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SUMMARY

This paper is devoted to the study of the effects of population subdivision
on the evolution of two linked loci. Two simple deterministic models of
population subdivision without selection are investigated. One is a finite
linear 'stepping stone' model and the other is a finite linear stepping
stone chain of populations stretching between two large populations of con-
stant genetic constitution. At equilibrium in the first model the gene
frequencies in each population are equal and there is linkage equilibrium
in each population. The rate of decay to zero of the linkage disequilibrium
functions is the larger of (1 — c) and Af, where A± is the rate of convergence
of the gene frequencies to equilibrium and c is the recombination frequency.
In the second model at equilibrium there will be a linear cline in gene fre-
quencies connecting the two large constant populations. This cline will
be accompanied by a ' cline' of linkage disequilibria. The rate of conver-
gence to this equilibrium cline is independent of the recombination fre-
quency, and, in fact, the gene frequencies and the linkage disequilibria
converge to equilibrium at the same rate.

The effect of population subdivision on one locus without selection in diploid
organisms was early recognized by Wahlund (1928). When previously isolated
random mating populations are mixed, the genotypic proportions show a deficit
of heterozygotes at a locus of variable gene frequency if compared to the Hardy-
Weinberg proportions with the mean gene frequency. However, only one round
of random mating is required to restore Hardy-Weinberg proportions. On the other
hand, it has long been recognized that the mixing of isolates could in a similar fashion
generate linkage disequilibrium between parrs of loci, although quantitative ex-
pression of this has only recently been presented (Sinnock & Singh, 1972; Prout,
1973; Nei & Li, 1973). Unlike the distortion from Hardy-Weinberg proportions this
distortion from random combination of the alleles at two loci is not expected to
vanish after one generation of random mating (Robbins, 1918). This suggests that
the fundamental rules for the dynamics of a two locus polymorphism need further
consideration in subdivided populations where the subpopulations are not com-
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pletely isolated but interchange individuals regularly through recurrent migration.
This paper is an attempt at clarification of these rules in simple deterministic
models of subdivided populations without selection.

1. WAHLUND'S PRINCIPLE FOR TWO LOCI

Consider two loci with alleles A and a segregating at the first and B and b at the
second locus. In the ith subpopulation let the frequencies of the chromosomes AB,
Ab, aB and ab be xu, x2i, x3i and xu respectively. Write the gene frequency of A
as Pi = xu + x2i and the gene frequency of B as rt = xu + x3i with qi = 1 — pt and
st = 1 — rt. Instead of the chromosome frequencies we may use the system of
independent variables pit ri and Dt = xuxH — x2ix3i to describe the evolution
of the population. Di is called the linkage disequilibrium and measures, in the
ith subpopulation, the departure from random association of the alleles at the
two loci.

Now suppose that the whole population is divided into n subunits of relative size
et,i = 1,2, ...,n with 2 ê  = 1. Then the average value of the linkage disequilibrium
is

,r), (1)
t=i

n

where DT = x1xi — x2x3 with #• = 2 ^u (2)
i=l

n

and cov (p, r) = £ ei(pi - p) (r4 - f) (3)
n ' n

with p = S ^iPi a n ( i ^ = S £iri- (4)
t=l i= l

The identity (1) has been obtained for the case of two populations by Sinnock
& Singh (1972) and for the general case by Prout (1973) and Nei & Li (1973). We
propose that (1) be called Wahlund's principle for two loci by analogy with the
famous principle for one locus (Wahlund, 1928). To see the analogy, let ht be the fre-
quency of heterozygotes in the ith population. Define the deviation from the
Hardy-Weinberg proportions as 8i = \hi—piqi. The average deviation from
Hardy-Weinberg proportions in the population is then

$ = 2 c^i = ST + var (p), (5)
i=l

_ _ n
where ST = \h — pq with h=J^leihi (6)

»=i
n

and var(p)= X Cjfe-yf. (7)
lThe qualitative implications of (1) are also analogous to that for one locus;

if a population is subdivided and the disequilibrium, DT, is calculated as though no
subdivision existed and found to be zero, there may be a substantial error made in
inferring that the average disequilibrium is zero. The magnitude of the error is
governed by the covariance in the gene frequencies at the two loci.
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The transient properties of the linkage disequilibrium are fundamentally dif-
ferent from the transient properties of deviations from the Hardy-Weinberg
proportions (Robbins, 1918). Random mating in a mixed population produces an
offspring population in Hardy-Weinberg proportions at each locus, whereas the
linkage disequilibrium among offspring becomes

D'T = (l-c)D+cov(p,r), (8)

where c is the recombination fraction. We shall see that the gene frequencies play a
key role in the transient properties of the disequilibria in subdivided populations,
a role which is basically due to the Wahlund's covariance principle as stated in
equations (1) and (8).

2. 'STEPPING-STONE'MODELS FOR TWO LOCI

We have seen that covariance in the gene frequencies of subpopulations can pro-
duce linkage disequilibrium in the overall system despite the random association
of the loci within each subpopulation. In this section we investigate the long term
behaviour of the linkage disequilibrium in some simple models of population sub-
division in view of the Wahlund principle.

Simple model

oZoZ-ZoZoZoZ-ZoZo
1 2 i-1 i H-l /-I /

Cline model

1 2 l-\ I

Fig. 1. Stepping-stone models (see text).

We consider the simple finite one-dimensional stepping-stone model of migration
used by Kimura & Weiss (1964) and depicted in Fig. 1. There are two autosomal
loci with alleles A, a, B and b in frequencies J>i(t), q^t), r^t) and st(t) respectively in
the ith subpopulation at generation t. The chromosome frequencies are designated
xH(t) while the linkage disequilibrium in the ith population is Dt(t) at generation t.
There are I subpopulations of equal size arrayed along a line and after migration
each subpopulation consists of a proportion m of immigrants from the population on
the left and a proportion m from the population on the right with the remaining
individuals raised on location. Mating is at random within each of the subpopula-
tions and it is assumed that there is no selection.
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With this basic structure we consider two qualitatively different models. The
first is essentially as described above with no further assumptions. We call this
model the simple stepping-stone model. The second model is arrived at by assuming
that at the left and right hand ends of the array there are two large populations K and
L respectively (Fig. 1). In these the gene frequencies of A and B ax:epK, rK axidpL

and rL respectively and the disequilibria Dk and DL are constant, uninfluenced by
the gene flow through the cline. We call this model the stepping-stone dine model.

3. THE SIMPLE STEPPING STONE MODEL

The changes in gene frequencies of A between successive generations may be
written for the simple model as

p(t) = Mp(t-l), (9)
where

M =

1 — TO

m
0

1
TO

- 2 T O

TO 1

0
TO

- 2 T O

0 ..
0 ..

TO . .

. 0

. 0

. 0

o -
0
0

L o 0 0 0 TO 1 — T O .

and p(<) = (10)

and similarly for r the vector of B gene frequencies. Models like (9) have been studied
extensively by Malecot (1950,1951), Kimura & Weiss (1964) and Bodmer & Cavalli-
Sforza (1968). Continuous time and space analogues have been considered by
Malecot (1967) and Maruyama (1971). Now if the initial frequencies in the sub-
populations are p(0) then the elementary properties of the matrix M ensure that
the limiting frequency in each subpopulation is

Pi = (11)

i.e. asymptotically there is no variation in gene frequencies. The rate of approach
of the system of frequencies to this limiting uniform state is the largest non-unit
eigenvalue of M, namely

Ax = 1 - 2TO + 2TO COS [n/l]. (12)

This and other spectral properties of M may be obtained using arguments analogous
to those of Feller (1957, ch. xvi). When the number of populations is large we have

A1 = 1— TO7T2/?2, (13)

so the larger the number of populations, the slower is the approach to the limit
(11). This value (13) for the rate of approach to (11) is the precise discrete analogue to
the continuous time and space result (2-4) of Maruyama (1971), since 2m is the
variance of the migration distance in (10) and I corresponds to Maruyamas L.

Next we consider the change in the values of the linkage disequilibria for the
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simple stepping-stone model. Zygotes are assume to migrate and recombina-
tion occurs after migration. Thus after migration and recombination we have,
for example,

x'u = (1 - 2m) x - c[(l - 2m) Dt (14)

for i 4= 1,1, with appropriate adjustments at i = 1 or i = I. Here c is the recombina-
tion fraction. Similar relations are valid for the frequencies of Ab, aB and ab. From
equation (14) we compute the new disequilibria for i + 1 and I as

'i = (1 - 2m)2 Bi - c[( 1 - 2m) Bi

where
3- = x

1!c

+ m(l-2m)

+ Xy x^ — x^ x — x2j x
3lc.

(15)

(16)

Appropriate adjustments must be made for i = 1 or i = I. The quantities Aki are
disequilibrium functions bound to the correlation in gene frequencies between
populations k and I. In fact we have

= (pk(t) - (17)

Using (17) we may write (15) in the form of equation (8), which in matrix form is as
follows

= ( l -c )MD((- l ) + C(i- l ) , (18)

where D(«) is the column vector (D^t), D2(t),..., Dj(0)' and C(t) is the vector whose
ith component is

(r(0> (19)

where the matrices At are of the form

i-1
. . . 0 0

= i

0 . .
0 . .

0 . .

0 . .

0 . .

. 0

. 0

. 0

. 0

. 0

0

m(l—m)

- m ( l - 2 m )

- m 2

0

0

- m ( l - 2 m )

2m(l-2m)

— m(l —2m)

0

0

— m 2

-m(l-2m)
fyyi ( 1 _ _ /yy) \ffV\ X ^^ //li 1

0

0 . .
0 . .

0 . .

0 . .

0 . .

. 0

. 0

. 0

. 0

. 0

0 .
(20a)
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f o r i =(= 1 a n d I w i t h

m ( l — m) — ra(l—ra) 0 . . . 0

— m ( l — m) m ( l — m ) 0 . . . 0

0 0 0 . . . 0
A 1 =

0 . . . 0

(206)

and
0 . . . 0

(20c)
0 . . . 0 0 0

0 . . . 0 m(l—m) — ra(l— m)

0 . . . 0 —m(l—m) m(l— m)

Through (19) it is clear that we might expect the evolution of Dt to depend on
changes in p and r, the gene frequencies. In fact we may use (9) to compute Ci(i) as

Gj(O = p(0)' (M')* Af M*r(0). (21)

Now Mf may be written as ̂ A*4», where A is the diagonal matrix of eigenvalues, <f> is
the matrix whose columns are the right eigenvectors of M, and «J> the matrix whose
rows are the left eigenvectors of M and <j>ty = I, the identity matrix. A right eigen-
vector of M for the eigenvalue 1 is obviously (1,1, . . . , 1) and the corresponding left
eigenvector is (n^ 7T2,..., TTJ), the stationary probability distribution, which is the uni-
form distribution -ni = ljl. From the definitions (20) we see that these two vectors
are eigenvectors of 0 for all the matrices Aj. Substituting this information into (21) it
becomes clear that the matrices At remove the unit eigenvalue of M from con-
sideration in the iteration of C(t). The rate determining factor is then the square of
the largest non-unit eigenvalue of M due to the occurrence of M' and M in (21). We
may rewrite (18) as

(22)
- c ) Af-2>M +. . .

+ terms of order (Ax A2)'-\

where Ax is the largest non-unit eigenvalue (12) and A2 is the third largest eigenvalue
of M and y is a constant vector. Hence

D(<) 5 (l-c)tMtD(O) + Af{I-[(l-c)/Af]M}-1{I-[(l-c)/Af]tMt}Y*) (23)

where y* is a modified constant vector.
We therefore conclude that D(() -> 0, as t -> oo. Ultimately the loci in all popula-
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tions are randomly associated. Now since M has an eigenvalue of unity, the rate at
which D(t) vanishes is governed by the larger of (1 — c) and A| (see (12) or (13)). Thus
if the number of subpopulations is large, i.e. X1 is close to unity, then the recombina-
tion fraction only plays a role in the asymptotic decay of disequilibrium if it is ex-
tremely small. For moderate linkage values, and large numbers of subpopulations,
only the migration rate governs the asymptotic decay of D, through the definition
of A1; namely (12). This constitutes a substantial generalization of Nei & Li's result
(1973) that in the case of two populations the rate of decay of Dis the larger of 1 — c
and (1 — 2m)2. This completes our discussion of the simple stepping-stone model.

4. THE STEPPING-STONE CLINE MODEL

It seems likely that in natural populations spatial variations in density may be
correlated with variations in the gene frequencies at polymorphic loci. In sparsely
populated areas the gene frequencies will to a large extent be influenced by migration
from more dense regions. However, the effect of immigration in the denser areas
may not be so important. Any differences in genetic composition between isolated
dense areas of a population will result in clines through the sparse areas between them.
It seems reasonable to assume that such clines at different loci will be parallel in
shape (Lewontin & Krakauer, 1973). From equations (1) and (8) above the steady
mixing of the populations in the cline area may be expected to generate overall
disequilibrium between varying loci in every generation (Prout, 1973).

Now consider the effect of two large constant populations K and L at the left and
right respectively of the stepping-stone chain. For the stepping-stone cline model the
gene frequencies of A and B in K and L are pK and pL respectively. The constant
values of the disequilibria are DK and DL respectively. In population 1 a proportion
m of the individuals is exchanged with population K, and similarly population I
exchanges individuals with population L. The recursion system governing the
change in A frequencies is then

p(<) = M l P ( * - l ) + mTj, (24)
where

(25)

(26)

(27)

(28)

and

We

M

therefore

1 —

-1

_

have

- 2 m
m

0

0

0

TO

1-2TO

TO

0

0

Tj' = (pK

1

,o

0
TO

- 2 m

0

0

, 0 , . . .

. . .

. . . 1

• > •

O.Pz.).

0
0

0

- 2 m

TO

0 "
0

0

TO

1-2TO-

p(<) = Mi p(0) + m[I - Mf ] [I - MJ- i TJ

since the largest eigenvalue of M1 is clearly less than unity. Hence

p = limp(J) = mfl-MJ"1*] .
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This is of course analogous to the well-known equilibrium result when there is
stabilizing migration from a constant outside population (Bodmer & Cavalli-
Sforza, 1968) or linear selection (Malecot, 1950, 1951). To express the limit (28)
we need only note that the inverse of I — Mx has the form

- I l-l ... 2 1 1
l-l x ... x 2

1

2

L 1
x
2

x l-l
l-l I J

(29)

where the interior elements, marked x, play no role because of the form of (26).
Together (26), (28) and (29) produce the limiting values

PiW-*+l)PK + *PiMQ+l)- (30)

The rate of approach of the gene frequencies to the equilibrium cline (30) is the
largest eigenvalue of Mx. With a total of I populations (excluding K and L) this is

A* = l-2m + 2mcos(n/(l+l)), (31)

which is equivalent to the result (12) for the simple stepping-stone model.
The changes in linkage disequilibria are specified by

l), (32)

(33)where 8' = (DK, 0,0,..., 0, DL)

and C(t) is the vector (19) with changes at positions 1 and I, such that

C&) =
PK

PI

ra(l-ra) -m( l -2m) -ra2

-m( l -2m) 2m(l-2m) - w ( l -
- ra2 -m( l -2ra) m(l-m)

(34)

and similarly for
From (27) we have that p(t) — p approaches zero at the geometric rate Af*. We

may use this fact in the iteration of C(t) and write (32) as

D(f) = ( l -c )M 1 D(«- l ) + m(l-c)8 + C + Aj!{-1Y + terms of order (A?2t, A *̂), (35)

where C is the equilibrium C vector obtained by substituting the equilibrium values
p (from (28)) and r into (19) and (34). A* is the second largest eigenvalue of Mx and
Y is a constant vector. Hence

\**-yi - [(1 - c)/A*]fM£}{I - [(1 - c)/A*] MJ-i Y*, (36)

where Y* is a modified constant vector. The limiting value of D(<) is thus seen to be

(37)

From (36) we note the interesting fact that the rate of approach of the dis-
equilibrium functions D(t) to the equilibrium value D is quite different from the
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result for the simple stepping-stone model. Since A* is the largest eigenvalue of M1(

the recombination fraction, c, never plays any role in the ultimate rate of conver-
gence. It may well be influential in the early stages of evolution, but the only para-
meter involved in the asymptotic rate of approach is m. These remarks depend, of
course, on the vector y being non-zero. If pK = pL so that the gene frequencies are
asymptotically uniform across the cline it is easy to see that the structure of At

removes the term in A** leaving terms in (A*2)*. Then we must compare (1 — c) A*
and A*2 to determine the rate, the larger being the relevant one.

Another point worthy of note is that even when DK and DL are zero there may still
exist what may be called a cline of the disequilibria due (through Wahlund's effect
as in section 1) to the influence of the differences in gene frequencies between popu-
lations. Only if pK = pL will this effect vanish.

A direct derivation of the equilibrium linkage disequilibrium values can be made
as follows: from (19), (30) and (34) the equilibrium value of Gi can be shown to be

0 = [2ml(l+l)](pK-pL)(rK-rL). (38)
From (32) we have

(39)

Now set Ai = 3t + d/[2m( 1 - a) (1 - c)] = t)i - d/c (40)

with a = [ l-( l -c)( l-2m)]/[2(l-c)m]. (41)

Then substituting Â  into the recursion system (39) produces a homogeneous system
of equations

Ai = 2aAi+1-Ai+2. (42)

Using the fact that the characteristic roots of this equation system have the product
unity, we may write the solutions in the form

(43)

where A, = a'{[l + V( 1 - a"2)]' - [ 1 - ^ ( 1 - a"2)]'}. (44)

Since the relation between \ and Dt is given by (40), (43) is an explicit expression
for Z)i. Observe that if both DK and DL are zero, then

Thus j&£ increases from both ends of the cline and attains its maximum in the middle.
In this case, if Us not too small and a is not too close to one, i.e. c is not too small
with respect to the migration rate, then in the middle of the cline we have

A « 6/c (46)

as a fairly good approximation. Table 1 shows the magnitude of the terms in (45)
that are neglected in the approximation (46). Table 2 shows some of the ranges of
the parameters for which (46) is valid.

I1 GEE 24
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The linkage disequilibria Di are denned as the linkage disequilibria among
uniting gametes in the subpopulations. Equation (46) shows that in the centre of
the cline the equilibrium values fit are proportional to the equilibrium correlation

Table 1. Values of AtlA.H between 0-1 and 001 for various values of i and a

(The signs + and — indicate values above 0-1 and below 0-01 respectively.)

i
2
3
4
5
6
7
8
9

10

1 1

+
+

+
0 0 6
004
0 0 3
002
001

1-25

+
+

006
0-03
0-02
001
—
—

1-5

+
006
003
001
—
_
—
_

2

0-7
002
001

—
—
—
—
_

5

001
—
—
—
—
—
—
—

Table 2. Values of a for various values of m and c

C

001
0 0 5
0 1
0-2
0-5

001

1-51
3-6
6-6

14
15

0-05

1-10
1-53
2-1
3-5

11

0-1

1-05
1-26
1-56
2-3
6 0

0-2

103
113
1-28
1-62
3-5

0-5

101
105
111
1-25
2 0

in gene frequencies among immigrants. The linkage disequilibrium among adults
after migration should be (2) which from (1) is

f>Ti = ( l - 2 m ) ^ +m0i_1 + fii+1) + d » d(l + c)/c (47)

with the approximation in (46).

5. DISCUSSION
The occurrence of linkage disequilibrium in a population may be due to the

action of almost any of the usual evolutionary forces considered in population
genetics. It can result from small population sampling effects (Hill & Robertson,
1968; Sved, 1971) from epistatic selection on tightly linked loci (Lewontin &
Kojima, 1960; Bodmer & Felsenstein, 1967; Karlin & Feldman, 1970) or from de-
partures from random mating such as have been investigated here. Discrimination
among these on the basis of disequilibrium data from natural populations promises
to be as difficult a problem as the discrimination based on allele frequency data
has been. A number of results have been obtained on the joint effects of drift,
linkage and migration (Feldman, Stam & Wagner in preparation). Ohta (1973) has
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incorporated a special form of selection into the island model of Wright (1943)
thereby allowing all of the above effects to be studied at once. The problem then
becomes highly non-linear, of course, and the results are based on diffusion approxi-
mations. At the moment, however, it appears that these theories still are insufficient
for the elucidation of an inferential methodology.

In this connexion we should compare the result obtained in this note, that a regu-
lar gradient of linkage disequilibrium can be generated by non-uniformity in the
gene frequencies, with the fact that selection in a homogeneous environment even
with complete uniformity in the gene frequencies, can generate variation in the
linkage disequilibrium among subpopulations (Christiansen & Feldman, in prepara-
tion). This variation in the linkage disequilibrium may in fact be as expected in small
isolated populations. Therefore, neither regularity nor variation can be assigned to a
specific evolutionary force.

When dealing with a single locus the hypothesis that a deficiency of heterozygotes
is due to subdivision and geographical variation may be tested by comparing an
observed deficit with the variance in gene frequency (e.g. Christiansen et al. 1973
or Sick, 1965). One might expect that the covariance in formula (1) could be used in
an analogous way when comparing an observed linkage disequilibrium value to the
same hypothesis. However, the results here show that considerable variation in the
disequilibrium may occur even when there is uniformity in the correlation and the
prediction of the magnitude of the linkage disequilibria requires at least an estimate
of c. Further, it might also be possible to study disequilibria in a manner similar to
the Wahlund's variances used by Lewontin & Krakauer (1973) but with the covari-
ances. One source of the difficulty in doing this arises from the fact that with one
locus we have a simple estimate of the inbreeding coefficient, which in certain migra-
tion contexts is very useful (e.g. Kidd & Cavalli-Sforza, 1974), whereas with two loci
there are many 'inbreeding coefficients'.

From the early work of Robbins (1918) we know that linkage disequilibrium
vanishes at a geometric rate determined by the recombination fraction in a pan-
mictic population. The effect of subdivision on linked genes in our work may be
interpreted as a secondary restriction on recombination that causes a delay in the
convergence to linkage equilibrium for large recombination fractions (the simple
stepping-stone model). On the other hand, with external stabilizing forces as in the
stepping-stone cline model the long-term rate of change of the linkage disequili-
brium in large populations is apparently uninfluenced by the degree of linkage with
migration as the only rate determining factor. The equilibrium values do of course
depend on the extent of linkage in the cline model.

The authors thank Professor W. F. Bodmer for his valuable comments on the
manuscript.
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