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Abstract
It is found that there is an upper-limit critical power for self-guided propagation of intense lasers in plasma in addition
to the well-known lower-limit critical power set by the relativistic effect. Above this upper-limit critical power, the
laser pulse experiences defocusing due to expulsion of local plasma electrons by the transverse ponderomotive force.
Associated with the upper-limit power, a lower-limit critical plasma density is also found for a given laser spot size,
below which self-focusing does not occur for any laser power. Both the upper-limit power and the lower-limit density
are derived theoretically and verified by two-dimensional particle-in-cell simulations. The present study provides new
guidance for experimental designs, where self-guided propagation of lasers is essential.
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1. Introduction

Laser propagation in plasma is a fundamental and important
issue in laser plasma interactions, which is related to a
number of applications such as the fast ignition scheme
for inertial confinement fusion [1,2], the laser wakefield
acceleration of electrons [3–8], and lightning channeling in
air [9,10]. Usually, these applications require that intense
laser pulses can stably propagate over a large distance in
plasma. On this issue, many theoretical and experimental
studies have been performed in the last 30 years [11–24]. Self-
focusing of an ultrashort intense laser pulse in a tenuous
plasma was investigated theoretically in Refs. [11–15], and
the well-known critical laser power Pc = 17(nc/ne) GW
required for self-focusing was found [13,14], where ne is
the plasma electron density, nc = mω2/4πe2 is the critical
density, and ω is the laser frequency. Since then, there
have been a lot of studies on this topic when the laser
power is around Pc, e.g., laser channeling in underdense
plasmas [16–18], laser guiding in plasma channels [19,20], and
propagation of multi-laser beams in plasmas [21–24].

Meanwhile, ultrashort ultraintense laser technology has
been developing quickly. A few Petawatt (PW) laser systems
are available nowadays [25]. The extreme light infrastructure
(ELI) will be able to provide hundredsof PW laser beams
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with intensity as high as 1022–1025 Wcm−2. In this case, the
laser power will be much higher than Pc. It is interesting to
investigate how such laser pulses can stably be self-guided.
Actually, there have been a lot of laser wakefield accelera-
tion (LWFA) experiments conducted with laser power about
10 Pc for 1 GeV-scale electron beam generation [26–29].

In this paper, we focus on the propagation of extremely
high power lasers. It is shown that there is an upper-
limit power for self-guided propagation of laser pulses in
underdense plasma. This is caused by the transverse pon-
deromotive force of the laser pulses, expelling local plasma
electrons and creating an electron-free channel in a certain
area. This effect can lead to defocused propagation of the
laser pulses similar to in the vacuum, which may already
occur at tens of Pc. Here, we call such a phenomenon pon-
deromotive defocusing, which suggests that ponderomotive
forces may not help laser self-focusing in a high laser power
regime.

The outline of the paper is as follows. First, the pon-
deromotive defocusing is demonstrated through a set of
two-dimensional (2D) particle-in-cell (PIC) simulations in
Section 2. Then both the upper-limit critical laser power and
the lower-limit critical plasma density for self-focusing are
derived theoretically in Section 3. The results are checked
by 2D PIC simulations in Section 4. Finally, the paper is
summarized in Section 5. It should be noted that pondero-
motive defocusing has been demonstrated in our paper [30]

by three-dimensional PIC simulations and the upper-limit
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Figure 1. (a) Spacial distributions of the laser intensities with r0 = 4 λ.
The first and second columns are the results when the lasers propagate
for the distances of 0.5 and 2 xR, respectively. The first row shows that
the laser of 219 TW propagates in the vacuum. The second and third
rows show the propagation of the laser pulses with powers of 10 Pc
(8.8 TW) and 250 Pc = 10 Pu (219 TW), respectively, in the plasma with
density 0.014nc = 5 nL. (b) Spacial distributions of the electron densities
normalized by nL after the propagation of 0.5 xR, where the initial electron
densities are taken as 5 nL and laser pulses with powers of 10 Pu and
100 Pu are taken in the first and second columns.

critical laser power has been derived. In the current paper,
we will present a more detailed investigation by 2D PIC
simulations and give a more detailed derivation of the upper-
limit power.

2. Simulation demonstration of ponderomotive
defocusing

We first demonstrate the ponderomotive defocusing by the
results of a set of 2D PIC simulations, shown in Figure 1(a)
(a similar 3D PIC demonstration can be seen in [30]). In
the simulations, 1 µm wavelength laser pulses propagate
along the +x direction. They are linearly polarized along the
y direction and their vector potential takes the form

Ay = a0 sin
(
πξ

τ0

)
sin(2πξ) exp

(
−y2

r2
0

)
, 0 6 ξ < τ0,

(1)

where ξ = t − x, t, and x are normalized by the laser period
T and wavelength λ, a0 is normalized by mec2/e, and c is
the speed of light in the vacuum. We take the laser duration
τ0 = 10 λ and spot radius r0 = 4 λ. Plasma with the uniform
density of ne = 0.014 nc or 5 nL [nL is a lower-limit density
defined by Equation (14)] is taken in the second and third
rows in Figure 1, where nc = 1.1 × 1021 cm−3. In the
simulations, we take a moving window with size 32 λ in
the x direction.

Figure 1(a) shows the spacial distributions of the laser
electric fields at propagation distances of 0.25 and 2 xR,
respectively, where xR = πr2

0/λ is the Rayleigh length. It

is shown in the second row that the laser pulse with the
power of 10 Pc(8.8 TW) propagates with self-focusing for
several xR in the plasma. However, when the laser power
is increased to 250 Pc = 10 Pu (219 TW) [Pu is an upper-
limit power defined by Equation (13)], self-focusing does
not appear, and the evolution of the laser pulse is very close
to that in the vacuum, as observed in the first and third
rows. We call this phenomenon ponderomotive defocusing
in a plasma. This has resulted from the complete expulsion
of all local electrons by the transverse ponderomotive force
of the extremely intense laser pulse, as shown in the first
picture in Figure 1(b). Therefore, the laser propagates as in
the vacuum.

3. Upper-limit laser power and lower-limit plasma
density

One expects that there is a laser power threshold above
which the laser pulse starts to experience ponderomotive
defocusing in a plasma. This threshold can be given ac-
cording to balance of the transverse ponderomotive force
with the electrostatic (ES) force. The ES force is formed
by charge separation resulting from expulsion of local
plasma electrons by the transverse ponderomotive force. The
ES force counterworks the transverse ponderomotive one,
which prevents ponderomotive defocusing. One can assume
that the ES force is equal to the transverse ponderomotive
one at some radius r and that the plasma electrons are
completely expelled within the column with radius r. If r
is smaller than the laser spot radius r0, one can consider that
the ES force is able to succeed in preventing the occurrence
of ponderomotive defocusing. Then, one can find the laser
power threshold for ponderomotive defocusing through the
conditions of balance of the ES force with the ponderomo-
tive one at r0.

In the following, we derive this power threshold. For
this purpose, one needs to derive the ponderomotive force
in a highly relativistic case. Note that the ponderomotive
force have been derived in weak and moderate relativistic
cases with the electron longitudinal velocity not so close
to c[12,14,20,35,36]. Here, we try to derive the ponderomotive
force expressed approximately by the laser parameters in
a highly relativistic case, where the longitudinal electron
momentum may be much larger than the transverse one. Set
that the laser pulse propagates along the +x direction and
has linear polarization along the y direction, with the vector
potential

A= êya0 sin
(
πξ

τ0

)
sin(2πξ) exp

(
−r2

r2
0

)
, 0 6 ξ < τ0.

(2)

Under the laser field, the motion of an electron in a plasma is
governed by the Hamiltonian [31,32]:

H = γ − φ, (3)
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where φ is the scalar potential normalized by mec2/e,
γ =

√
1+ p2 is the relativistic factor, p is the momentum

normalized by mec, and the general momentum P = p − A.
Taking the partial derivative of H with respect to transverse
coordinates (marked by ⊥), one can obtain the transverse
motion equation of the electron:

d(p⊥ − A)
dt

=−∇⊥(γ − φ), (4)

where the first term on the right-hand side is the transverse
ponderomotive force and the second is the transverse ES
force. The longitudinal motion equation is given by

dpx

dt
=−∂(γ − φ)

∂x
, (5)

through taking the partial derivative of H with respect to
x. Here, a tenuous plasma is considered, and therefore the
laser frequency ω is much higher than the plasma oscillation
frequency ωp =

√
4πe2ne/me. As a result, one can assume

that every quantity Q can be divided into a fast varying part
and slowly varying part, i.e., Q = Qf + Qs, where Qf varies
at the order of ω and Qs varies at the order of ωp. The fast
varying parts of Equation (4) satisfy

d(pf
⊥ − A)
dt

= 0. (6)

We have assumed that the contribution of the transverse
ponderomotive force on the fast varying momentum is
much smaller than the laser field since the transverse
ponderomotive force expels the electron mostly outwards.
The slowly varying parts satisfy

d〈p⊥〉
dt
=−〈∇⊥γ 〉 + ∇⊥φ, (7)

where we have defined 〈Q〉 = ∫ T
0 Qdt/T , and T is the laser

period. The fast varying parts of Equation (5) are given by

dpf
x

dt
=−∂γ

f

∂x
. (8)

According to Equations (6) and (8), one can construct
a fast varying Hamiltonian Hf = γ f . Consider that in a
tenuous plasma A, and then Hf is the function of ξ = t − x
for a given electron, since the time of interaction of the
electron with the laser pulse is at the order of the laser
duration usually, within which the laser waveform does
not vary much. Then one can obtain a conversed quantity
Hf − pf

x, which gives γ f − pf
x = 1. It can be easily obtained

that [31,32] pf
⊥ = A, pf

x = A2/2, and γ f = 1 + A2/2. To
give the transverse ponderomotive force Fp = −〈∇⊥γ 〉, one
needs to get the slowly varying momentum 〈p〉, which
is very difficult. Here, we take the 0-order approximation
γ ' γ f assuming pf � 〈p〉, insert it into the expression of
Fp, and obtain Fp ' −〈∇⊥A2/2〉. Taking the laser vector
potential as Equation (2), one can obtain the transverse

ponderomotive force at the laser pulse peak (ξ = τ0/2):

Fp ' êr
a2

0r

r2
0

exp

(
−2r2

r2
0

)
. (9)

In terms of the Poisson equation, one can easily present the
transverse ES force,

Fes =∇⊥φ =−êr2π2ner, (10)

if it is assumed that the plasma electrons are expelled
completely within the column with the radius r and the
plasma ions are moveless within the laser pulse duration.
Here, the radius r is normalized by λ, and the electron
density is normalized by nc.

Through Fp(r = r0) + Fes(r = r0) = 0, one can derive
a2

0 = 2π2ner2
0 exp(2). Then one can obtain the upper-limit

critical power for self-focusing or the power threshold for
ponderomotive defocusing:

Pu = ner4
0

ncλ4 × 3.14 TW. (11)

Only when the laser power P0 satisfies Pc < P0 < Pu can
the laser pulse experience self-focusing. When P0 > Pu, it
will experience ponderomotive defocusing. Furthermore, for
occurrence of self-focusing, it is required that Pc > Pu or
ner2

0 > 0.074 ncλ
2. Otherwise, self-focusing cannot occur

for any laser power. Hence, the lower-limit critical density
nL for self-focusing can be defined by

nL = 0.074 nc
λ2

r2
0

. (12)

Equations (11) and (12) indicate that the occurrence of self-
focusing depends not only on the laser power and plasma
electron density, but also on the laser spot size; the latter has
been largely ignored.

In the 2D slab geometry, Pc is reduced by a fac-
tor
√

2[33,34], Fes is enhanced by a factor 2, and Fp '
êr

a2
0y

r2
0

exp(−2y2/r2
0), where the laser vector potential has

been taken as Equation (1). Then, one can rewrite Equa-
tions (11) and (12) in the 2D slab geometry as

Pu = ner4
0

ncλ4 × 6.28 TW (13)

and

nL = 0.044 nc
λ2

r2
0

. (14)

We will check them by 2D PIC simulations below. With the
help of nL, the two critical powers Pu and Pc are related by

Pu =
(

ne

nL

)2

Pc, (15)

which is valid for both 3D geometry and 2D slab geometry.
It should be pointed out that our model holds when the

longitudinal electron momentum is important, which is jus-
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Figure 2. Evolution of the laser peak intensity with the propagation
distance. Plasma densities of 1, 5 and 7 nL are taken in (a)–(c),
respectively. In every picture, the black curve corresponds to a laser
propagating in the vacuum, and the other curves correspond to the lasers
with different initial powers P0 in plasmas. The laser spot radius is fixed
as 8 λ.

tified, in particular, for an ultrashort ultraintense laser pulse.
While the longitudinal electron momentum is neglected, one

can assume γ '
√

1+ a2
0 and derive the laser amplitude

a0 ' π2(ne/nc)(r2
0/λ

2
0)

[35,36], when the ES force and the
ponderomotive force are balanced at r0. In this case, one can
derive P′u = (n2

er6
0)/(n

2
cλ

6) × 2.1 TW and n′L = 0.2ncλ
2/r2

0
in 3D geometry, as well as in the 2D slab geometry P′u =
(n2

er6
0)/(n

2
cλ

6)×4.2 TW and n′L = 0.14ncλ
2/r2

0. It is obtained
that n′L ' 3nL, and usually P′u is smaller than Pu in the under-
dense plasma case. Taking the laser and plasma parameters
from this Letter, one can calculate Pu = 4P′u ∼ 7P′u. We will
take the critical power and density as Pu and nL because they
show better agreement with the simulation results presented
below.

4. Verification of the theoretic results by PIC simulations

We fix the laser spot radius r0 at 8λ and vary the plasma
density as well as the laser power. The evolution of the laser
intensity with the propagation distance is plotted Figure 2.
The plot with the initial plasma density ne = nL illustrates
clearly that self-focusing does not occur at any laser power.
For a larger P0, the evolution curve of the laser intensity
is closer to the one in the vacuum. Notice that the curve
with 100Pc nearly coincides with the one in the vacuum.
When the plasma density is increased to 5nL (with Pu =
25Pc), occurrence of self-focusing is observed at 15Pc, as
shown in Figure 2(b). As the power is enhanced to 2, 4
and 8 Pu, the corresponding curves at the beginning phase
are close to the one in the vacuum. After a distance of
defocusing, self-focusing appears because the self-focusing

Figure 3. Evolution of the laser peak intensity with the propagation
distance. Plasma densities of 1, 5 and 7 nL are taken in (a)–(c),
respectively. In every picture, the black curve corresponds to a laser
propagating in the vacuum and the other curves correspond to lasers with
different initial powers P0 in plasmas. The laser spot radius is fixed as 4 λ.

condition is satisfied with the reduced laser intensity and
the increased laser spot radius. This distance of defocusing
grows with the increase of the initial laser power. Similar
results can also be seen in the plot with the plasma density
of 7nL, although stronger self-focusing is observed at 15Pc.
In particular, when P0 is up to 5000 Pu, the laser evolves
like in the vacuum in the whole distance of 5 xR. Here,
in the simulations we judge if a laser pulse self-focuses
or not according to the evolution curve at the beginning
phase.

Then we take the laser spot radius as 4 and 16 λ,
respectively, and the results are displayed in Figures 3 and
4. It is found that self-focusing begins to occur at the plasma
densities of 5 and 6 nL, respectively, for cases with laser
spot radiuses of 4 and 16 λ; ponderomotive defocusing starts
to be observed obviously at laser power of Pu and 4 Pu,
respectively, for the cases with 4 and 16 λ (this value is about
2 Pu for the case with 8 λ). One can also see from Figures 2
and 3, and 4 that, for a smaller laser spot radius, the curve
with the same initial laser power, which takes the unit as
the respective Pc or Pu, approaches the one in the vacuum
within a longer distance. These indicate that Equations (13)
and (14) can better predict the threshold of ponderomotive
defocusing for a smaller laser spot radius r0. This is
because, for a smaller r0, the transverse ponderomotive
force expels the electrons outside of r0 faster and more
easily, and thus the assumption is better that the electrons
are completely expelled within the column with radius r0.
This can be observed from the second and third pictures in
Figure 1(b).

Besides, one can see from Figure 4(c) that the laser pulses
attenuate at large propagation distances due to the light
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Figure 4. Evolution of the laser peak intensity with the propagation
distance. Plasma densities of 1, 6 and 12 nL are taken in (a)–(c),
respectively. In every picture, the black curve corresponds to a laser
propagating in the vacuum and the other curves correspond to the lasers
with different initial powers P0 in plasmas. The laser spot radius is fixed
as 16 λ.

Figure 5. Evolution of the laser peak intensity with the propagation
distance. Laser spot radiuses of 4, 8 and 16 λ are taken in (a)–(c),
respectively. In every picture, the black curve corresponds to a laser
propagating in the vacuum and the other curves correspond to lasers in
the plasmas with different densities. The initial laser intensity is fixed as
1019 Wcm−2.

absorption by the plasmas. One notices that xR is as large as
804 λ for the laser pulse with r0 = 16 λ. The light absorption
effect will also becomes important when the plasma density
is high, which can be observed in Figure 6.

Next, we fix the laser intensity I0 and vary r0 as well
as the plasma density ne to check Equations (13) and (14)

Figure 6. Evolution of the laser peak intensity with the propagation
distance. Laser spot radiuses of 8, 16 and 32 λ are taken in (a)–(c),
respectively. In every picture, the black curve corresponds to a laser
propagating in the vacuum and the other curves correspond to lasers in
the plasmas with different densities. The initial laser intensity is fixed as
1021 Wcm−2.

in another way. As mentioned above, Pc 6 P0 6 Pu is
required for self-focusing. When I0 = 1019 Wcm−2, this
gives that ne > nL,19 = 0.077nc(λ

2/r2
0) = 1.8nL according

to Equations (13) and (14). This prediction is confirmed
by Figure 5. For r0 = 4λ, self-focusing begins to occur at
ne = 2nL,19; for r0 = 8λ, it begins at 4nL,19; for r0 = 16λ,
it begins at 6nL,19. For a more intense pulse, a higher
density threshold is required, e.g., nL,21 = 2.5nc(λ

2/r2
0) for

I0 = 1021 Wcm−2. The validity of nL,21 is confirmed by our
PIC simulations, which reveal that, when ne is taken as a few
of nL,21, the pulses with r0 = 8, 16 and 32λ start to self-
focus at the beginning stage, and then they attenuate fast due
to light absorption in relatively high density plasmas.

5. Summary

In summary, we have shown that there is an upper limit
of the laser power Pu for self-focusing in plasma, which
is a function of the initial spot size of the laser pulse and
the plasma electron density. Self-focusing occurs only when
the laser power is above Pu. Otherwise, the laser pulse
experiences ponderomotive defocusing due to expulsion of
local plasma electrons by the transverse ponderomotive
force. It is also found that there is a lower limit of the plasma
density nL for self-focusing, below which self-focusing does
not occur for any laser power. These are verified by 2D PIC
simulations. The present study provides guidance for future
experimental designs when the self-guided propagation of
laser pulses over a long distance is required, such as in laser
wakefield acceleration with laser power at the 100 TW level
or above.
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