homotopy class
of α with respect to the metric |qi|, i = 1, 2. We give positive answers to this question,
including the aspects that the desired constant C explicitly depends on q1, q2 and K,

and that the constant C is universal for all the quantities involved.

2000 Mathematics Subject Classification. Primary 30F45; Secondary 51M25.

1. Introduction. Let us fix some notations. Let S be a closed surface of genus g ≥
2. Denote by T(S) the Teichmüller space of S, and denote by M(S) the moduli space
of S. For X ∈ T(S), let Q(X) be the space of holomorphic quadratic differentials on X.

Each non-zero q ∈ Q(X) induces a metric |q(z)||dz|2 on X, which is called the flat metric
or the quadratic differential metric. The theory of holomorphic quadratic differentials
and its connections with the Teichmüller theory have been studied extensively (see, e.g.
[4, 6, 9]). In recent years, the theory of quadratic differentials and quadratic differential
metrics has been studied actively from some new perspectives (see, e.g. [2, 8, 10]).

In this paper, we consider the question of length distortions under quasiconformal
mappings with respect to quadratic differential metrics. Before stating our main results,
we recall the following classical result of Wolpert [11, Lemma 3.1] on distortions under
quasiconformal mappings of hyperbolic length, length with respect to the hyperbolic
metric.

THEOREM A. ([11]) Let f : X → Y be a K-quasiconformal mapping from X to Y. Then
for any closed curve γ ⊂ X, we have

lX (γ )
K

≤ lY (f (γ )) ≤ KlX (γ ),

where lX (γ ) and lY (f (γ )) are the infima of hyperbolic lengths of curves homotopic to γ

and f (γ ) on X and Y respectively.

In this paper, we consider the following question about length distortions with
respect to the quadratic differential metrics: Let f : X → Y be a K-quasiconformal
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mapping between Riemann surfaces X and Y with genus g ≥ 2. Endow Q(X) and
Q(Y ) with the L1-norm, and let Q1(X) and Q1(Y ) be the unit spheres in Q(X) and
Q(Y ) respectively. Then the question is as follows: Given two holomorphic quadratic
differentials q1 ∈ Q1(X) and q2 ∈ Q1(Y ) and hence two quadratic differential metrics
|q1| and |q2| on X and Y respectively, whether there exists a constant C depending only
on K such that

lq1 (γ )
C ≤ lq2 (f (γ )) ≤ Clq1 (γ )

holds for any simple closed curve γ ⊂ X, where lq1 (γ ) and lq2 (f (γ )) denote the infima
of the lengths of curves in the homotopy class of γ and f (γ ) with respect to metrics
|q1| and |q2| respectively?

We will give three positive answers to this question. Firstly, in Theorem 1, we give a
specific answer, where the desired constant C depends explicitly on q1, q2 and K. Recall
that for q ∈ Q(X), ||q||∞ = supX

|q(z)|
λ(z) is Bers’ sup-norm of q, where the supremum is

taken over X and λ(z)|dz|2 is the hyperbolic area element on X.

THEOREM 1. Let f : X → Y be a K-quasiconformal mapping. Then given two
quadratic differentials q1 ∈ Q1(X) and q2 ∈ Q1(Y ), there exist constants C1 =
2M(X)

√
π (g − 1)||q2||∞||q1||∞ and C2 = 2M(Y )

√
π (g − 1)||q2||∞||q1||∞ depending

only on q1 and q2 such that

lq1 (γ )
C2K

≤ lq2 (f (γ )) ≤ C1Klq1 (γ )

holds for any simple closed curve γ ⊂ X, whereM(X) andM(Y ) are constants depending
only on X and Y respectively.

Next, in Theorem 2, we give a general answer where the desired constant C depends
only on K and is universal for all the q1 ∈ Q1(X) and q2 ∈ Q1(Y ).

THEOREM 2. Let f : X → Y be a K-quasiconformal mapping. Then there exists a
constant C = C(X, Y ) depending only on X and Y such that for any two quadratic
differentials q1 ∈ Q1(X) and q2 ∈ Q1(Y ),

lq1 (γ )
CK

≤ lq2 (f (γ )) ≤ CKlq1 (γ )

holds for any simple closed curve γ ⊂ X.

Finally, in Theorem 3, we improve Theorem 2 so that the desired constant C is
universal for all the ingredients involved.

THEOREM 3. For any ε > 0, there exists a constant Cε depending only on ε such that for
any X, Y ∈ Mε(S), any K-quasiconformal mapping f : X → Y, and any two quadratic
differentials q1 ∈ Q1(X) and q2 ∈ Q1(Y ),

lq1 (γ )
CεK

≤ lq2 (f (γ )) ≤ CεKlq1 (γ )

holds for any simple closed curve γ ⊂ X.
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2. Preliminaries. In this section, we give some necessary backgrounds on related
topics. For references, see [3, 4, 7, 9].

Teichmüller space, moduli space. Let S be a closed surface of genus g ≥ 2.

The Teichmüller space T(S) of S is the space of equivalence classes of marked
Riemann surfaces (X, f : S → X), where two markings f1 : S → X1 and f2 : S → X2

are equivalent if there exists a conformal mapping c : X1 → X2, which is homotopic
to f2 ◦ f −1

1 . The moduli space M(S) of S is obtained by forgetting the markings in
T(S). Throughout the paper, we often drop the marking notations for points in T(S),
remembering that a marked surface is the same as a surface where we ‘know the names
of the curves’. For any ε > 0, let Mε(S) be the ε-thick part of M(S), which consists of all
the Riemann surfaces whose injectivity radius is at least ε. By Mumford’s compactness
theorem, Mε(S) is compact.

For X ∈ T(S), the space Q(X) of holomorphic quadratic differentials on X is
a complex vector space of complex dimension 3g − 3 (real dimension 6g − 6), and
the unit sphere Q1(S) is a compact space with real dimension 6g − 7. Let Q(S) →
M(S) be the moduli space of holomorphic quadratic differentials, where the projection
π : Q(S) → M(S) sends (X, q) to X. Denote by Q1(S) → M(S) the moduli space of
holomorphic quadratic differentials with unit L1-norm. Equivalently, we may view
Q1(S) = ⋃

X∈M(S) Q1(X). For ε > 0, let Qε(S) = {q ∈ Q1(S) : π (q) ∈ Mε(S)}. Then it
is well known that [5] Qε(S) is compact.

Quadratic differential metric. Given a non-zero q = q(z)dz2 ∈ Q(X), there are 4g −
4 zeros of q counted with multiplicities. We call a point p ∈ X a critical point of q if it
is a zero of q, otherwise it is called a regular point. Near each regular point, there is
the so-called natural parameter w of X such that q(z)dz2 = dw2.

A non-zero q ∈ Q(X) induces a metric on X, which is locally given, in terms of
the local parameter z of X, by |q(z)| 1

2 |dz|. We call this metric the flat metric, or the
quadratic differential metric. The quadratic differential metric is complete on X. For
a closed curve γ ⊂ X, denote

|γ |q =
∫

γ

|q(z)| 1
2 |dz|,

|γ |v =
∫

γ

|
{
q(z)

1
2 dz

}|
and

|γ |h =
∫

γ

|�{
q(z)

1
2 dz

}|,
where 
z and �z represent the imaginary and real parts of z respectively. Let

lq(γ ) = inf
α∼γ

{|α|q},
vq(γ ) = inf

α∼γ
{|α|v}

and

hq(γ ) = inf
α∼γ

{|α|h},
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where the infimum is taken over all curves α in the homotopy class of γ. Then lq(γ )
is called the q-length or quadratic differential length of γ, vq(γ ) is called the vertical
length (or q-height) of γ and hq(γ ) is called the horizontal length (or q-width) of γ.

A saddle connection of q = q(z)dz2 is by definition a geodesic segment whose
endpoints are critical points without passing through any critical point in its interior.

The existence and uniqueness of the geodesic in each freely homotopy class of a
closed curve is as follows. Let q ∈ Q(X) and γ ⊂ X be a closed curve, then there exists
a unique q-geodesic in the freely homotopy class of γ, except for the case that γ is one
of the continuous families of closed geodesics which sweep out a flat cylinder. In the
latter case, each of the two boundary curves of the cylinder consists of a finite number
of saddle connections. To sum up, in both cases, the geodesic representative in the free
homotopy class of a closed curve γ consists of a finite number of saddle connections.

Measured foliation. A measured foliation F on a topological surface S of genus
g ≥ 2 is a singular foliation on S where the singularities are isolated and k-pronged (k ≥
3), equipped with a measure μ on transverse arcs, which is invariant under translation
along leaves (see [3, Sections 5.3, 5.4, 6.5 and 6.6] for more details). The space MF
of equivalence classes of measured foliations is defined where two measured foliations
F1 and F2 are equivalent if i(γ,F1) = i(γ,F2) for every simple closed curve γ, where
i(·, ·) is the intersection number. Two classes of measured foliations [F1] and [F2]
are projectively equivalent if there is a constant r > 0 so that i(γ,F1) = ri(γ,F2) for
every simple closed curve γ. The space of projective equivalence classes of measured
foliations is denoted by PMF .

We have the following descriptions of MF and PMF .

THEOREM B. ([10]) MF is homeomorphic to a 6g − 6-dimensional ball. PMF is
homeomorphic to a 6g − 7-dimensional sphere.

There is a special class of measured foliations F with the property that the
complement of critical leaves (those passing through singularities) is homeomorphic to
a cylinder. Foliation’s leaves on the cylinder are all freely homotopic to a single simple
closed curve γ. Such a foliation is completely determined as a point in MF by height
h of the cylinder (h = i(A,F), the infimum of

∫
A F for arcs A with endpoints on the

boundary of the cylinder) and the homotopy class of γ. Denote this foliation by Fγ,h.

Let S(S) be the set of all homotopy classes of simple closed curves on S. Then we have
the following.

THEOREM C. ([10]) There is an embedding S(S) × �+ → MF which sends (γ, h) to
Fγ,h. The image of this embedding is dense in MF . The image of S(S) in PMF is dense.

Extremal length, Jenkins–Strebel differential. Let X be a Riemann surface and γ

be a simple closed curve. Then the extremal length extX (γ ) of γ is defined by [1]

sup
ρ

{
l2
ρ(γ )

Aρ

}
,

where the supremum is taken over all conformal metrics ρ = ρ(z)|dz|2 on X with area
0 < Aρ = ∫

X ρ < ∞, and lρ(γ ) is the infimum of ρ-length of simple closed curves
homotopic to γ.

Note that [7] both hyperbolic length and extremal length can be extended
continuously from simple closed curves to measured foliations.
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Jenkins and Strebel [9] showed that there is an extremal metric which realises the
supremum in the definition of extremal length, and that such a metric is a quadratic
differential metric |q| for some q ∈ Q(X). Such a quadratic differential is called the
Jenkins–Strebel differential of γ on X, and is denoted by φ(γ, X).

3. Some lemmas. For a given Riemann surface X, we give a uniform comparison,
for all q ∈ Q1(X), between the corresponding hyperbolic lengths and the quadratic
differential lengths of simple closed curves.

LEMMA 1. There exists a constant κ = κ(X) depending only on X such that for any
q ∈ Q1(X) and any γ ∈ S(X), we have

lX (γ )
κ

≤ lq(γ ) ≤ κlX (γ ).

Proof. The proof follows from a compactness argument. Consider the function

F(q,F) = lq(F)
lX (F)

.

By Theorem B, it is well defined on the compact space Q1(X) × PMF . F(q,F) is
positive and continuous, and hence is uniformly bounded. Consequently, from the
embedding of S(X) into MF as in Theorem C, lq(γ )/lX (γ ) is uniformly bounded for
all q ∈ Q1(X) and γ ∈ S(X).

The following result improves Lemma 1. It gives uniform comparisons on Mε(S)
and Qε(S).

LEMMA 2. For any ε > 0, there exists a constant Cε depending only on ε such that for
any X ∈ Mε(S) and any q ∈ Q1(X),

lX (γ )
Cε

≤ lq(γ ) ≤ Cε lX (γ )

holds for all simple closed curve γ.

Proof. Consider the positive and continuous function

F(X, q,F) = lq(F)
lX (F)

defined on Mε(S) × Qε(S) × PMF . From Theorem B and the compactness of Mε(S)
and Qε(S), F(X, q,F) is bounded uniformly.

Since saddle connections are Euclidean straight line segments measured in the
quadratic differential metric, we have the following description of the relation of q-
length, q-height and q-width. This can be taken as a ‘Pythagoras theorem’ for quadratic
differential metric.

LEMMA 3. Let q ∈ Q(X) and γ ⊂ X be a simple closed curve. Suppose γ̃ = ⋃n
i=1 γi is

the geodesic representative (in the quadratic differential metric |q|) of γ, where γi are
saddle connections. Then for each γi, we have

lq(γi) =
√

(|γi|v)2 + (|γi|h)2
, i = 1, 2, . . . , n.
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Recall that a quasiconformal mapping f : X → Y is the Teichmüller mapping
if its Beltrami coefficient μf = fz/fz is of the form μf = kq/|q| for some constants
k ∈ [0, 1) and q ∈ Q(X). These mappings are important since they are unique dilatation
minimizing quasiconformal mappings in their homotopy classes. To end this section,
we record the following result (see e.g. [6]) for later use. It says that the Teichmüller
mappings are essentially affine with respect to natural choices of coordinates.

LEMMA 4. Let f : X → Y be a Teichmüller mapping with maximal dilatation K. Then f
determines a unique (up to a multiplicative positive constant) q1 ∈ Q(X), which is called
the initial differential of f, and correspondingly a unique q2 ∈ Q(Y ), which is called the
terminal differential of f, with the following properties:

(i) if w = ξ + iη is a natural parameter of q1 at p, then there exists a natural
parameter ζ = σ + iτ of q2 at f (p) such that f is locally represented as

ξ �→ σ = K
1
2 ξ, η �→ τ = K− 1

2 η. (1)

(ii) f maps the zeros of q1 to those of q2, and the order of q1 at a zero p ∈ X equals
the order of q2 at f (p).

4. Proof of the main results.

THEOREM 1. Let f : X → Y be a K-quasiconformal mapping. Then given two
quadratic differentials q1 ∈ Q1(X) and q2 ∈ Q1(Y ), there exist constants C1 =
2M(X)

√
π (g − 1)||q2||∞||q1||∞ and C2 = 2M(Y )

√
π (g − 1)||q2||∞||q1||∞ depending

only on q1 and q2 such that

lq1 (γ )
C2K

≤ lq2 (f (γ )) ≤ C1Klq1 (γ )

holds for any simple closed curve γ ⊂ X, whereM(X) andM(Y ) are constants depending
only on X and Y respectively.

Proof. We need two inequalities on comparisons of hyperbolic length and quadratic
differential length. Generally, let R be a Riemann surface, q ∈ Q1(R), γ ⊂ R be a
simple closed curve and λ(z)|dz|2 be the hyperbolic metric on R.

Firstly, we have the following estimate:

|γ |q =
∫

γ

√
|q(z)||dz|

=
∫

γ

√|q(z)|√
λ(z)

√
λ(z)|dz|

≤
√

||q||∞
∫

γ

√
λ(z)|dz|

=
√

||q||∞|γ |λ,

where ||q||∞ = supR
|q(z)|
λ(z) is Bers’ sup-norm, which is finite since R is closed.

Consequently,

lq(γ ) ≤
√

||q||∞lR(γ ). (2)
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Secondly, from the definition of extremal length and the extremality of the metric
induced by the Jenkins–Strebel differential φ(γ, R) ∈ Q1(R) of γ, we get

l2
R(γ )

2π (2g − 2)
≤ extR(γ ) =

l2
φ(γ,R)(γ )

||φ(γ, R)||1 = l2
φ(γ,R)(γ ), (3)

where, by Gauss–Bonnet’s formula, 2π (2g − 2) is a hyperbolic area of R. Therefore,
in order to compare lR(γ ) with lq(γ ), we need to compare lφ(γ,R)(γ ) with lq(γ ). For
this, observe that since Q(R) is of finite dimension, the norms || · ||1 and || · ||∞ are
equivalent, i.e. there exists a constant L = L(R) such that

1
L

||q||1 ≤ ||q||∞ ≤ L||q||1 (4)

holds for any q ∈ Q(R). Then (2) and (4) imply that

lφ(γ,R)(γ ) ≤
√

||φ(γ, R)||∞lR(γ ) ≤ L
√

||q||∞lR(γ ) (5)

holds for any q ∈ Q1(R) and any γ. Thus, from Lemma 1 and (5) we get the following
comparison of lφ(γ,R)(γ ) with lq(γ ),

lφ(γ,R)(γ )
lq(γ )

= lR(γ )
lq(γ )

lφ(γ,R)(γ )
lR(γ )

≤ κ(R)L(R)
√

||q||∞. (6)

Consequently, we deduce from (3) and (6) that

lR(γ ) ≤ 2κ(R)L(R)
√

π (g − 1)||q||∞lq(γ ) (7)

holds for any q ∈ Q1(R) and any γ. This finishes our general comparisons between
lR(γ ) and lq(γ ).

Now we are ready to give the proof of the theorem. We conclude from Theorem A,
(2) and (7) that

lq2 (f (γ )) ≤
√

||q2||∞lY (f (γ ))

≤
√

||q2||∞KlX (γ )

≤ 2κ(X)L(X)
√

π (g − 1)||q2||∞||q1||∞Klq1 (γ ).

Similarly, we have

lq1 (γ ) ≤
√

||q1||∞lX (γ )

≤
√

||q1||∞KlY (f (γ ))

≤ 2κ(Y )L(Y )
√

π (g − 1)||q2||∞||q1||∞Klq2 (f (γ )).

Consequently, the desired result follows from the above two inequalities.

As a special case, when considering the distortion under the Teichmüller mapping
with respect to the metrics induced by initial and terminal differentials, we note the
following observation.
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PROPOSITION 1. Let f : X → Y be a Teichmüller mapping whose maximal dilatation is K.

Let q1 ∈ Q1(X) and q2 ∈ Q1(Y ) be the initial and terminal differentials of f, respectively.
Then for any simple closed curve γ ⊂ X, we have

lq1 (γ )√
K

≤ lq2 (f (γ )) ≤
√

Klq1 (γ ).

Proof. Let γ̃ = ⋃n
i=1 γi be the q1-geodesic representative of γ, where γi are saddle

connections of q1, i = 1, 2, . . . , n. Then,

lq1 (γ ) =
n∑

i=1

lq1 (γi). (8)

By Lemma 4, f (γ̃ ) is the q2-geodesic representative of f (γ ), with f (γi) being the saddle
connections of q2, i = 1, 2, . . . , n. Consequently,

lq2 (f (γ )) =
n∑

i=1

lq2 (f (γi)). (9)

From Lemma 3, we have

lq1 (γi) =
√

(|γi|v)2 + (|γi|h)2
, i = 1, 2, . . . , n, (10)

lq2 (f (γi)) =
√

(|f (γi)|v)2 + (|f (γi)|h)2
, i = 1, 2, . . . , n. (11)

In view of (1), (11) becomes

lq2 (f (γi)) =
√

K−1(|γi|v)2 + K(|γi|h)2
, i = 1, 2, . . . , n. (12)

Consequently, from (10) and (12) we conclude that

K− 1
2 lq1 (γi) ≤ lq2 (f (γi)) ≤ K

1
2 lq1 (γi), i = 1, 2, . . . , n. (13)

Therefore, we get the desired result from (8), (9) and (13).

THEOREM 2. Let f : X → Y be a K-quasiconformal mapping. Then there exists a
constant C = C(X, Y ) depending only on X and Y, such that for any two quadratic
differentials q1 ∈ Q1(X) and q2 ∈ Q1(Y ),

lq1 (γ )
CK

≤ lq2 (f (γ )) ≤ CKlq1 (γ )

holds for any simple closed curve γ ⊂ X.

Proof. The result follows from the following observation. From (4), we see that both of
the two constants C1 and C2 in Theorem 1 can be replaced by a constant C = C(X, Y )
depending only on X and Y, where C = C(X, Y ) is universal for all q1 ∈ Q1(X) and
q2 ∈ Q1(Y ).

From another viewpoint, the result also follows from Theorem A and
Lemma 1.
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Since Lemma 2 improves Lemma 1, from Theorem A and Lemma 2 we obtain the
following improvement of Theorem 2.

THEOREM 3. For any ε > 0, there exists a constant Cε depending only on ε such that for
any X, Y ∈ Mε(S), any K-quasiconformal mapping f : X → Y, and any two quadratic
differentials q1 ∈ Q1(X) and q2 ∈ Q1(Y ),

lq1 (γ )
CεK

≤ lq2 (f (γ )) ≤ CεKlq1 (γ )

holds for any simple closed curve γ ⊂ X.
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