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DISTINGUISHEDNESS OF WEIGHTED FRECHET SPACES
OF CONTINUOUS FUNCTIONS

by FRANCOISE BASTIN

(Received 5th July 1990)

In this paper, we prove that if <& is an increasing sequence of strictly positive and continuous functions on a
locally compact Hausdorff space X such that P ~ P n C ( X ) , then the Frechet space CH(X) is distinguished if
and only if it satisfies Heinrich's density condition, or equivalently, if and only if the sequence "U satisfies
condition (H) (cf. e.g.v[l] for the introduction of (H)). As a consequence, the bidual Xm(A) of the distinguished
Kothe echelon space X0(A) is distinguished if and only if the space A^A) is distinguished. This gives
counterexamples to a problem of Grothendieck in the context of Kothe echelon spaces.

1980 Mathematics subject classification (1985 Revision): 46E10, 46A45, 46A07.

1. Introduction

A locally convex space E is distinguished if its strong dual is barrelled. All the Kothe
echelon spaces kp(A) of order p=0 or 1 <p<co are known to be distinguished; in fact,
for l<p<oo, they are reflexive (cf. e.g. [4]), and the strong dual of X0(A) is
topologically isomorphic to the LB-space indn_ + oo/1(a~1), A=(aK)neN. The situation for
p = 1 or p = co is more complicated.

The distinguished spaces A1(̂ 4) were characterized by K.-D. Bierstedt, J. Bonet and
R. Meise (also see Vogt [6]): K.-D. Bierstadt and R. Meise [3] introduced the condition
(£>) on a Kothe matrix A and proved that (£>) implies ky(A) distinguished. Then, K.-D.
Bierstedt and J. Bonet [2] proved that in fact (D) is also necessary for the distinguished-
ness of Aj(/1).

Concerning the spaces k^A), which are the strong biduals of the corresponding
spaces ko(A), the problem of characterizing when k^A) is distinguished is related to the
following question of Grothendieck: "Is the bidual of a distinguished Frechet space also
distinguished?" This question of Grothendieck has already been answered in the
negative by J. Bonet, S. Dierolf and C. Fernandez [5]. These authors used Frechet
spaces of Moscatelli type to construct counterexamples. Moreover, they proved that this
question is also related to the lifting of bounded sets: they show that if E, F are Frechet
spaces such that E^FcE" and if F is distinguished, then F/E is distinguished and its
bounded sets are liftable (with closure). In our situation, this is a key point which allows
us to forget about the dual of X^A), which is not a sequence space, and hence requires
a new approach and other methods.
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272 FRANCHISE BASTIN

In the present paper, we characterize the distinguished weighted Frechet spaces of
continuous functions on a locally compact Hausdorff space X in terms of condition (H)
(cf. Notation). As a particular case, we obtain a characterization of the distinguished
spaces kx(A): this space is distinguished if and only if k^A) is. Hence, concerning the
preceding question of Grothendieck, we can say that every Kothe matrix A which does
not satisfy condition (D) (or equivalently (H), cf. Notation) gives a distinguished Frechet
space ko(A) such that (ko(A))%b^ k^A) is not distinguished.

2. Notation

Let X denote a completely regular and Hausdorff space and '% = (um)meN denote a
countable increasing system of strictly positive weights on X. We set

and

\ [0, + oo[; sup \v(x)/vm(x)\ < + oo, Vme N
(.

Then G<%(X) denotes the linear space of all the continuous function f on X such that
Pm(f)'- = suPxexum(x)\f(x)\< + °° V m 6 ^ endowed with the locally convex topology
defined by the semi-norms pm, meN. The notation k^A), A = aU is used in case X is
discrete. Further, C°U0(X) denotes the subspace of C<%{X) consisting of all the
continuous functions /such that umf converges to 0 at infinity for every meN; in one
case X is discrete, ko(A) is used instead of C^(0(X).

We will also use the following notation:

Q for the quotient map C<&{X)->C<%(X)/CU0(X),

bm for the neighbourhood {/eA00(^):supX6X|um(x)/(x)|gl} in kx(A),

D(X) for the space of all the continuous functions on X with compact support
(D{X, [0,1]) denotes then the set of the elements of D(X) with values in [0,1]),

if ve V, then ptfjj is the set {fekJA): |/(x)|gtJ(x), VxeX}

Let us also recall the expressions of conditions (D), (H), (//**) and {ND), as well as
the relations between them, cf. [1] (these expressions are given in terms of "V or "U):

(D) 3J = (Xm)ma

(N, J) Vn, 3m(n): infxeXn vk(x)/vmM(x) > 0 Vfc e N

and
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(H) VAm>0(meN),VneN,3i>eKand M e N :

m s M Amum(x) ̂  f»M => «(x) ̂  uB(x));

„ s M AmI;m(x) ̂  Ct^x) =* tJ(x) ^ C;n(x));

(ND) ineN and a decreasing sequence Jk(k e N) of non void subsets of X such that,
Vfc^n:

(i) inf«Jk vk(x)/vn(x) > 0; (ii) 3l{k) > k: mfxeJk vm(x)/vn(x) = 0.

It is known that (D)o(H)o(H**)o ~](ND).

3. Main results

As will be proved in Proposition 2, under some continuity assumption, the possibility
of lifting the bounded sets of C%(X)/C<%0(X) is equivalent to (H) (or to ~\(ND)). To
obtain this result, we need some more information about the sets Jk (keN) appearing
in (ND):

Lemma 1. If-^c C(X), then in condition (ND), we can assume that the sets Jk's are
such that (Jk+i)~ <^Jk={Jk)° for every keN, i.e.

(ND) 3ne N and a decreasing sequence Jk(k e N) of non void subsets of X such that

V/ceN: ( J , + 1 ) -c=A = (A)°,

Vfe^n: (i)infxsA»t(x)/o11(x)>0,

(ii) 3l(k) > k: infX6Jk vm(x)/vn(x) = 0.

Proof. It is known that (ND) is equivalent to ~~](H). To obtain the result here, we
just change the proof of -\(H)=>(ND) of 1.2.7 of [1] slightly as follows.

As (H) does not hold, there are ne M and a sequence Am>0 (me N) such that

(: inf Xmvm(x)^vn(x) and v(x) < vn(x). (1)

For every keN, define

Jk: = ixeX: inf kmvm
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For every k, as (1) holds, the set Jk is non void; and as the functions vm's are
continuous, we also have

Moreover, for every keN, one gets

inff 7 ^ : ,
j k vn{x) Xk

hence (i) of (ND) is satisfied.
So, to conclude, we just have to prove (ii). If (ii) is not satisfied, there is fc^n such

that

V/>M,:=inf ~ > 0 .
« j k vn{x)

For m>k, let <xm: = S~l and for m = l,...,k, let am: = Am. Then define tJ: = infmeNamum.
Since (1) holds, there exists xeX such that

inf kmvm(x) ̂  vn(x) and 2v < vn{x).

The first inequality implies xeJk. Moreover, by construction, VyeJt we have

lvn(y) for m= l,...,k,

S-'vJLy)£ vn(y)^2"Jv.(y) for m>k;

hence also 2v(y)^vn{y). But this contradicts xeJk and 2v(x)<vn(x). D

Now we can prove the main result of this paper, i.e., the characterization of the lifting
of the bounded sets of C<%(X)/C<%0(X) (with or without closure) in terms of
condition (//).

Proposition 2. Let X be locally compact, "VcC(X) and consider the following
properties:

(1) "f satisfies condition (H) (or equivalently (H**));
(2) Vfl bounded subset of C<%(X)/C<%0(X),3C bounded subset of C<%(X) such that

B<zQ(Q;
(3) Vfl bounded subset of CW(X)/C<%0(X),3C bounded subset of CW(X) such that

Then (1)=>(3) and (2)=>(3). Moreover, if in addition we have V~VnC(X), then (3)=>(1)
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Proof. Of course, (2) => (3).

(1)=>(3). Given B, there is a sequence Am>0 (meN) such that

Then condition (H**) gives ve V; we define

«: = sup inf {4MXMv, Xtvu..., kMvM}.

As M belongs also to V, the set

is a bounded subset of C"U(X). We claim that

Indeed, fix neN and take feB. Define the sets

Then F and F' are disjoint zero sets of continuous functions; so there is geC(X,[Q, 1])
such that #=0 on F and g=\ on F . As we certainly have f=gf + (l—g)f and
(l-g)/e(l/n)/>nn C(X), to conclude it remains to prove that gf belongs to B' + C<%0(X).

Using (H**) with n and C= l/4n, we get Af = M(n) such that

inf kmvm

We can write (recall that / belongs to B)

with f(m)eXmbmr\C(X) and gim)eC<%0(X) for every m = \,...,M. Then there is a
compact subset K of X such that

1 = m m ^n

for every xeX\K and 1 ^ m ^ M. It follows that every xeX\(K u F) satisfies

i j».(x)^ inf ^ p j x ) ; (3)

hence also (use (//**))

_1_
4M"" 1
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A look at the definition of u shows that the previous inequality implies

= inf Amum
1 SmSM

for every xeX\(K u F). Moreover, (2) and (3) implies also

| /(x) |g2 inf Xmvm(x)(^2u(x)) (4)

for every xeX\(KuF). Taking now </)eD(X,[0,1]), <f>=\ on K, we get gf=
<t>gf + {\-<t>)gf, with <pgfeD(X)(=C<%0(X). Finally, by construction and by (4), we
obtain

(l-(p)g\f\^2uonX

hence (1 — </>)g/ belongs to B' and we are done.

Now, assume that in addition, every element of V is dominated by a continuous
element of V.

(3)=>(1). We proceed by contradiction. If (H) does not hold, condition {ND) is
satisfied and we can assume that it is satisfied with a decreasing sequence of non-void
subsets Jk(keN) verifying (Jk+1)~

 cJk = {Jk)° f°r every keM. We can also suppose n> 1.
For every k^n, we set ek: = infxeJkun(x)/uk(x) (>0, cf(ND)) and we define

B:=f] ((£ " ' bm n C(X)) + CW0{X)).

which is a bounded subset of C<%(X)/C<%0(X).
As every bounded subset of C%{X~) is contained in a set of the type vil^^ve V), it

remains to prove that Vt) = infmeNpmi;m,(pm>OVm), we have

B^Cto(X) + ( |fc,nCW) + ( C ) i n C(X)) = :C.

Indeed, let em:=l for m=\,...,n— 1 and take iJ6FnC(X) and a sequence rm>OVm
such that

r ^ ^ ' V m , inf rmvm^v^2 i n f e ; 1 ^ .
meN melM

Now, we use (ND) and the fact that the Jks are open to construct sequences k(j)eH,
XjeX and VjcXfjeN) such that, V;e^J
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Vj = open neighbourhood of xy,

. » ; \\

(hence VjcJkU)\{Jk(]+l))-, VjeN and VjnV, = 0 if ; # / ) . Then, VjelM, let
fjeD{X,[0,1]), supp (/})<= KJ>/j(xi)= 1 and define

/: = »„ I f.

We claim that / e B\C. To prove this, we proceed in several steps.

(a) / is continuous on X.
Indeed, take any x e X.
If xe[\jet)JJ, we obtain e~lvm(x)^vn(x)VmeN, hence also

v(x) ̂  2 infmeN e~1 vm{x) > vn(x).

Since vn and v are continuous, the set

V: = {yeX:v(y)>vn(y)}

is a neighbourhood of x. Moreover, for every je M, we have

) < vn(y)} a {y: 2v(y) < vn(y)}

hence V)n V=0 and finally / = 0 on V.
If there is j 0 such that x$Jj0, then F=X\(7JO)" is an open neighbourhood of x

which meets only finitely many J '̂s (because VJcJt())V/ and Jtw^Jjo f°r ' = 7o)> hence
/ | K is a finite sum of continuous functions.

(b) /belongs to C<%(X).
Indeed, fix meN, m^.n. We have

supum(x)|/(x)|= sup
xeX JeN.xeVj

sup{ p

and hence the required conclusion.

(c) /belongs to B=f]m^((e-lbm

Indeed, fix meN, m^.n. Then
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with

j=l j=m

and

(d) Assume that there are ge{l/4)bnn C(X), heilji and weCW0{X) such that
f=g + vh + w. Then, for every jeN,v/e have

= Un(Xj)vn(Xj) = Un(Xj)f(Xj) £i + UK(Xj)\w{Xj)\ + pk(J+

As w belongs to C(un)0(X), to conclude, it suffices now to prove that the set {xjijeN} is
not relatively compact.

Indeed, if it was compact, we could find xoef]NeN{xj:j^N}~. But for every JVeN
and j^N, we have x}eVjCiJk{j)c:Jkm<^JN, which implies e^jlvN{xj)'^.vn{x]) and finally
the inclusion

{Xj: j ^ i V j - c l x e l : ^ 1 vN(x) £ vn(x)}.

This implies that x0 satisfies infmeN£^1i;ni(xo)^t;B(xo) hence also v{x0) > vn(x0). As in the
case (a) above, V={xeX:v(x)>vn(x)} is then a neighbourhood of x0 and it follows that
there exists M such that v(xM) > vn(xM). But this implies

rk(M + 1) Vk(M + 1 )(XMJ >Vn(XMh

which is a contradiction because

l \xMtVM

(1)=>(2). We improve the proof of (1)=>(3) in the case V that satisfies the continuous
domination property (i.e. V^V n C(X)).

As B is bounded in C<%(X)/C%0(X), there is a sequence Am>0(meN) such that

Using (H**) (equivalent to (i/)), we get tJe V such that Vne N,
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We define

u': = sup inf {4MAMtJ, kt vx,..., kMvm).

We have u' e V. Let u be a strictly positive (the condition (H) implies the existence of a
strictly positive element of V) and continuous element of V such that u^<
and u^u'. We claim that

g l . _ A n L
I I V ^m m

Indeed, let feB'. For every meM, there are / ( m )e Amfcmn C(X) and g(m)eC^0(X) such
that f=pm)+g(m). Hence, for every neN, there exists a compact subset KncX such
that

l l ; Vfe = l,...,M(n); VxeX\^n. (6)

We set Ko: = 0; moreover, in the previous construction (this construction is possible
except if X is compact. But then, the property is of course true and we have nothing to
prove), we can assume that 0#Kn§j(Kn + 1)°, VneftJ.

We proceed again in several steps.

(a) Let (j>\eD(X,[0,1]) be such that <t>\ = l on Ku supp(</>1)c(K2)° and, for every
n^2, let #,eZ>(X,[0,l]) be such that #, = 1 on K^K^J0, supp(^B)c:(Kn+1)0\XB_2.
Moreover, as the sets F: = {xeX:\f{x)\^u(x)} and G: = {xeX:\f{x)\^2u{x)} are dis-
joint zero-sets of continuous functions, there is he C(X, [0,1]) satisfying h = 0 on F, h= 1
on G.

We show that l—h, h(p'n(neN) form a locally finite family &• of continuous functions
on X such that <t>'{x):= 1 -h{x) + Y,?™ih(x)<p'n(x)>0,VxeX.

Indeed, for every xef]neN(X\Kn), we have g(k\x) = 0 VlceW (cf. (6)), hence | / (x) |^
^•kvk(x) VfceN and finally |/(x)|^infteNAjkt>/k(x)<tJ(x); it follows that F is a neighbour-
hood of f]neN(X\Kn). Then, as h=0 on F, the family ^ is locally finite on
n»eN(-^\^n)»

 and, by construction of the functions <f>'n, it is also locally finite
on f]neNKn.

To prove that </>'(x) > 0 Vx e X, is suffices to remark that

We set
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t t h

(b) For every neN, let us define

F<">: = {xeX: un(x)|/(x)| ̂  l/2n}; F<2">: = {xeX:u.(

and take hMeC(X,[0,1]) such that /i(n) = 0 on f̂ >, /z(fl)=l on F(
2
n). For every

xeAr\(Kn u F^), we have (cf. the decompositions /=/ ( m )+^< m ) of/)

|^un(x) inf
^w ' HUM

hence

— vn(x)< inf A û̂ x)

and (from (5))

It follows that

inf

and that

v 1x1
/"(x) < inf ' •• ' -* > "̂  '

< 2 inf

(c) Now, /can be decomposed as follows:

n = 3

For every n ̂  3, we have

fx^F(n"2)

[xesupp($n)cz(Kn+1)
0\Kn_2<-.A \A.n-2,
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hence | /(x)|^2u(x) and finally

281

n = 3

VxeAT.

Next, let us verify that X»+=°3/^B(l-fc(B"2)) belongs to C<#0M- First, this function
clearly belongs to C%(X). Now fixJVeW and e>0. For every n^3, we have

Hence, if N'eN is such that TV"^sup{N + 2 , 3 s " 1 + 2}, for every x$KN., we get

+ 00

n = 3
= "*(*)

= N'

^ I |/(x)|0n(x)Un_2(x)(l-/,(»-2»(x))

•<£.

Finally, as 4>0=0 on G = { X 6 Z : | / ( X ) | ^ 2 M ( X ) } , we also have
VxeX.

Hence the conclusion: / belongs to the set 8tJ(/00)1 + C%Q(X). D

Let us now recall Lemma 1 of [5] which shows how distinguishedness and lifting of
bounded sets are connected.

Lemma 3 ([5]). Let E, F be Frechet spaces such that EczFcE", and let q: F->F/E
denote the quotient map. Assume that F is distinguished. Then

(i) F/E is distinguished, and
(ii) V bounded subset B of F/E, 3A bounded subset of F such that Bcz(q(A))~.

Proposition 2 and the lemma recalled above lead now to the following result.

Theorem 4. Let X be locally compact, f c C ( X ) and V~VnC(X). Then the
following properties are equivalent:

(1) C%(X) is distinguished;
(2) C%(X) (resp. C<%0{X)) satisfies S. Heinrich's density condition;
(3) iT satisfies (H);
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(4) VB bounded subset of CW(X)/C<%0(X), 3C bounded subset of C<%(X) such that
B<=Q(Q;

(5) VB bounded subset of C2t(X)/CW0(X), 3C bounded subset of CW(X) such that

Proof. From [1], we know that (2) and (3) are equivalent (this result is valid without
the assumption V~VnC(X)).

The equivalence between (3), (4) and (5) is proved in the preceding proposition.
As E = C%0(X) and F = Catt(X) are Frechet spaces satisfying EaFczE", we can apply

Lemma 1 of [5] and we get (1)=>(5).
As S. Heinrich's density condition for Frechet spaces implies distinguishedness, the

proof is complete. •

Corollary 5. Let A = (an)neN be a Kothe matrix on a discrete space X and let q denote
the quotient map ̂ ^(A)—* km(A)/A0(A). Then the following properties are equivalent:

(1) A00(/l) is distinguished;
(2) kx(A) is distinguished;
(3) AQ0(/4) (resp. ^i(A)) satisfies S. Heinrich's density condition;
(4) VB bounded subset o/A00(y4)/A0(/l), 3C bounded subset of kx(A) such that Bcq{C);
(5) VBboundedsubsetofkx(A)/l.0(A),3Cboundedsubsetoft.ao(A)suchthatB<z{q(C))-x'°(A)IXo{A\

Remark. Completely independently from this paper, E. Shaliick (Universitat-GH-
Paderborn) obtained results about the distinguishedness of weighted spaces CV0(X). He
proved that if V is an increasing sequence of strictly positive and continuous functions
on a locally compact Hausdorff space X such that every lower semi-continuous
v:X-*[0, +oo[u{oo} satisfying supxeXvn(x)/v(x)< oo Vne N is dominated by a continuous
function of the same type, then CV0(X) is distinguished.
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